


1 . Introduction

Some years ago a possibility was discovered to construct N ='1 supersymmetnc gauge
theories with vanishing B-functions of the gauge and Yukawa couplings in all orders
of perturbation theory (finite theories) [1]. Following the algorithm suggested there, a
finite SU(5) grand unification theory was constructed [2]. Compared to the Minimal
SUSY SU(5) model, this model has three additional pairs of Higgs multlplets Peculiar
features of the theory are that each generation of matter interacts with its pair of Higgs
fields and each type of Yukawa interactions is degenerate with reference t6 generations
of fermions or, in other words, only three different Yukawa couplings yu,yp,yr in
accordance with three types of interaction between Higgses and matter fields exist [2].
Testing finite SU(5) GUT for the compatibility with modern precise experimental data
for sin%8w and proton decay was performed in {3]. As it was shown there, these data
could be naturally reproduced within finite SU(5) GUT due to proper choosing the
mass splitting of additional multiplets in the Higgs. sector of the model. '

Recently, it has been noted that this model can possibly explain hierarchy observed
in ;the fermionic mass spectrum by the hierarchy of vacuum expectation values of
the Higgs fields [4]. To check this suggestion, it is necessary to-solve minimization
conditions of the scalar Higgs potential, written on the scale of quark masses. From the
mathematical point of view we must solve the system of nonlinear equations, and it is-
a nontrivial problem owing to a large number of Higgs fields.: Nevertheless, it appears
that this system can be solved analytically. Below we find an exact mathematical
solution of minimization conditions and analyze types of extrema. .

The -paper is orga.mzed as follows. The next section is devoted to a review of the
main ideds and results of [[4] 6], and formulae, necessary. for what. follows, are written.
Also, we consider the origin and special features of the scalar Higgs potential on the Mz
scale. The exact solution of the nonlinear minimization conditions for this potential
with respect to the neutral SU(2) components of Higgs fields is offered in section 3. The
domains of the quantities of the potential for which the extrema, presenting interest for
us from the physical point of view, exist are outlined there too. Further, in chapter 4,
we analyze the types of those extremal solutions which are gauge equivalent to real field
configurations. And, finally, we pick out the extremum which is physically acceptable
as the only candidate for a nontrivial absolute minimum of the potential necessary
for giving a fermion sector of the theory masses. In conclusion, we resume peculiar
features of the potential allowing us to find the solutions of the minimization conditions
analytically and to derive explicitly masses of the new Higgs particles arising after
the spontaneous breaking of electroweak symmetry "The’ obvious phenomenological
consequences for relations between quark masses are discussed bneﬂy

2 Higgs potential: origin and special features
The multiplet contents of the unified theory has been described in [2]. For our purpose

only its Higgs part is important. It consists of four pairs of chiral superfields ®; and
®i, k = 1,2,3,4, in 5 and & representations of SU(5), respectively, and one chiral




superfield T in 24 representation which breaks SU(5) down to SU/(3) x SU(2) x U(1).
In addition to Higgs superfields, the unified theory includes chiral matter superﬁelds
~ usual, for the supersymmetnc SU(5) theory of grand unification [7]. They are ¥;,
= 1, 2,3, .in 5 representation and A;, i = 1,2,3, in 10 representation of SU(S5),
 where i is generation index. The contents of these superﬁelds have standard form like
the SUSY SU(5) model [7). Rev1ew1ng the main ideas and basic formulae of [6] and
conserving the notation used there, we write down the nggs and Yul\awa parts of the
unified finite theory Lagrangian as
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| Lriggervakawe = nTKGTA;+ y;w;644;-+’y§¢>.~A;A,- + %%A;A;
+ BSyDe; + 1T, + ﬂza

+ <1>M,,<1> +<I>4M<I>4+——-2’ AT oo (1)
In all the terms of (1) with repeating generation indices we 1mply sum on them. The
SU(5) indices are omitted here but they can easily be restored in a covariant manner.
The Yukawa'constants ), 4}, y2, U5, Us, 4, ¥a are.expressed in polynomial functions of
‘the gauge coupling g through the finiteness conditions [{2], [6]}. : The Lagrangian is
“written in such a way that only the fourth. Higgs pair couples w1t11 matter like the
Higgs ‘pair in the minimal SUSY SU(5) model while other pairs interact with each
generation separately. The orthogonal matrix S mixing them in the Higgs generation
“space will play a very important role in this model. Its presence is not in conflict with
the finiteness conditions [2]-and a possibility to introduce it in the theory . always exists
{[4], [6]]. The unitary matrix K;; is the usual CKM matrix [2].

