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1 Introduction 

Some years ago a possibility was discovered to construct N = 1 supersymmetric gauge 
theories with vanishing ,8-functions of the gauge and Yukawa couplings in all' orders 
of perturbation theory (finite theories) [1]. Following the algorithm suggested there, a 
finite SU(5) grand unification theory was constructed [2). Compared to the Minimal 
SUSY SU(5) model, this modd has three additional pairs of Higgs ~ultiplets. Peculiar 
features of the theory are that 'each generation of matter interacts with its pair of Higgs 
fields and each type of Yukawa interactions is degenerate with reference to generations 
of fermions or, in other words, only three different Yukawa couplings yu, YD, YE in 
accordance with three types of interaction between Higgses and matter fields exist [2}. 
Testing finite SU(5) GUT for the compatibility with modem pr~cise ·experimental data 
for sin20w and proton decay was performed in (3]. As it was shown there, these data 
could be naturally reproduced within finite SU(5) GUT due to proper choosing the 
mass splitting of additional multiplets in the Higgs sector of the model. 

Recently, it has been noted that this model can possibly explain hierarchy observed 
iri the fermionic mass spectrum by the hierarchy of vacuum expectation values of 
the Higgs fields (4). To check this suggestion, it is necessary to solve ,minimization 
conditions of the scalar Higgs potential, written on the scale of quark masses. From the 
mathematical point of view ~e must solve the system of nonlinear equations, and it is 
a nontrivial problem owing to a large number of Higgs fields. Nevertheless, it appears 
that this system can be solved analytically. Below we find an exact mathematical 
solution of minimization conditions and analyze types of extrema. 

The paper is organized as follows. The next section is devoted to a review of the 
main ideas and results of [[4),[6)], and formulae, necessary for what foilows, are written. 
Also, we consider the origin and special feat~res of the scalar Higgs potential on the Mz 
scale. The exact solution of the nonlinear minimization conditions for this potential 
with respect to the neutral SU(2) components of Higgs fields is offered in section 3. The 
domains of the quantities of the potential for which the extrema, presenting interest for 
us from the physical point of view, exist are outlined there too. Further, in chapter 4, 
we analyze the types of those extremal solutions which are gauge equivalent to real field 
configurations. And, finally, we pick out the extremum which is physically acceptable 
as the only candidate for a nontrivial absolute minimum of the potential necessary 
for giving a fermion sector of the theory masses. In conclusion, we resume peculiar 
features of the potential allowing us to find the solutions of the minimization conditions 
analytically and to derive explicitly masses of'the new Higgs particles arising after 
the spontaneous breaking of electroweak symmetry. · The obvious phenomenological 
consequences for 'relations between quark masses are discussed briefly. , . 

2 Higgs potential: origin and special features 

The multiplet contents of the unified theory has been described in [2],. For our purpose 
only its Higgs part is important. It consists of four pairs of chiral superfields ~k and 
~k, k = 1, 2, 3, 4, in 5 and 5 representations of SU(5), respectively, and one chiral 
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superfield I: in 24 representation which breaks SU(5) down to SU(3) x SU(2)' x U(l). 
In addition.to Higgs superfields, the unified theory includes chiral matter superfields 
usual,for the supersymmetric SU(5) theory. of grand unification (7]. They are IV;, 
i = 1,2,3·, in 5 representation and A;, i= 1,2,3, in 10 representation of SU(5),' 
where i is generation index. The contents of these superfields have standard form like 
the SUSY SU(5) model (7]. Reviewing the main ideas a~d basic formulae of (6] and 
c~nserving the notation used there, we write down the Higgs and Yukawa parts of the 
unified finite theory Lagrangian as 

,C.Hi:~s+Yukawa = Y1 lll;K;;~;A; + y~ W;~4A;+ Y
8

2 i'P;A;A; + y; i'P4 A;A; ' • " . 8 
- ,- Y4 3 + y3i'P;S;;'2~i'P; + y3/'P4I:i'P4 + -I: 
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+ i'P;M;;i'P; + /'P4M/'P4 + 2 I: . (1) 

In all the terms of (1) with repeating generation indices we imply.sum on them. The 
SU(5) indices are omitted here but they can easily be restored in a covariant manner. 
The Yuka.wa constants yi, y;, Y2, y~, y3, y~, y4 are expressed in polynomial functions of 
the gauge coupling g through the finiteness conditions [[2], [6l]. · The Lagrangian is 

·written in such a way that only the fourth Higgs pair couples .with matter like the 
Higgs :pair in the minimal SUSY SU(5) model while other pairs interact with each 
generation separately .. The orthogonal matrix S mixing them in the Higgs. generation 

· spa~e will play a very important role in this model. Its presence is not in conflict with 
the finiteness conditions [2] and a possibility to introduce it in the theory .always exists 
[[4], [6]]. The unitary matrix K;; is the usual CKM matrix [2]. 

· The mass parameters of the Lagrangian ( 1) are not fixed by the finiteness conditions 
and by doing fine0tuning we can choose Mo and M;; so that SU(5) should be broken 
in such way that we will have only three pairs light superHiggs SU(2)-doublets 

H; = ( H;) H~ , 
' . iI; = (fit) iI9 , 

• 
i = 1,2,3, (2) 

with opposite hypercharges (-1 and 1, respectively) below the unification scale while 
the fourth pair Higgs SU(2)-doublets and all colour Higgs SU(3)-triplets r~main heavy 

. witµ masses having an order of the unification scale magnitude [(4], (6ff At this 
mechanism of the SU(5) violation, th~se three pairs of light Higgs doublets come from 
those Higgs SU(5)-quintets that were coupled with matter generations separately. In 
view of this, the Higgs part of the Lagrangian (1) after the SU(,5) syminetry violation 
takes the form : , 

