

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

$95-535$
E2-95-535

Kh.M.Beshtoev

DYNAMICAL ANALOGY
OF THE KOBAYASHI-MASKAWA MATRIX (CP-VIOLATION) AND AN ESTIMATION OF THE CREATION CROSS SECTION AND DECAY WIDTHS OF THE VECTOR BOSONS ARISEN IN THIS CASE

1. INTRODUCTION

The theory of electroweak interactions, at the present time, has the status of a theory which is confirmed with a high degree of precision. However, some experimental results (the existence of quarks and of leptons families, etc.) did not get any explanation in the framework of the theory. One such part of the electroweak theory is the existence of quark mixing which is introduced by the Cabibbo-Kobayashi-Maskawa matrices (ie., these matrices are used for parametrization of the quark mixing).

In previous work [1] a dynamical mechanism of quark mixing by the use of three doublets of massive vector carriers of weak interaction $B^{ \pm}, C^{ \pm}, D^{ \pm}$.was suggested.

In this work in continuation of $[1]$ a dynamical mechanism of
 massive vector carriers of weak interaction $\mathrm{B}_{\mathrm{I}} \pm \mathbf{C} \pm, \mathrm{D}^{ \pm} \mathrm{E} \pm$ is suggested, i.e., expansion of the electroweak theory on a tree level is proposed, where, together with the $\mathrm{w}^{ \pm}, \mathrm{z}^{0}$ bosons there arise four doublets of massive vector carriers of the weak interaction $\mathrm{B}^{ \pm}, \mathrm{C} \pm, \mathrm{D}^{ \pm}, \mathrm{E}^{ \pm}$leading to the quark mixing. An estimation of the boson masses and the quasielastic reactions proceeding through these bosons and the creation cross section and also decay widths of B boson are given.
11. DYNAMICAL ANALOGY OF THE KOBAYASHI-MASKAWA MATRIX

Now let us go on to generalization of the work [1] which includes CP-violation.

In the case of three families of quarks the current J^{μ} has next form:

$$
\begin{align*}
& J^{\mu}=|\vec{u} \quad \vec{c} \quad \overline{\mathrm{c}}|_{\mathrm{L}} \gamma^{\mu} \ddot{v}\left|\begin{array}{l}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right|_{\mathrm{L}} \\
& \mathrm{v}=\left|\begin{array}{lll}
\mathrm{v}_{\mathrm{ud}} & \mathrm{v}_{\mathrm{us}} & \mathrm{v}_{\mathrm{ub}} \\
\mathrm{v}_{\mathrm{cd}} & \mathrm{v}_{\mathrm{cs}} & \mathrm{v}_{\mathrm{cb}} \\
\mathrm{v}_{\mathrm{td}} & \mathrm{v}_{\mathrm{ts}} & \mathrm{v}_{\mathrm{tb}}
\end{array}\right| \tag{1}
\end{align*}
$$

where v is Kobayashi-Maskawa matrix [2].
We shall choose a parametrization of the matrix V in the form suggested by Maiani [3]

$$
\begin{align*}
V= & \left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\gamma} & s_{\gamma} \\
0 & -s_{\gamma} & c_{\gamma}
\end{array}\right|\left|\begin{array}{cll}
c_{\beta} & 0 & s_{\beta} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{\beta} e^{i \delta} & 0 & c_{\beta}
\end{array}\right|\left|\begin{array}{ccc}
c_{\theta} & s_{\theta} & 0 \\
-s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right|, \tag{2}\\
& c_{\theta}=\cos \theta, s_{\theta}=\sin \theta, \quad e^{i \delta}=\cos \delta+i \sin \delta
\end{align*}
$$

To the nondiagonal terms (which are responsible for mixing of the d, s, b - quarks and cp-violation in the three matrices) in (2) we shall make correspond four doublets of vector bosons $B^{ \pm}, C^{ \pm}, D^{ \pm}, E^{ \pm}$ (we will suppose that the real part of $\operatorname{Re}\left(s_{\beta} e^{i \delta}\right)=s_{\beta} \cos \delta$ corresponds to the vector boson $C^{ \pm}$, and the imaginary part of $\operatorname{Im}\left(s_{\beta} e^{i \delta}\right)=s_{\beta} \sin \delta$ corresponds to the vector boson $E \pm$ (the couple constant of E is an imaginary value !)) whose contributions are parametrized by four angles. $\theta, \beta, \gamma, \delta$. Then, when $q^{2} \ll m_{w}^{2}$, we get:
$\operatorname{tg} \theta \cong \frac{m_{W}^{2} G_{B}}{m_{B}^{2} G_{W}} \quad, \quad \operatorname{tg} \beta \cong \frac{m_{W}^{2} G_{C}}{m_{C}^{2} G_{W}}$
$\operatorname{tg} \gamma \cong \frac{m_{W}^{2} G_{D}}{m_{D}^{2} G_{W}}$.
$\operatorname{tg} \delta \cong \frac{m_{W}^{2} G_{E}}{m_{E}^{2} G_{W}}$