=+ The mass parameters of the Lagrangian (1) are not fixed by the ﬁmteness conditions
and by doing fine-tuning we can choose My and Af;; so that SU/(5) bhOllld be broken
in such way that -we will: have only three pairs hght superHiggs c~'U(2) doublets

- o a0 + . : S .
o N ; F’=(i{l)’ H'_<110)’ i=172733 - (2)
. : H, H, . o ,
with opp031te hypercharges ( -1 and 1, respectively) below the unlﬁcatlon scale while
the fourth pair Higgs SU(2)- doublets and all colour Higgs SU(3 )-triplets remain heavy
_with-masses having an order of the unification scale magnitude [[4], [6]]: At this
mechanism of the SU(5) violation, these three pairs of light Higgs doublets come from
those Higgs SU(5) -quintets that were coupled with matter generations separately. In
view of this, the nggs part of the Lag1 angian (1) afte1 the SU(5) symmetly violation
takes the form: -~ : o :

uosﬁaeﬁ:, .’J' =1,2,3, o~ 107 3Gev.
We introduce here the followmg notation for brevity:
H; eH =H; cagH
where a, 8 are the SU(2) indices 2.
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" Excluding the auxiliary components of the gauge and Higgs superfields and adding
soft supersymmetry breaking terms, we get the scalar Higgs potential on the unification
scale Mx [6]: k

vV (,ug + mé)lﬁ,]z + (,ug + 1ng)|H,~|2 + (Ro_ﬁ,'eH.' + ToS;ngeHj + h.c.)
2+12__ 2 s NS e b\ * b
g—sg— (H:? - 152" + gj{ [(H.!Hj) (HIHJ') - (H.T-H.') (H}Hj)

- (H?H)' (a1H;) - (H?H-)' (}J?H-)' 2 (F?H,-)' (F,?H,»)] , 3)

where Ry, T;; and mg are the soft breaking parameters. Here and below we use the
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notation H;, H; for the low scalar components of the nggs superfields H.,H The
gauge coupling constants g and ¢’ correspond to the SU(2) and U(1) gauge group of
the Standard Model, respectively. Also we denoted for brevity

(H? =S (HE, |H*=)_ (HIH].
; ; -
In other terms of (3) we imply the convolution of the Higgs generation indices as well.
The quartic terms in the Higgs scalar potential arise after re-expression of highest com-
ponents of the'SU (2) and U(1) gauge supermultiplets through their lowest dynamical
components. In this sense, the situation is completely equivalent to that we have in the
Minimal Supersymmetric Standard Model (MSSM) [5]. The difference is in that we
have three pairs of Higgs doublets instead of one in the MSSM. It slightly complicates
the form of the potential but does not result in principal distinctions.

Below the unification scale, the finiteness property is absent:and  all quantities
start to renormalize while we are evolving our theory to low energies. The remarkable
property of the theory is that the quartic terms in (3), dictated by supersymmetry
invariance, maintain their form from high to low energies, apart from the usual renor-
malization of the gauge coupling constants [8]. The soft breaking’ of supersymmetry
does not alter this persistency property shown by the exactly supersymmetric La-
grangian. On'the contrary, the quadratic terms in (3) are slightly rénormalized from
their original form, and on the M3z scale we get
£is (-

v |H|’+mziH|2+(RHeH+TS.,H¢H +hc)+

Z|(mm) (7w - (mim) (A7) + (H-‘f’i) (H-’.”f).
(H{H.—)'(H}Hj)+2(ﬁfﬂj)'(‘ﬁfﬂj)]. - (4)

For the spontaneous symmetry breaking to occur, this potential should have non-
trivial minimum. The vacuum expectation values of neutral components of the SU(2)
doublets H? and H? will generate masses of fermions. The beauty of this model is in
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the mlmmal mﬂuence of the Yikawa constants on the mass spectrum of the theory.
The ‘main load in ‘the explanation of the observed hierarchy in-it lies on the vacuum
expectation values of the Higgs fields [4]. This can be shown in the following way.
From the Lagrangian (1) of the unified theory we can get supersymmetric Yukawa
Lagrangian on the Mx scale: .

L0 Lyawewe = ypKi(Qs€H:) Di+ yu(LieH; )E +yu(Q.eH) (5)

.where @, D U L,and E are usual matter superfields like ones in the MSSM (5], being
'SU(2) doublets. If we reexpress (5) in terms of the superfield components, Yukawa
interactions do not change their form. One loop radiative corrections do not destroy
the degeneracy of the Yukawa constants with reference to fermionic generations [[9],
‘ [6]] . Thus, on the Mz ‘scale quarks and leptons will gain masses [4]

mp; —yDUn my; = Yuvi, - ML; -—»yL’U,, R ) ) (6)

. ,where 7;, v; are VEVs of H HO, respectively. In view of tlns it is especially important
to have the exact solution of the minimization conditions of potential (4). We shall
solve this problem in the next\section.