µoS;;H;tH;, i,j = 1,2,3, /to--:-- 102
-

3 Gev. 

We introduce here the following notation for brevity: 

- =<> {3 H;cH; = H; f.c,fJH; , 

where a,/3 are the SU(2) indices 2
• 
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· Excluding the auxiliary components of the gauge and Higgs superfields and adding 
soft supersymmetry breaking terms, we get the scalar Higgs potential on the unification 
scale Mx (6]: 

V (µ~ + m~)IH;l2 + (µ~ + m~)IH;l2 + (IloH;€H; + ToS;;H;€H; + h.c.) 

i '~•· 

+ 
92

: 

912 

(IHd2- IH;l2)2 + 9
4

2 

[(s;s;)" (s;s;)- (s;s;)" (s}s;) 

+ · (HfH;)* (sfH;)-(sfH;)° (nJH;) +2(H!H;)* (s!s;)], (3) 

where Ila, T0 and m 0 are the soft breaking parameters. Here and below we use the 

notation H;, H; for the low scalar components of the Higgs superfields H;, H;. The 
gauge coupling constants g and g' correspond to the SU(2) and U(l) gauge group of 
the Standard Model, respectively. Also we denoted for brevity 

IH;i2 =·L IH[Hd, IHd2 = L IH!Hd-

In other terms of (3) we imply the convolution of the Higgs generation indices as well. 
The quartic terms in. the Higgs scalar potential arise after re-expression of highest com
ponents of the SU(2) and U(l) gauge supermultiplets through their.lowest dynamical 
components. In this sense, the situation is completely equivalent to that we have in the 
Minimal Supersymmetric Standard Model (MSSM) (5]. The difference is in that we 
have three pairs of Higgs doublets instead of one in the MSSM. It slightly complicates 
the form of the potential but does not result in principal distinctions. 

Below the unifi~ation scale, the finiteness property is absent, and all quantities 
start. to renormalize while we are evolving our theory to low energies. The remarkable 
property of the theory is that the quartic terms in (3), dictated by supersymmetry 
invariance, maintain their form from high to low energies, apart. from the usual renor
malization of the gauge coupling constants (8]. The soft breaking of supersymmetry 
does not alter this persistency pi·operty shown by the exactly supersymmetric La
grangian. On the contrary, the quadratic terms in (3) are slightly renormalized from 
their original form, and on the Mz scale we get 

. 2-; 2 2 - - . ·9
2 +912 

-2· 22 
V = m1 IH;I + m2 IH;I + (RH;tH; + TS;;H;€H; + h.c.) + -

8
- (IH;I - IH;I ) 

g
2 [(-t- )* (-t-) (-t-)* (-t-) ( t )* ( t ) + 4 H;H; H;H; - H;H; H;H; + H;H; H;H; 

(sfs} (sJs;) +2(s;s;)* (s;s;)]. · · (4) 

.For the spontaneous symmetry breaking to occur, this potential should have non
trivial minimum. The vacuum expectation values of neutral components of the SU(2) 
doublets Hf and Hf will generate masses of fermions. The beauty of this model is in 

2 we imply that £12 = 1 
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the minim'al influenc~ of the Yukawa constants on the mass spectrum of the theory. 
The main load in the explanation of the observed hierarchy in it lies on the vacuum 
expectation values of the Higgs fields [4]. This can be shown in the following way. 
From the Lagrangian (1) of the unified theory we can get supersymmetric Yukawa 

Lagrangian. on the Mx scale: 

£y;,k~iiJa = yvI<;;(Q;tH;)D; + YL(L;tH;)E; + yu(Q;tH;)Ui, (5) 

.where Q, b, ,U, L, and E.are usual matter superfields like ones in the MSSM [5], being 
·su(2) doublets. If we reexpress (5) in terms of the superfield components, Yukawa 
interactions do not change t~eir form. One loop radiative corrections do not destroy 
the degeneracy of the Yukawii. constants with reference to fermionic generations [[9], 
[6]]. Thus, on the Mz scale quarks and leptons will gain masses [4]: 

mv, =;= yvv;, mu, = yuv;, mL, = YLVi, (6) 

where v;, v; are VEY s of H°, H 0 , respectively. In view of this, it is especially important 
to have the exact solution of the minimization conditions of potential (4). 'we shall 

solve this problem)n the next: section. 

3 Solution of the minimization conditions 

For our purpose, it is convenient to rewrite our SU(2) invariant potential in terms of 
the SU(2) ·components of scalar Higgs doublets: 

2 ~*~ -+-- 2 D* 0 + - -=-<J ();; -=-0* O* 
V = m 1(H; H; + H; H;) + m 2(H; H; + H; H; ) + µ;j(H;Hi + fl; Hj ) 

, . . , , 2 + r 12 ( • ) 2 -- + ~. - ' g g -=:-0 2 -+-- 0 2 + -
µ;;(H; H; + H; H; ) + -

8
- \H; I + H; Jf; - \H; I - ~; H; 

2 . .. ' 

g (-=:-0-=:-0•~-- -=:-0-=:-0•~-- o o• + o o• + + 
2 

H;H; H; H; -H;H; H; H; +H;H; H; H;- -H;H; H; H; 

-=0-=0• + - ' -=:-0 o-=+ - -=:-0• o•-- + o• o-=+--) + H;H; H;H; +H;H;H;H; +H; H; H;H; +H; H;H;H; , (7) 

where 1l; = (H:)*, H;- = (Ht)* andµ;;= Ro;;+ TS;3. 
It is necessary for us to find the nontrivial extremum of this potential with reference 

to neutral components, and conditions which must be satisfied for its existence. For 
this aim, we need to solve the system of nonlinear equations 

1··w 

2oH; 
I 5V 

2oJI; 
I 5V 

2oh; 
IoV 
2 oh; 

2- 9
2 + 912 (-2 -2 2 2) - · m 1 JI; + µ;jll; + --

4
- H; + h; - ll; - h; H; = 0 

2 - g2 + g'2 (-2 -2 2 2) 
m

2
H;+ µ;;H; - --

4
- H; + h; - H; - h; H; = 0 

.. 2 12 2- g + g (-2 -2 2 2) -= m 1 h; - µ;;h3 + --
4

- H; + h; - H; - h; h; = 0 

2 - g2 + g'2 (-2 -2 2 2) 
m

2
h; - µ;;h; - --

4
- H; + h; - H; - h; h; = 0, 

4 

(8) 

• 

! 

where we introduced the new notation for brevity: 

- .-=O - -=:-0 0 0 
H; = ReH;, h; = /mH;, H; = ReH;, h; = lmll;. 