3 Solutlon of the mlnlmlzatlon condltlons

For our purpose, it is convenient to’ rewute our SU(2) mvauant potent1a1 in terms of
the SU(2) components of scalar Higgs doublets: ,

o

Vv = m}#ECHE + T, )+m2(H°'H°+H+H ) + pii(H, H°+H "HYY)

L B 4 T+ S (e T e - B H)

8
2 o .
+ % (71*’71*?71*}1. B HYH; + HYH B} 1 — HOHYHFHS

1447 i 4y i
—=0-=0*

+ HUHH}H +H H HYE! H; + B, HYH; H +H°"H°_+H ),
where H =(H;)", H = (H})* and’ pi; = R6i; + T'Sij.
It is necessary for us to find the nontrivial extremum of this potential with referenoe
to neutral components, and conditions which must be satisfied for its'existence. For
this aim, we need to solve the system of nonlinear equations

;;11;.- =. miH; +,u.,H +9 +g (H,+ﬁf_Hg_;lg)ﬁiﬁ;o
%%,: mH; +u,,H —iz—gz(ﬂ + T = H? = h?) Hi =0

;ihv ‘= mik; — pijh; _{_92+g/2 (H 4R _Hz h?)ﬁ.-:o

%% = mgh;—llﬁ—ﬁj—92+g/? (T{‘?+E?—Hf—h‘f) hi=0, 8)

where we introduced the new notation for brevity:
H, = Réﬁ?, hi = Imﬁ?, Hi= ReH?, h;=ImH.
Further, we shall also denote
H; = Hi +1h, ;F[i.= T + ih;.

Although these equations are written in terms of the real and imaginary parts of
the neutral components of SU(2) doublets, it can easily be seen that they are invariant
under the abelian gauge transformations

H; — e9H;, Hi— e H,;.

As we can see, this system contains nonlinearity as a quadratic combination, whose
square was in the potential (7). It is the key property of system allowing us to solve it
analytically. As afirst step, let us rewrite (8) in the matrix form denotmﬂ the quadratic
combination by a:

(m1 +a)H+pH =0 -
(m?—2)H+uTH=0
(m24a)h—puh =0
(m? —2)h - ;LTZ =0

2 .2 )
9t gT (LT g2
2= 47 (H $RE—HY —h ) (9)

where H, H, h, and h are the real vectors in the Higgs generation space:

o H, my\ T\ hy
A=|H |, H=|H |, i=|H&|. h={h]. (10)
Hs Hs T hs

and p is matrix with elements s;; operating in the generation space, It can be found
that '
dety = (R+ T)(R* + T* 4+ RT(trS — 1)).

Below we shall suggest R 7é 0, T # 0, detye # 0. Now let us reduce ()) to an equivalent
system

[L,L. = (m 4 2)(mi-a)H

H= (") Ym?-2)H

g Th = (m1 + z)(mi — 2)h _

= (") Y md - 2)h. (L)

It is obvious that if system (11) has a nontrivial solution, the condition

det(;mT — (P a)mi-a))=0 ' (12)



should be satisfied. It is equivalent to
(m?+ z)(mi — z) = ART + (R* + T?), (13)
where A is the eigenvalue of the matrix S + S7 :
det(s+ST—,\1) =—(A=2)(A = (trS — 1)) (14)
We shall have two variants of the solution of the system, depending on what eigenvalue

is taken into account. Let us consider both the cases.

3.1 Solution in the A= 2 case

In' this case, the system (11) has the form

(S+ST)H =2H

(S+ST)h =2k

H=—(p")" (m} — 2)H

h = (k1) (m} - z)h

(mf+1:)(m§—1') =(R+T)%. — (15)

Solutions of. the first and second equat;ions are:

523 — 832 S23 — 532
H= kl 831 — 813 N h = k2 S31 — 813 . (16)
S12 — Sn1 S12 — 821

The fifth equation of (15) puts the restriction on k; and k. In fact, from (15) we get

1
r = 5 (mg—m?:f: \/(mf+m§)2~4(R+T)2) . ‘ (17)

On the other side -

2 2 . ‘
9 +9?% =2 — 2 9 +g" (m} ~ =)
r = H + ] —_ H o h2 N e————— 2 2 2

. ( ; ) - +h)<(R+T)2 1).

Hence,
CH* 4 R = (mf +mit \/(m§ +m2)2 —4(R + T)2) F: ((R+T)%), (18)
772 +.ﬁ2 = 2 2 2 2)2 _ 2 2
mytmy Ff(mi+mi)? —4(R+T)2) Fs (R+T))), (19) -

where

F_-;;(K) 1 i(mf—m%)—— V (m¥+m§)2_4ﬁ.

g tg? Vim? + md)? — s

v g mmn

From (18) we can easily get
(m +m3 £ /omTF A — AR+ TP) Fa((R+T))
4 - (trS—1)2 ’

Using the parametrization k; = kcos ¢, k, = ksin¢, we can write the solution of (15)
for H and h as

J (m3+m3 + /Tl = AR+ T) Fs (R+T)?) ( 523 = S )
H = cos¢ )

ki + k2 =

I (S 1) Far i3
S12 — §21

1= @S 1) Sa1 =
S12 — 321

>
I

_ ¢J (mf +mi+/(mZ+ml)? —4(R+ T)2) Fy (R+T)?) ( 523 — 832 )

(20)

It is obvious that if H; = H; -+ 1h; is a solution of the system (15), H! = e'*H; will
be its solution as well. It is a consequence of the abelian symmetry of equations (8).
We need to replace only the angle ¢ in (20) on the angle ¢ + a. As it can be seen,
all solutions (20) are gauge equivalent to the real ones. However, from the physical
point of view, we are interested in the solutions equivalent to the real positive field
configurations. It constrains the matrix S, which is a parameter of the theory, because
to attain it we must choose such S that all components of the vector €;xSjx, around
which the matrix S rotates all other vectors of the three dimensional generation space,
have the same signs. In addition to these constraints there are others. In order to get
real and positive right-hand sides of (18) and (19) and to have the potential bounded
from below in the direction of vanishing quartic terms in (7), the following conditions
should be satisfied :

mi+mj>2R+T|, (21)

miml < (R+T)%. : (22)
Arbitrariness 'iﬁ‘choosing‘ signs in (20) originating from (17) is fixed in the following
way : we take up sign if m? > m? and low sign in the opposite case. Knowing (20) we
can get from (15) ’

_ . (3 +m3 /(T +md)? ~ 4R+ T7')
H = —cos¢sign(R+T) 4—(tr§—1)? "
"823 — 832
XVE(R+T)?) | sm—sis |,
S12 — $n
_ (mi +m3 T /T ¥ P — AR+ TT)
h = sing sign(R+T) 4—(tr§-1)2 *



823 — 832
X\/Fi ((R+T)2) 831 — 3813 | . (23)
' S$12 — 871

It is necessary to have such R and T that (R+T) < 0. Otherwise we can not make
solutions (20) and (23) real and positive simultaneously.

3.2 Solution in the A ={rS—1 case

In the same manner we can analyze the second variant of the extremal solution when
= trS — 1. Instead of (15) we get:

(S+ST)H=(@trS-1)H
(S+STHh = (trS— 1)k
; H =) (m; —2)H
: F= () (mi— o)k
(m1+z)(m2—:c) 'R2+T2+RT(trS'—l) T (24
It is easy to show that the solutlon of the ﬁrst equatlon is the vect01 H satisfying the
equatlon :

- (823 — 332)H1 (s31 — s13)Ha + (812 — s;1)H; = 0. (25)

This is true for the second equa.tlon of (24) too. The general solutlon of the first two
equatlons 18 ‘

—1{1(331 - 513) - 1(2(312/— S21)

H = 1(1(323—332) . . L (26)
1(2(323 - 332) ' :
"kl(siﬂ - 313) - kz(Sn — 821) :

h = k1(323 — 332) . . ' (27)

I?z (323 - 332)

where {\’1, K;, ki, and k; are some quantities. The fifth equation of (24) puts a
constraint on them. In fact, from it we find o

1 S
=3 (mg -mlt \/(mf +m2)? —4(R2 + T2+ RT(trS — l))) (28).

and

H 4R = (r'nz+mgi\/(m§+m§)2—4(Rz+T2+m'(tv~S—1))

N
X

xFy (R* +T? + RT(trS - 1)), - (29)
-2 +2
H +h = (mf +m? :F‘\/(mf +m2)2 —4(R? 4+ T? + RT(trS — l))) x
xFy (R*+T?+ RT(trS ~ 1)) . : (30)
8
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To get the real and positive right-hand sides of (29) and (30) and to have the potentlal
bounded from below in the direction of vanishing qual tic terms in.(7), the following

conditions should be satisfied :

m? 4+ m? > 2/R2+ T? + RT(trS ~ 1). (31)
mim} < R* 4+ T?+ RT(trS —1). (32)

Arbitrariness in choosing the signs originating from (28) must be fixed in complete
analogy with the previous case. Introducing parametrization

K, =wcosgcosly, Ky=wsindcosly, ki = wcos ¢sin b, kg = wsin ¢ sin O,

we get from (29) .

(mg +mit Jmi+ ) — HRE+ T2+ RT(trS - 1)))

0 0 = B 2 X
w(¢,01,02) (S23 — $a2)? + cos® ¢(s13 — s31)2 4 sin? 6(s12 — s2)?
H(sa1 — s13)(s12 — s2) sin 29 cos(0y — 02)
Fy (R? + T2+ RT (tr§ - 1)), (33)

 —cos¢ cosly(sm — s13) —sine cos (s — s21)
cos ¢ cos 0y (s23 — S32) . (34)
sin ¢ cos 0a2(s23 — S32)

H = UJ(¢,01,02)

—cos ¢ sinfy(sar — s13) — sin @ sin y(s12~ s21)
.00 | cos $in 0y (525 = 2) ) B9)
' sin ¢ sin 0y(s23 — $32) :

>
I

We have three free parameters that are the angles 0y, 0z. . The gauge symmetry
manifests itself in the following way. If H(¢,0,.0;) is the sollnLioﬁ of (24), H' =

e H(¢,0h,02) = H(, 01 + a, .0, + «) is its solution too.