Further, we shall also denote 

'H; = H; + zh;, 'H; = ll; + zh;. 

Although these equations are written in terms of the real and imaginary parts of 
the neutral components of SU(2) doublets, 'it can easily be seen that they are invariant 

under the abelian gauge transformations 

'H;-+ e"''H;, 'H;-+ e-"''H;. 

As we can see, this system contains nonlinearity as a quadratic combination, whose 
square was in the potential (7). It is the key property of system allowing us to solve it 
analytically. As a·first step, let us rewrite (8) in the matrix form dPnoting the quadratic 

combination by x: 

(m~+x)H+µJI=0 
(m~ - :,_:)JI+ JLT JI= 0 

2 -(m1 + a:)h - Jth= 0 

(m~ - ,_,)h - JtTh = 0 
2 + ,2 

X = ~ (Il + h
2 

- H2 
- h2

). 

where JI, H, h, and hare the real vectors in the Higgs generation space: 

.· (1l1) 
H= z: ( 

Hi ) 
H= H2 , 

lh (
h1) (1,1·) h = ~2 , h = h2 , 
h3 h:i 

(9) 

(10) 

and µ is matrix with elements Jt;; operating in the generation spare. It can be found 
that . 

detµ = (R + T)(R2 + T 2 + RT(trS - l )). 

Below we shall suggest R ,j,. 0, T ,j,. 0, det11 ,j,. 0. Now let us reduce (9) to an equivalent 

system 

11µT H = (m~ + :r)(rn~ - :r)H 

H = -(11T)-1(m~ - :r)H 

Jt/tTh = (m~ + x)(m~ - i,)h 

h = (1l)-1(m~ - :r:)h. 

It is obvious that if system ( 11) has a nontrivial solution, the rnndition 

dei(JtJtT - (mf + :r)(m1 - ,r)I) = 0 

5 
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should be satisfied. It is equivalent to 

(mi+ x)(m~ - x) =>.RT+ (R2 + T 2
), 

where >. is the eigenvalue of the matrix S + ST : 

det(S + sT - >.I)=-(>. - 2)(>. - (trS - 1))2 • 

(13) 

(14) 

We shall have two variants of the solution of the system, depending on what eigenvalue 
is taken into account. Let us consider both the cases. 

3.1 Solution in the >. ·= 2 case 

In this case, the system (11) has the form 

(S + ST)H = 2H 

(S + ST)h = 2h 

H = -(µT)- 1(m~ - x)H 

h = (11TJ- 1 (m~ - x)h 

(mi+ x)(m~ - x) = (R + T) 2
• 

Solutions of. the first and second equations are: 

( 
S23 - S32) 

H = k1 S31 - S13 , 
S12 - S21 

( 

S23 - S32) 
h = k2 S31 - S13 • 

S12 - S21 

(15) 

(16) 

The fifth equation of (15) puts the restriction on k1 and k2 • In fact, from (1.5) we get 

x = ~ ( m~-m;± J(m?+mD2 -4(R+T)2). 

On the other side 

= [!_JJ_ (s2 + h.2 - H2 - h2) = [!_JJ_ (H2 + h2) m2 - x - 1 . 
2 + ,2 2 + ,2 ( ( 2 )2 ) 

x 4 4 (R+T) 2 

Hence, 

where 

H
2 

+ h
2 = (mi+ m~ ± J(mr + m~)2 - 4(R + T)2) F± ((R + T) 2

), 

H
2 

+ h
2 

= ( mi +m~ =t= J(mr + m~)2-4(R+ T)2) F± ((R+ T) 2), 

F±(i.) = __ l_±(mi - m~) - J(m~ + m~)2 - 4,. 
9

2 + 912 J(mi + m~)2 - 411: 

6 

(17) 

(18) 

(19) 

I 

l. 

I 
'{ 

( 

From (18) we can easily get 

.2 .2 _ ( mr + m~ ± J(mr + m~)2 - 4(R + T) 2
) F± ((R + T)2

) 

ki+k2 - 4-(trS-1)2 . 

Using the parametrization k1 = k cos ,P, k2 = k sin ,P, we can write the solution of (15) 
for Hand has 

H = cos,p 
( mr + m~ ± J(mi + m~)2 ~4(R + T)2) F± ((R + T)2) ( S23 - s32 ) 

4-(trS-1)2 S31-s13, 
. S12 - S21 

h = sin,p 

r------~---~-_-_-_-,,.,-_-_-_---_-_-_-_-~------
( mr _+ m~ ± J(mr + mD2 - 4(R + T)2) F± ((R + T)2) ( S23 - 832 ) 

4-(trS-1)2 S31-S13. 
S12 - S21 

(20) 

It is obvious that if 1i; = H; + ih; is a solution of the system (15), 1ii = e'0 1i; will 
be its solution as well. It is a consequence of the abelian symmetry of equations (8). 
We need to replace only the angle ,p in (20) on the angle ,p + a. As it can be seen, 
all solutions (20) are gauge equivalent to the real ones. However, from the physical 
point of view, we are interested in the solutions equivalent to the real positive field 
configurations. It constrains the matrix S, which is a parameter of the theory, because 
to attain it we must choose such S that all components of the vector t;;kS;k, around 
which the matrix S rotates all other vectors of the three dimensional generation space, 
have the same signs. In addition to these constraints there are others. In order to get 
real and positive right-hand sides of (18) and (19) and to have the potential bounded 
from below in the direction of vanishing quartic terms in (7), the following conditions 
should be satisfied : 

m;+m~ >2IR+T!, 
mfm~ < (R + T)2. 