Unlike the A = 2 case, this case contains extremal configurations which are not
gauge equivalent to the real ones. Gauge equivalence to the real field- configurations
takes place only if 0, =0, =0 :

~ cos ¢(s3; — 13) — sin O(s12:—~ s21)

H(¢,0,0) = w(¢,0,0)c050 cos ¢(82;3 — $32)
sin ¢(s23 — Sa32)
— cos ¢(s31 — $13) — sin ©(s12 — $21)
+ w($,0,6)sin0 cos ${S23 — $32) ) . (36)

sin ¢ sz3 — s32)

Let us note that like in the '\ = 2 case, for the solution to have physical interest it is
necessary that all real parts in (36) have the same signs. This contradicts an analogous
constraint in the A = 2 case. Indeed, as it can be scen from (25), if all components
of the vector €;1.S;; have the same signs, the coordinates of every point on the plane,



%fﬁhdgonal‘to’it.'va’nd containing zero point, have different signs. Vice versa, if the
‘coordinates of any point belonging to this plane have the same sigus. the coordinates
of the vector ¢;;;S;x have different signs. This situation is illustrated Fig.1. where the
real solutions of the minimization conditions are depicted. The solution corresponding
to the A = 2 case lies on the axis in the Higgs generation space. around which the
‘matrix S performs rofations. The solution corresponding to the A = trS — 1 case
lies on the circle in the plane orthogonal to this axis. The angle ¢ in (36) determines
the position of the extremum on this circle. Knowing the expressions for H and h we
can obtain from (24) the expressions for H and %. Let us note that after the gauge
transformation of (36) to the real configuration the extremal solution for H will become
real too. It can be found by using the.following formula

_ (mf +m3 F /mI +mi) — 4(RZ + 1% + RI(irS — 1)))
H = 2 2 PRy 7
(s23 = 832)% + cos? (513 — s31)® + sin’ $(s12 — 321)

+(831 — $13)(812 — 521) sin 2¢
xv/Fy (R? + T? + RT(trS — 1)) x
R+TS —~ cos P(s31 — $13) — sin @812 — $21)

X M S9q — S
VR +T7 + RIS - 1) €08 B(s23 = S32)

sin ¢(s23 — 532)

If (21), (22) and (31), (32) are satisfied, both variants of the solution can occur. To
decide finally which extremum is suitable for us from the physical point of view, we need
to determine its type. However, yet now we can say that the solution corresponding
to the case A = trS — 1 has an additional global symmetry. Indeed, if H; and H;
are the solutions of (24), the field configurations O;;H; and O,;H;, where O is sonie
orthogonal matrix commuting with S, will be solutions of (24) as well. Breaking this
symmetry generates additional Goldstone bosons what will be demonstrated explicitly
in the next section.

4 Higgs masses and types of extrema

As it has been noted, we are interested in the extremal fleld configurations which are
gauge equivalent to the real ones. In this case, the phases of H and H can be put equal
to zero simultaneously, and we get

H; = v +10, H; =75 +0. (37)

Let us determine the type of extrema at these points. To do this. we need to find the
eigenvalues of the matrices of second derivatives of the potential (7) at this point. The

matrix of second derivatives of (7) with respect to the real parts of the neutral SU.(2)

10

o Nt il

components H; and H;

1 8% 1 8V
2 ﬁaﬁ 26H,6H;
L ety 1 ey
26H;6H; 2&6H;8H;

at the point H; =v;, hi = 0,H} =0, H; = %;, h; = 0,H; =0, has the form [6]

(m1+z)6u+ (g +4g )-E ""‘(9 +g )UvJ
( Hsi — 3(g° +9’2)v,ve (m} — 2)6; + 3(* + gM)viv; ) ‘ (38)

a

The matrix of second derivatives of (7) with respect to the imaginary parts of the

neutral SU(2) components h; and &;

1.8%v 1 8V
. 26h;8h; 26h;6h;
1. 6% 1 8%y
25h1~5-j 26h,’5hj

at the same point has the form [6]

(m} +2)é; —Hij |
( —uii (mi-2)6; )0 : (39)

And, finally, the matrix of second derivatives of (7) with respect to the charged SU(2)

components H  and Tt

§2v 52v
SH; 6H; 6H; 6H;
§2v 52v

SHF6H; SH;SHS
has the form [6]:

(mf + z)‘sij + %925-’17,' —pi; + 29 vlvj (40)
—pii + %gzvjvi ( - 2)61_7 + 2g Viv; ’

2 __ 2 . . .
1 J (8% — v?). In complete analogy with the MSSM [5], the eigenvalues

where z = ki
of these matrices are the masses of C'P-even, CP-odd and charged Higgses [6]. For
instance we shall find the eigenvalues of the mass matrix (40) which are the squares
of masses of charged Higgses. At this moment, we do not fix which variant of the
extremum is realized. We have only in mind that these vectors v a.nd % obey the

equations

= (mdta)
—uT5 = (m}-—z). ' (41)
11



Now we introduce the matrices

m 00 R
u = V2 00 , u=
U3 0 0

0
0 }. (42)
0

and write the following system of linear equations:

[im = 1+ Gt 1 = - L] 7 =0

-

TN

el o <l
[RE
TOoO OO

[(mé —z=Ol+ guuT] F- [#T - %uﬁT] f=0 (43)

where fand f are some three dimensional vectors. The system (43) has nontrivial solu-
tion if corresponding matrix has determinant equal to zero. To avoid the cumbersome
formulae we denote: ‘

@
w

_ o - = 2
m1=mf+a:, mg,:mg—r, A= -2 (T =%

o

and absorb the factor 921 in v and %. Then, (43) take the following form:
[(ml—A—o{)I+u_uT]f— [/,L—TiuT]7=0
[(mg +A-6T+ uuT] 7- [,uT - uﬁT] f=0. (44)
‘It ‘can be shown that if the conditions (21), (22) and (31), (32) are satisfied, we have
| | | det(y — ") # 0.
Taking this into account we get from (44)
[((mg +A-EI 4 uuT) (p— ﬁuzT)'—1 ((r—A=-I+ WT)] f=[u" - wa’] f=0.
: . o ' - (45)
The condition for a nontrivial solution for f to exist in (45) is
det [((mg + A= +uuT) (p— EuT)_l ((m1 —A-I+ wul) — (uf - uUT)] =0.
(46)
Using (41), after some transformations we get from (46)
. T .
det [(mz +A=Em —-A-I+ %—- (myma — (my — A)(my + A)) —
T (2t v?)€? = £(my + ma)(mu + %) PPT] = 0. (@)
(mq + v?)?
It can be calculated that ) L ‘
det (aI + buu® — RT(S + 7)) = (a — 2RT)(a — RT(trS ~ 1)+
+b (a%v? — 2aRT B, + R*T*(trS = 1)B2),’ )
B, = vi%rS — %tr ((S + ST) uuT) s
B, = v}(trS +1) —tr ((S + ST uuT).
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Here, we have the distinctions between the first and second variants of the extremum.
In the A\ = 2 case, we get By = B, = v*(trS — 1) while in the A = (tr§S — 1) case
By = 3v*(trS+1), B, = 2v% Using (48) we can see that a characteristic equation
can be factored in both the cases and following eigenvalues can be found: in the A =2
case

i

1
& b= 5(m§ +m3) + [R2 +T?+ RT(trS — 1)

.

o

(my—mi) %3

<92 2 a2y, 198 —g"
29+ g2V

2
(m?+m3)2 —4(R+ T)2> } .

1
&L = {4":-3(mf+m§)-»

L&

R+ T%+ RT(trS — 1)

1
2 2 12 217
9 a2y, 19°—g . ;
2 .
& = mi+mi+ %—(v2 +) =m? +mi+
2 2 2 -
-9 k(M2 —mid) — /(mE4+mi): - R+ T)?
- F —5—;_'2.("1?“*”"13) . - 2 \/(2; 2 (42 ) .
g ryg ‘ \ﬂml+mz) - 4R+T)
=0 B | (49)

and in the A = (trS —1) case

1 -
b = ;(mf+m;->+[(RZ+T2+RT(trS—m

1

292 +g12

2 C1qt— g7 : »" 2}z
( I (m—md) =L I S m2yp —a(m2 4T+ RT(trS—I))> .

g2 + glz

13

[}

2 2 ’2 2
g 2 ., 97—y . R A
+ (gz U Yy pr VJmd £ mdye — AR + T2 + RT (S 1))> } ,
1
& = §(mf +m?) — [(R2 +T? 4+ RT(trS = 1))
2 2 12 . 2 ;'
g lg°—g . L N
+ <g2 s (m}—m?) £ 371 g? \/(mf +m3) — (R + T2+ RT(trS — 1))) jl
11
b = g(mi+my)+ (R+T)



b = S(mi+mi) - [(R +T)?
2 142 — ¢ 2
b (ot =y FE T font g = T RS 1) |
. 2
& = mitmi+ i +e) =ml+mis
+ g° (m? + mz)i(mf —md) — /(mZ+md)2 — 4R+ T+ RT(tr5 1))
g+g? (mZ+ mi) — 4(R2 + T? + RT(trS 1))

& = 0.

Acting in the same manner we can find the eigenvalues for the mass matrix of C P-even

Higgses (38) in the A = 2 case :

(m? — m2)%(m? +md)?
4((m? + m3)? — 4R+ T)?)

6 = +(m? — m2)(m? 4+ m}) [
1=

2/(mZ+ m)2 — AR+ T)?

b (m? 4 md)? — 4R+ T)2F (md = md)y/(m] +md)e ~~1<R+T)2]

(m? — m?)%(m? + m})?
4((m?+m2)2 -~ 4(R+T)?)

&L = 2

£(m}-—mi)(mi+m})
2¢/(mi+m})> —4(R+T)?