(21) 

(22) 

Arbitrariness in choosing signs in (20) originating from (17) is fixed in the following 
way : we take up sign if mr > m~ and low sign in the opposite case. Knowing (20) we 
can get from (15) 

H = - cos ,p sign(R + T) 
(m? + m~ =t= J(mr + mn2 - 4(R + TJ2) 

X 
4-(trS-1)2 

v' (
·S23 - S32) 

X F± ((R + T)2) S31 - S13 , 
S12 - S21 

h = sin ,p sign(R + T)\j1(1m~r=-+-m-~-=r=-✓-=(-mr_+_m __ 22)_2 ___ 4_(-R+--r)2~) 

4-(trS-1)2 x 

7 



x ✓F±((R+T)2 ) ( :::=:::). 
S12 - S21 

(23) 

It is necessary to have such Rand T that (R + T) < 0. Otherwise we can not make 
solutions (20) and (23) real and positive simultaneously. 

3.2 Solution in the .X = trS - l case 

In the same manner we can analyze the second variant of the extremal solution when 

,\ = trS - 1. Instead of (15) :-"~-?et: 

(S + ST)H = (trS - l)H 

(S + ST)h = (trS - l)h 

H = -(µT)-1(m~ - x)H 

h = (µTt1(m; - x)h 
(mi+ x)(m; :_ x) = R 2 + T2 + RT(trS - 1 ). (24) 

It is easy to show that the solution of the first equation is the vector H satisfying the 
equation 

( S23 _: S32)H1 + ( S31 - s13)H2 + ( s12 - s21 )H3 = 0. (25) 

This is true for the second equation of (24) too. The general solution of the first two 
equations is 

(

-K1(s31 - s13) - K2(s12, - s2i) ) 
H = K1(S23 - S32) , 

, K2(S23 - S32) 

(

-k1(s31-S13)-k2(s12-s21)) 
h = k1(s23 - S32) . 

k2(s23 - S32) 

(26) 

(27) 

where Ki, K 2, k1, and k2 are some quantities. The fiffh equation of (24) puts a 
constraint on them. In fact, from it we fa1d 

x = ~ ( m;- mi± ✓(m? + mD 2 ~ 4(R2 + T2 + RT(ti-S- 1))) (28) 

and 

H2 + h2 = ( m~ + m; ± ✓(m? + m~)2 - 4(R2 + T 2 + RT(trS ~ 1))) x 

xF± (R2 + T 2 + RT(trS - 1)), , (29) 

H
2 

+ h,
2 = ( mi +m~ ~.J{m? + mD 2 -4(R2 + T 2 + RT(trS- 1))) x 

xF± (R2 + T 2 + RT(trS - 1)). (30) 

8 

:.; 

·1 

To get the real and positive right-hand sides of (29) and (:30) and to have the potential 
bounded from below in the direction of vanishing quartic terms in. (7), the following 

conditions should be satisfied : 

m~ + m~ > 2✓R2 + T2 + RT(trS -1}. 

mim~ < R2 + T 2 + RT( trS - 1 ). 

(31) 

(32) 

Arbitrariness in choosing the signs originating from (28) must be fixed in complete 
analogy with the previous case. Introducing_ parametrization 

1{1 = wcos<f,cos01, 1{2 = wsin¢,-cos02, k1 = wcos¢,sin0i, /,,·2 = wsin¢,sin02, 

we get from (29) 

w( ¢,, 01, 02) -
(m? + m~ ± J(mf + rn~)2 - ,l(R2 + T 2 +_ RT(trS - 1))) 

(s23 - S32)2 + cos2 ¢,(,i13 - s3i)2 + sin2 o(,, 12 - s21 )2 x 

·+(s31 - SJ3)(s12 - s2i)sin 2¢cos(01 - 02) 

x ✓ F± (R2 + T 2 + RT(trS - 1)), (33) 

· (-cos<!> cos 01 (s31 - s13) - sin tJ> cos f}i(,,;12 - "21) ) 
H = w( <f,, 01, 02 ) cos ¢ cos 01 ( s23 - s31) • 

sin¢ cos 02( s23 - 832) 

(

-cos¢ sin 01(s31 - _s13) - sin¢, sin 02("12 - s2i) .) 
h = w(<f,,01,02) cos¢sm01(s23 - s32) . 

sin¢sin02(s23 -s32) 

(:34) 

(35) 

V,/e have three free parameters that are the angles 01 , 02 • o. Tlw gauge symmetry 
manifests itself in the following way. If 1-{,(41>,01 ,02 ) is thl' ,olution of (21), 1-{,' = 
e'°H(<p, 01, 02) = 1l(¢, 01 + a, 02 + n) is its solution too. 

Unlike the ,\ = 2 case, this casl' contains extremal configurc1tions which are not 
gauge equivalent to the real ones. Gauge equivalenc-e to the n·al field· configurations 

takes place only if 01 = 02 = 0 : 

'(- cos ¢(s31 - sn) - sin o(.s11 - -"21) ) 
1l(¢,0,0) = v.,•(¢,0,0)cos0 '?s¢(s2:i - -'~2) . 