+ (MP4+md)?—4R+T)F(ml- mg)\/(mf +mi)? - KR+ T)’]

& = &= % ((mf + mg) + \/(mf +m2)2 —4RT(3 - f.rS’)) A

9

V4

& = L= L ((mf +m2)— \/(mf +m2)? — 4RT(3 - trS))

and in the A = trS — 1 case:

+(m? — m2)(m? + mj) .

b= 2y/(m? + mi)? — 4(R? + T* + RT'(trS — 1))
) (1 = i 4 )
4((m? + m2)? —4(R* + T? 4+ RT (trS ~ 1))

+ (m?+md)? —4(R* 4+ T?+ RT(trS — 1))

2

(m? = m3)y/(m? + m3) — 4(B? + T2 + RT(rS ~ D) |

-H

£(m] — m})(mi + m})
24/(m? + m3)? —4(R? + T? + RT(tr§ - 1))

£

14

(e

op-

L]

(51)

1
2

(50)

_ (m} — m§)*(mi + m})’
1 4((m? + m2)? —4(R* + T* + RT(trS — 1)))
+ (m?+4+ml)? — 4R+ T*+ RT(trS - 1))

1
2

F (mi- mg)\/(mf +m2)? — 4(R~2 + T2+ RT(trS — 1))j| ,

b = & (mtmd) it 4RI - 05)).
= & (m )= fimt £ i 4RI = 105) ).
&= mf—}-m;,

and eigenvalues for the mass matrix of CP-odd Higgses (39) in the A = 2 case:

El = 07
£2 = m? + m;, .
: 1 2 2 2 2)2
b = b= 3 (m1+m2)+\/(1n1+m2) —4RT(3 —1trS)},
1/ —
b = Lo = 3 ((m? +m2) — \/(mf +m3)? —4RT(3 — trS)) : (53)
and in the A = trS — 1 case ‘ ‘
6 = £=0,
&L = L= mf + mg,

o = 5 (4 i)+ ot ARTG = 009)).

o = 5 (tmt ) = fomt iy BTG = 05)). o

Let us consider the expressions for the eigenvalues of C P-even Higgses mass matrix
(38). It is easy to show that if the conditions (21), (22) and (31), (31) are satisfied, type
of the extremum depends on sign(RT). In fact, if RT' > 0, the matrix (38) has all non-
negative eigenvalues (51) in the A = 2 case while another extremum is the saddle point.
Otherwise, if RT < .0, the matrix (38) has all non-negative eigenvalues (52) in the
A = trS—1 case while extremum corresponding to the A = 2 case appears saddle point.
We can observe the same situation considering eigenvalues of the matrices (39) and (40).
Having written the matrix of second derivatives of the potential (7) at zero, we can see
that zero is the saddle point for any sign of RT (if the conditions (21), (22) and (31),
(32) are satisfied). Goldstone bosons, which we have in the XA =2 case, are the results
of electroweak symmetry breaking. They generate masses of gauge Z-boson (CP-odd
Goldstone boson) and W? bosons (charged Goldstone bosons). The additional zero
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eigenvalues in the A = {r§ — 1 case correspond to the global symmetry breaking. As
we have written in the previous section, this global symmetry is the symmetry of the
potential (7) with respect to the rotation of fields in the Higgs generation space which
is performed by the orthogonal matrices commuting with S.-Taking into account the
presence of these additional Goldstone bosons, we may conclude that this extremum
is not suitable from the physical point of view. For final conclusion. to make, let us
calculate the significance of the potential (7) on the extremal configurations. In both
the cases we get

Vet = — 2 2

— 55
.g? + gl2 ( )

Then, using (17) and (28), we calculate

2
(yiﬂh)Om?-mﬂ“\ﬂm¥+mQL_MR+Ty>” 0

st 1 ,
YArS-1 - YD) (|mf —m| - \ﬂm%—f- m2)? —4(R? + T%+ RT(trS — 1)))
(57)

Thus, for RT > 0 the absolute minimum of the potential (7) is the extremum corre-
sponding to A = 2, while zero and extremum corresponding to A = #r§ — 1 are the
saddle points. In the opposite case, for RT' < 0 the absolute minimum is the extremum
corresponding to A = trS - 1 while zero and extremum corresponding to the A = 2
case are the saddle points. We must discard the second extremum due to additional
Goldstone bosons. Taking into account the afore-mentioned arguments and conclusions
of the previous section, we summarize that the potential (7) has an absolute minimum

V/\ 2_

ezt

2

with respect to neutral components of the SU(2) scalar Higgs doublets, interesting

physically, on the field configurations (20) and (23) under the follovnng restrictions on
the quantities of the potential (7):

R+ T <0,

€15k > 0 for any 1,

m?+ml> 2R+ T},

m?m} < (R+T),

RT > 0.
Finally, let us make some remarks regarding extremal field configurations in (34), (35)
discarded by us in view of their inequivalency to the real ones. The potential (7) on
these configurations equals the significance (57), which is greater than the absolute
minimum (56). Moreover, if our system is in the vicinity of this extremum, the afore-
mentioned global symmetry in the generation space is broken and additional Goldstone
bosons appear.

5 Summary

The main reason why we have succeeded in the exact solution of the system (8) is that
this system includes nonlinearity as a whole having the form of a quadratic combination
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of unknowns. This type of nonlinearity is generated by quartic terms in the potential
(7}, which, in their turn, arise after excluding auxiliary non-dynamical components of
gauge supermultiplets. Therefore, this form of quartic terms in the potential is typical
of the N = 1 supergravity GUT’s with enlarged Higgs sector [10]. The quadratic part
of the potential (7) has a specific form dictated by finiteness. This fact allowed us
to find the nonlinear combination in (8) explicitly. Let us note also that, as it is not
difficult to see, our result for absolute minimum configurations (20) and (23) is a simple
generalization of the analogous result in the MSSM {5].

In conclusion, we would like to attract attention to the interesting phenomenological
predictions for the quark mass spectrum. After the transition of the system to the
absolute minimum (56) of the potential on the field configurations (20) and (23), we
fix the phases of these configurations to equal zero, and the following relations between
up and down quark masses can be observed: |

m, _ m, imt

Mg My ;mb'
Quari( masses in these relations are running masses and must be taken on the M
scale [6]. At the same time, the hierarchy between quark generations is completely
controlled by the matrix.§ that is the parameter of the theory. Parametrizing this
orthogonal matrix by three Euler angles 01,02, 03, we can get the following hierarchy
relations between up quarks: o 5o
O . O+0 O . 6,0 . b 0 —0;

My @ Mt My = COS 5 sin sin — sin sin — €os

2 2 2 2 2

1t is clear that we can fit these angles in order to guarantee any hierarchy. Unfortu-
nately, we have not succeeded connecting S- with other parameters of the theory. A
complete analysis of this model with numerical results for masses of all partlcles of the
theory is in preparation [6] and will be published elsewhere.

H,

H;

H,

Figure 1: In this figure the real solutions of the minimization conditions are depicted.
The solution corresponding to the A = 2 case lies on the axis in the Higgs generation
space, around which the matrix S performs rotations. The solution corresponding to
the A =S — 1 case lies on the circle in the plane orthogonal to this axis. The angle
¢ in (36) determines the position of the extremum on this circle.
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KonnpamyKI/lH T L A T 'E279,5,-63
MunnMu3anms cxannpnom XHITCOBCKOIO norenuuana T T
B KOHC‘{HOH CyﬂepCHMMeTpH‘{HOH Teome BCJ'IPIKOYO OGbCHHHCHPISl :

Harmeno TO‘{HOC Maremamqecxoe pememre ypaBHemm Mnnnmuaannn
S cxansrpHom XMITCOBCKOTO MOTEHIHAJIA B KOHEYHOM cynepcnmmerpnqnon TEO-:
. | pum BEMKOrO onemme}mn AHanmuqecKu ucc.nenoaan THI 3KCTpeMyMOB no-,

' CIOHTAHHOIO HAPYLICHUS 3neKTpocna6on cm,merpmr JlaHBI yC0BuS CYIIECT-
Bonamm a6comomom MHHHMYMa norennnana npnewremoro c (buanqecxon i
Toqxn 3pemm OxaaanoCb YTO ITOT MnmmyM ABJIAETCA HpOCTbIM 06obmennem '

ananomqnom peIEHNs: B’ MHMHHMAJIBHOW cynepcummerpuqnou crannaprnon.
MOZIEH. (DeHomeHonomqecKne cnencrnnsr HaHZ(eHHOI‘O pememm Kparxo o6- :
cyx(narorcsr. :

Pa6ora BbIHOJIHeHa B JIa6opaTopm1 'reope'ml{ecxon (hnamm HM. H H Bom- :
mo6oBa OI/ISII/I ~ o

it - © :"I_~

Tenunana ¥ ONpeeseHbl MacCHl xurrconcxnx lracmn, Boanuxammnx noc.ne |

B

KondrashukI N ek *:_‘E2'-95<-6‘3'
Mlnlmrzatron of the Scalar nggs Potenual R
in the F1n1te Supersymmetrlc Grand Un1f1ed Theory !

TR

’

ty

Exact mathematlcal solutlon of the m1n1mlzatron COIldlthﬂS of scalar'
the nggs potentlal of the F1n1te Supersymmetrlc Grand Un1f1catlon Theory "
‘is’ proposed and. extremal field conﬁguratlons are found. Types ‘of extrema
.are 1nvest1gated and masses of the new Higgs particles arisen after electroweak
symmetry breaklng are derlved analytlcally -The condltlons for existing
of. physrcally acceptable minimum are given. As it appears thlS m1n1mum‘»
is simple’’ generahzatlon of the analogous solution " in the ‘Minimal
Supersymmetrlc ‘Standard Model. Phenomenologlcal consequences
are d1scussed brlefly 3 ki SR j ‘ et

The 1nvest1gatlon has been performed at the Bogollubov Laboratory"
of Theoretlcal Physlcs JINR., '