Sill <i?( 823 - •'32) 

. (- cos <f.,(s31. - s13) - sin a>(.,12 - -'21) ) 
+ 1.w(¢,0,0)sm0 cos<f,(s2;1 - ":n) • 

sin ¢(s23 - •':i2) 

(:36) 

Let us note that like in the,\ = 2 case, for the solution t.o hav,• ph~·siral interest it is 
necessary that all real parts iu (36) have the same signs. This contradicts an analogous 
constraint 111 the..\ = 2 case. ludeed, as it cau lw Sl'<'ll from(~:'>). if all rn1111)()m'nt, 
of the vector lijkS'jk have the same signs, the coordinates of ,,,·,·r.,· point. 011 the plam·. 

9 



~·rthcigonal · to it· and containing zero point, have different signs. Vice versa, if the 
'coordinates of any point belonging to this plane haYe the same signs. the coordinates 
of the vector fijkSik have different signs. This situation is illustrat.ed Fig. I. where the 
.real solutions of the minimization conditions are depicted. The solution corresponding 
to the .,\ = 2 case lies on the axis in the Higgs generation space. around which the 
matrix S performs ro}ations. The solution corresponding to the .,\ = trS - 1 case 
lies on the circle in the plane orthogonal to this axis. The angle ¢ in (36) determines 
the position of the extremum on this circle. Knowing the expressions for H and h we 
can obtain from (24) the expressions for H and h. Let us note that after the gauge 
transformation of (36) to the real configuration the extremal solution for R will become 
real too. It can be found by using the. following formula 

H 
( m~ + m~ =i= J(m~ + mD2 - 4(R2 + 1'2 + RT(trS - 1))) 

( )2 2 -4-( . )2 · 2 . 2 X S23 - S32 + COS 'I' S13 - .S31 + Sll1 ,p(s12 - ,s2i) 

+(s31 - s13)(812 - 821) sin 2¢ 

X JF± (R2 + T 2 + RT(trS - 1)) x 

R + TS (- cos ,p(831 - S13) - sin </J(s 12 - 821 ) ) 
X 

2 2 
• COS ¢(823 - .s:12) • 

vR +T +RT(t1S-l) sin,j)(s23 -.s32 ) 

If (21), (22) and (31), (32) are satisfied, both variants of the solution can occur. To 
decide finally which ext rem um is suitable for us from the physical point of view, we need 
to determine its type. However, yet now we can say that the solution corresponding 
to the case .,\ = trS - 1 has an additional global symmetry. Indeed, if 1{; and Ji; 
are the solutions of (2·1), the field configurations O;i1ii and O;;R;, where O is some 
orthogonal matrix commuting with S, will be solutions of (24) as well. Breaking this 
symmetry generates additional Goldstone bosons, what will be demonstrated explicitly 
in the next section. 

4 Higgs masses and types of extrema 

As it has been noted, we are interested in the extremal field configurations which are 
gauge equivalent to the real ones. In this case, the phases of 1{ and R can be put equal 
to zero simultaneously, and we get , 

Ji; = V; + 10, Ji; = ti; + 10. (37) 

Let us determine the type of extrema at these points. To do this. we need to find the 

eigenvalues of the matrices of second derivatives of the potential (7) at this point. The 

matrix ')f second derivatives of (7) with respect to the real parts of the neutral SU(2) 

• 
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I 
I 

ti 
!J 

components H; and H; 

( 

1 02v 
28H·8H · • J 
1 o2v 
28Hi8Hj 

2 8Hi8Hj 1 o
2
V ) 

1 82V 
28Hi8Hj 

at the point H; = v;, h; = 0,Ht = O,H; = ti;, h; = 0,H; = 0, has the form [6] 

( 
(mf + x)o;i + ½(92 + g'2)ti;tii • µ;i - ½(92 + g.'2)v;v; ) (38) 

µ;; - ½(g2 + g'2)ti;v; (m~ - x)8;; + ½(g2 + g'2 )v;v; · 

The matrix of second derivatives of (7) with respect to the imaginary parts of the 

neutral SU(2) components h; and h; 

( 

1 o2V 
2 ohiohi 
1 82V 
2oh·oh· • J 

at the same point has the fo~m [6] 

28hiohi 1 o
2
V ) 

1 82V 
2 ohiohi 

( 
(m~ + x)8;; -µ;; ) 

-µ;; (m~ - l:)Oij • 
(39) 

And, finally, the m~.trix of second derivatives of (7) with respect to the charged SU(2) 

components H and H+ 

has the form [6]: · 

( 

82V 
~--
8Hi 8Hj 

o2v 
oHtoni 

02v ) 
ojjf on; 

o2v 
8H78H-: 

I J 

( 
(mf + z)8;; + ½g2ti;ti; -µ, 1 + ½g2ti;v1 ) ( 40) 

-µ;; + ½g2ti;v; (m~ - z)8;; + ½g2v;v1 ' 

g'2 _ g2 
where z = --

4
-(tif - v;). In complete analogy with the MSSM [5], the eigenvalues 

of these matrices are the masses of GP-even, CP-odd and charged Higgses [6]. For 
instance we shall find the eigenvalues of the mass matrix (40) which are the squares 
of masses of charged Higgses. At this moment, we do not fix which variant of the 
extremum is realized. We have only in mind that these vectors v and ti obey the 
equations 

-µv = (m~ + x)ti 

-µTti = (m~ - x)v. (41) 
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Now we introduce the matrices 

( 

Vt O O ) ( Vt O O ) 
u = V2 0 0 , u = V2 0 0 . 

V3 0 0 V3 0 0 

(42) 

and write the following system of linear equations: 

[ 
g2 ] [ g2 J-(mi + z - e)I +2uuT f - µ - 2 UUT f = 0 

[ 
g2 J- [ g2 ] (m; - Z -e)J+ 
2

uuT f- µT -
2

uuT f = 0, (43) 

where fand fare some three dimensional vectors. The system (43) has nontrivial solu
tion if corresponding matrix has determinant equal to zero. To avoid the cumbersome 

formulae we denote: 

m1 = mi+ x, 1n2,= m~ - ,r, 
2 

'9 -2 2 A===--(v -v) 
2 

and absorb the factor /;; in v and 'ii. Then, (43) take the following form: 

[(m1 - A - e)I + uuT] J - [µ - uuT] f = Q 

[(m2 + A - e)I + 1111T) 7 - [/tT - uuT] f = 0. (44) 

It can be shown that if the conditions (21), (22) and (31), (32) a.re satisfied, we have 

det(Jt - u:uT) I 0. 

Taking this into account we get from ( 44) 

[ ((m2 + A -e)I + uuT) (Jt - uuTr1 ((m1 - A -e)I + tiuT)] f - [JLT - uuT] f = 0. 
. , · (45) 

The condition for a nontrivial solution for f to exist in ( 45) is 

det [ ((m2 + A -e)I + uuT) (ft -uuTr
1 ((m1 -A - e)I + m?) - (/tT - uuT)] = o. 

(46) 

Using ( 41), after some transformations we get from ( 46) 

det (m2 + A - ()(m1 - A - e)I + - (m1m2 - (m1 - A)(m2 + A))-
[

. UUT · 

v2 

_
1111

T ((2m1 + v
2 )e2 - ((m1 + m2)(m1 + v

2
)) _ µJLT] = O. 

(m1 + v2)2 

It can be calculated that 

det (al+ buuT - RT(S +ST))= (a - 2RT)(a - RT(trS - 1))
2 + 

+b (a2v 2 - 2aRTB1 + R 2T 2(trS - l)B2), · 

B1 = v2trS - ~tr ( (S + ST) uuT), 

B2 = v2(trS + 1) - tr ((S + sT) m?). 
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(47) 

(48) 

Here, we have the distinctions between the first and second variants of the extremum. 
In the ,\ = 2 case, we get B1 = B 2 = v2(trS - 1) while in the ,\ = (trS - 1) case 
B1 = ½v2(trS + 1), B 2 = 2v2. Using (48) we can see that a characteristic equation 
can be factored in both the cases and following eigenva.lues can be found: in the ,\ = 2 
case 

(1 = 6 = ~(mi+ m~) + [ R2 + T 2 + RT(trS - 1) 

( 
g2 1 92 _ g

1
2 ✓ ) 2] ½ 

+ -2--2(m; -mi)± ;;--2--2 (mr + mW-4(R + T) 2 

9 +91 z.9 +91 

6 = (4=~(mi+m;)-[R2 +T2 +RT(trS-l) 

( 
92 , 1 92 _ 912 ✓ _ _ ) 2] ½ 

+ 
9

; + 912 (m~ -11ii) ± 292 + 912 (mf + m~)2 - 4(R + T) 2 , 

2, 2 9
2 2 -2 2 2 

(s = m1 + m2 + 
2 

( v + v ) = m1 + m2 + 
-~-~----~ 

- 92 
( 2 • 2)±(mi - mn - J(mi + m~) 2 

- 4(R + T) 2 

+ --- m1 +m2 -----;::,===========---. 
92 + 912 J(mf + m~)2 - 4(R + T) 2 

(6 = 0 (49) 

and in the,\= (trS-1) case 

6 = ~(mi +mD + [(R
2 + T 2 + RT(trS- 1)) 

+ (-9-
2
-(m~ - m~) ± ~

92

2 
-

912
2 

(mi+ m1)2 - 4(U2 + T 2 + RT(irS - 1)))
2

] ½ 
92 + 912 2 9 + 91 

6 = ~(mi+ m;) -[(R2 + 1'2 + RT(trS - I)) 

( 
2 1 2 _ 12 ) 2] ½ 

+ 2 g+ 
12

(m; - mi)± ,/
2 

9
12 ✓(mr + m~)2 - 4(R2 + T2 + RT(trS - 1)) , 

g g -9 +g 

6 = ~(m~+m~)+ [(R+T)
2 

( 

2 1 2 12 . 2] ½ 
+ 

92 
~ 912 (m; - mi)± 

2
~2 ~ ~12 J(mf + m~)2 - -l(R2 + T 2 + RT(trS - 1))) 
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(4 = ½(~i + m;) - [(R + T)2 

( 
92 1 92 _ 9'2 ✓ ) 2] ½ 

+ 
92

+
9

,2(m~-mi)±
292

+
9

,
2 

(m?+m~) 2 -4(R2 +T2+RT(trS-I)) , 

2 2 9
2 

2 -2 2 2 6 = m 1 + m2 + 
2 

(v + v ) = m1 + m2 + 

92 ( 
2 2

) ±( m? - mD - J~( ,-n~? _+_n_i~~)-2 ---4~(-R-2 _+_T_2_+_R_T_(_t,-· S---1~)) 
+ --- m + m 2 --'---=--,====;;===~=====================--'-'-, 

92 + 912 1 J(m? + mD2 - 4(R2 + T2 + RT(trS - 1)) 

(6 = 0. (50) 

Acting in the same manner we can find the eigenvalues for the mass matrix of GP-even 
Higgses (38) in the ,\ = 2 case 

6 
= ±(mi - mD(m? + m~) + [ (mi - m~)2(mf + m~)

2 

2J(m? + m~)2 - 4(R + T)2 4((m? + m~) 2 
- 4(R + T)

2
) 

1 

+ (mi+ m~)2 
- 4(R + T) 2 ,= (mi - m;)J(m? + mW - •l(R + T)2

] 

2

, 

±(m? - m~)(m? + mD [ (mf - 1ii~)2(m? + mW 
6 == 2J(m? + 111~)2 - 4(R + T)2 - 4((m? + m~)2 - 4(R + T)2) 

l 

+ (mi+ mD2 - 4(R + T) 2 ,= (mi - m~)J(m? + m~)2 - -l(R + T)2] 

2

, 

6 = (4 =~((mi+ m~) + J(m? + m~)2 - 4RT(:3 - trS)). 
es = (6 =~((mi+ m;) - J(m? + mU2 - 4RT(3 - trs)) (51) 

and in the ,\ = trS - 1 case: 

-e1 = 
±(mi - mn{m? + m~) 

2J(m? + m~)2 - 4(R2 + T 2 + RT(trS - 1)) 

+ [ (m? - mD
2
(m? + mn2 

4((mi + m~)2 - 4(R2 + T 2 + RT(trS - 1))) 

+ (mi+ mD2 - 4(R2 + T 2 + RT(trS - 1)) 

,= (~i - m~)J(m? + mD2 - 4(R2 + T 2 + RT(trS - l))] ~, 
±(mi - mn{m? + m~) 

6 = 2J(mi + m~)2 - 4(R2 + T 2 + RT(trS - 1)) 
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[ (m? - m~)2(m? + mD
2 

4((m? + m~)2 - 4(R2 + T 2 + RT(trS - 1))) 

+ (mi+ m~) 2 
- 4(R2 + T 2 + RT(trS - 1)) . 

l 

=f (mi - m~)J(m? + m~)2 - 4(R2 + T 2 + RT(trS -1))] 2

, 

6 = ~((mi+m~)+J(m?+m~)2+4RT(3-trs)), 

(4 = ½((mi+ m~)- J(m? + m~)2 + 4RT(3 -trS)), 

6 = mi+ m~, 
·e6 = o, 

and eigenvalues for the mass matrix of G P-pdd Higgses (39) in the ,\ = 2 case: 

6 = 0, 

6 = mi +m~, 

6 = (4 = ½ ((mi+ m~) + J(m? + m~)2 - 4RT(3 - trS)) , 

6 = (6 =½((mi+ m~) - J(m? + m~)2 
- 4RT(3 - trS)) 

and in the ,\ = trS - 1 case 

e1 = ei = o, 
6 = (4 = mi+ m~, 

(s = ½((mi+ m~) + J(m? + m~)2 + 4RT(3 - trs)), 

e6 = ~((mi+ m~) - ✓(mi+ m~)2 + 4RT(3 - trS)). 

(52) 

(53) 

(54) 

Let us consider the expressions for the eigenvalues of GP-even Higgses mass matrix 
(38). It is easy to show that if the conditions (21), (22) and (31), {31) are satisfied, type 
of the extremum depends on si9n(RT). In fact, if RT> 0, th_e matrix (38) has all non
negative eigenvalues (51) in the,\= 2 case while another extremurri is the saddle point. 
Otherwise, if RT < 0, the matrix (38) has all non-negative eigenvalues (52) in the 
,\ = trS -1 case while extremum corresponding to the ,\ = 2 case appears saddle point. 
We can observe the same situation considering eigenvalues of the matrices (39) and ( 40). 
Having written the matrix of second derivatives of the potential (7) at zero, we can see 
that zero is the saddle point for any sign of RT (if the conditions (21), (22) and (31), 
(32) are satisfied). Goldstone bosons, which we have in the ,\ = 2 case, are the results 
of electroweak symmetry breaking. They generate masses of gauge Z-boson (GP-odd 
Goldstone boson) and w± bosons (charged Goldstone bosons). The additional zero 
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eigenvalues in the ,\ = trS - 1 case correspond to the global symmetry breaking. As 
we have written in the previous section, this global symmetry is the symmetry of the 
potential (7) with respect to the rotation of fields in the Higgs generation space which 
is performed by the orthogonal matrices commuting with S. ·Taking into account the 
presence of these additional Goldstone bosons, we may conclude that this extremum 
is not suitable from the physical point of view. For final conclusion to make, let us 
calculate the significance of the potential (7) on the extremal ~onfigurations. In both 
the cases we get 

_2_x2. 
V. t = - 2 +g'2 ex ·g (55) 

Then, using (17) and (28), we calculate 

• ~-----------' 2 

V.~~2 = _2(92 ~ 9,2) (1mi-m~1-J(mi+m~)2-4(R+T)2)_, (56) 

V,~~trS-l = 2(92 ~ 9,2 ) (1m: - m~I - J(mf + mD2 - 4(R2 + T 2 + RT(trS - 1))) 2 

(57) 
Thus, for RT > 0 the absolute minimum of the potential (7) is the extremum corre
sponding to ,\ = 2, while zero and extremum corresponding to ,\ = trS - 1 are the 
saddle poin.~s. In the opposite case, for RT< 0 the absolute minimum is the extremum 
corresponding to ,\ = trS - 1 while zero and extremum corresponding to the ,\ = 2 
case are the saddle points. We must discard the second extremum due to additional 
Goldstone bosons. Taking into account the afore-mentioned arguments and conclusions 
of the previous section, we stimmarizethat the potential (7) has an absolute minimum 
with respect to neutral components of the SU(2) scalar Higgs doublets, interesting 
physically, on the field configurations (20) and (23) under the following restrictions on 
the quantities of the potential (7): 

R+T < 0, 
fijkSik > 0 for any i, 

m; + mi > 2IR + Tl, 
mim~ < (R + T)2, 

RT >0. 

Finally, let us make some remarks regarding extremal field configurations in (34), (35) 
discarded by us in view of their inequivalency to the real ones. The potential (7) on 
these configurations equals the signific~nce (57), which is greater than the absolute 
minimum (56). Moreover, if our system is in the vicinity of this extremum, the afore
mentioned global symmetry in the generation space is broken and additional Goldstone 
bosons appear. 

5 Summary 

The main reason why we have succeeded in the exact solution of tlw system (8) is that 
this system includes nonlinearity as a whole having the form of a quadratic combination 

16 

of unknowns. This type of nonlinearity is generated by quartic terms in the potential 
(7), which, in their turn, arise after excluding auxiliary non-dynamical components of 
gauge supermultiplets. Therefore, this form of quartic terms in the potential is typical 
of the N = 1 supergravity GUT's with enlarged Higgs sector [10]. The quadratic part 
of the potential (7) has a specific form dictated by finiteness. This fact allowed us 
to find the nonlinear combination in (8) explicitly. Let us note also that, as it is not 
difficult to see, our result for absolute minimum configurations (20) and (23) is a simple 
generalization of the analogous result in the MSSM [5]. 

In conclusion, we would like to attract attention to the interesting phenomenological 
predictions for the quark mass spectrum. After the transition of the system to the 
absolute minimum (56) of the potential on the;field configurations (20) and (23), we 
fix the phases of these configurations to equal zero, and the following relations between 
up and down quark masses can be observed: 

m,, me .m1 
--==-=-
md m, ·mb 

' 
Quark mas~es in. these relatiohs. are running masses and must be taken on the Mz 
scale [6]. At the same time, the hierarchy between quark generations is completely 
controlled by the matrix S that is the parameter of the theory. Parametrizing this 
orthogonal matrix by three Euler angles 01 , 02 , 03 , we can get the following hierarchy 
relations between up quarks: 

01 . 02 + 03 . Bi . 02 - 03 . 01 02 - 03 
m,, : me : m 1 = cos 2 sm --

2
- : sm 2 sm --

2
- : sm 2 cos --

2
-. • 

It is clear that we can fit these angles in order to guarantee any hierarchy. Unfortu
nately, we have not succeeded connecting S with other parameters of the theory. A 
complete analysis of this model with numerical results for masses of all particles of the 
theory is in preparation [6] and will be published elsewhere. 

H1 

H2 

Figure 1: In this figure the real solutions of the minimization conditions are depicted. 
The solution corresponding to the ,\ = 2 case lies on the axis in the Higgs generation 
space, around which the matrix S performs rotations. The solution corresponding to 
the ,\ = trS - 1 case lies on the circle in the plane orthogonal to this axis. The angle 
</> in (36) deter'mines the position of the extremum on this circle. 
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KottAparnyi< 11.H. E2-:95-63 
MHHHMH3aUH.II CKa.1:rnpiioro .XHrl'COBCKOI'O noTeHu;Ha.n.a 
B KOHetJttoii cyriepCHMMeTpHtJuoii TeopHH BeJIHKOro 06beAHHeHH.11 . 

HaiiAeHO TOlJHOe MaTeMaTHl.JeCK0e perneHHe ypaBHeHHH MHHHMH3aU:HH . . . . . . 

CKaJI.llpHoro XHrl'COBCKOro IlOTeHUHaJia B KOHelJHOH cynepCHMMeTpHlJHOH Teo:. 
pHH BeJIHKoro o6beAHHettirn. Atta.n.HTHl.JeCKH HCCJieAOBRH THn 3KCTpeMyMoB no-. . . . '.' . ' ' ·' 
TeHIJ,Ha.Jla · H onpeAeJieHbI MaCChI XHrl'C0BCKHX .l.JaCTHIJ,, B03HHKalOII.1,HX ·noCJie 
Cil0HTaHHOI'O ttapyrneHH.11 3JieKTPOCJia6oii CHMMeTpHH. LI:aHhI YCJIOBH.11 cyII.1,eCT- . 
BOBaHH.11 a6COJIIOTHOI'O MHHHMyMa. IlOTeHI.J;HaJia, . IlpHeMJieMOI'O. C qJH3Hl.JeCi<OH 
T0lJKH 3pettH.11.' OKa3aJioCh, l.JT0 3T0T MHHHMYM .IIBJI.11eTc.11 npocThIM o6o6IIJ,ettHeM · 
atta.n.ornqiioro perneHH.11· B · MHHHMaJihHOH cynepCHMMeTpHtJttoii CTaHAapTHOH. 
MOAeJI_H .. <l>eHOMeHOJIOrHlJ~CKHe CJieACT]IH.11 IiaiiAeHHOI'O perneHH.11 KpaTK0 06-
, cy;>KAaIOTCsi. 

·•- Pa6oTa BhrnoJitteHa B Jla6opaTOPHH Teop·eTHtJecKoii cpH3HKH HM. H.H.Eoro-. 
mo6oBa 0115111. · · 

, I ' ! , , - ' 

~penp11HT Q6,,e):11me1moro 11HCTl1TyTa ll):lepHbIX:11ccJie):IOMHl1H, )],y6na, 1995 

Kondrashuk I.N. E2-95-63 
Minimization of the Scalar Higg~ Potential 
in the Finite Supersymmetric Grand Unified Theory 

. . . . ' / . ' ' ,· \ -~ . 

Exact mathematicai ·· solution. of · the minimizatiQn conditions of scalar 
,the Higgs potentiiil of the· Finite Supersyminetric Grand. Unification Theory. 
•is proposed and extremal field configurations· are found. Types· of extrema 
are investigated and masses of the new Higgs particles arisen after electroweak 
symmetry breaking are derived · analytically. The. conditions. for existing 
of physically acceptable .minimum are given. As it appears, this minimum 

· is simple generalization · of the analogous · solutio'n in. the · Minimal 
Stipersymmetric · Standard Model. Phenomenological · consequences 
are discussed briefly. ·• 

· The:·investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. . . . . . . 
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