If $G_{B} \pm \cong G_{C} \pm \cong G_{D} \cong \cong G_{E} \pm \cong G_{W} \pm$, then

$$
\begin{align*}
& \operatorname{tg} \theta \cong \frac{m_{W}^{2}}{m_{B}^{2}} \quad, \operatorname{tg} \beta \approx \frac{m_{W}^{2}}{m_{C}^{2}} \\
& \operatorname{tg} \gamma \cong \frac{m_{W}^{2}}{m_{D}^{2}} . \tag{4}
\end{align*} \quad \operatorname{tg} \delta \cong \frac{m_{W}^{2}}{m_{E}^{2}},
$$

Concerning the neutral vector bosons $B^{0}, C^{0}, D^{0}, E^{0}$, the neutral scalar bosons $B^{\prime 0}, C^{\prime 0}, D^{\prime 0}, E^{\prime 0}$ and the GIM mechanism [4] we can repeat the same arguments which were given in the previous work [1].

111 . REACTIONSS PROCEEDING THROUGH THE $\mathrm{B}^{ \pm}, \mathrm{C}^{ \pm}, \mathrm{D}^{ \pm}$BOSONS AND estimation of their masses

The reactions with substitution $d \longleftrightarrow b$ s, $d \longleftrightarrow b$ proceed via the $B^{ \pm}, C^{ \pm}, D^{ \pm}, E^{ \pm}$bosons. Besides the decays of leptons and hadrons, the following quasi-elastic reactions proceed through

$$
\begin{array}{ll}
\text { a) } u+d \xrightarrow{B} u+s, p+p \longrightarrow p+\Sigma^{+} \\
\\
u(\bar{u})+\bar{s}(s) \xrightarrow{B} \longrightarrow v_{i}\left(\bar{v}_{i}\right)+\bar{e}_{i}\left(e_{i}\right), \quad i=e, \mu, \tau \\
& \nu_{i}\left(\bar{v}_{i}\right)+\bar{e}_{i}\left(e_{i}\right) \xrightarrow{B} u(\bar{u})+\bar{s}(s) ;
\end{array}
$$

$$
\begin{align*}
& \text { b) } u+d \xrightarrow{c} u+b, p+p \longrightarrow p+\Sigma^{+}\left(q_{b}\right), \tag{5}\\
& u(\bar{u})+\bar{b}(b) \xrightarrow{c} \nu_{i}\left(\bar{\nu}_{i}\right)+\bar{e}_{i}\left(e_{i}\right), \\
& \nu_{i}\left(\bar{\nu}_{i}\right)+\bar{e}_{i}\left(e_{i}\right) \xrightarrow{c} u(\bar{u})+\bar{b}(b) ;
\end{align*}
$$

$$
\text { c) } \begin{aligned}
& c+s \xrightarrow{D} c+b, \\
& c(\bar{c})+\bar{b}(b) \xrightarrow{D} \nu_{i}\left(\bar{v}_{i}\right)+\bar{e}_{i}\left(e_{i}\right) \\
& \nu_{i}\left(\bar{v}_{i}\right)+\bar{e}_{i}\left(e_{i}\right) \xrightarrow{D} c(\bar{c})+\bar{b}(b),
\end{aligned}
$$

d) Through E boson will go the next reactions with cp-violation $\mathrm{K}_{1}^{\mathrm{O}} \longleftrightarrow \mathrm{K}_{2}^{\mathrm{O}}, \mathrm{B}_{1}^{\mathrm{O}} \longleftrightarrow \mathrm{B}_{2}^{\mathrm{O}} \cdots$ et cetera.

Let us estimate the masses of the $B^{ \pm}, C^{ \pm}, D^{ \pm}, E^{ \pm}$bosons. For this purpose we shall use the data from [5] and equation (4)

1) $\operatorname{tg} \theta \cong 0.218 \div 0.224$,
$\mathrm{m}_{\mathrm{B}} \pm \cong 169.5 \div 171.8 \mathrm{GeV} ;$
2) $\operatorname{tg} \beta \cong 0.032 \div 0.054$,
$m_{c} \pm \simeq 345.2 \div 448.4 \mathrm{GeV}$;
3) $\operatorname{tg} \gamma \cong 0.002 \div 0.007$,
$\mathrm{m}_{\mathrm{D}} \pm 9958.8 \div 1794 \mathrm{GeV}$.
4) $\operatorname{tg} \delta \cong 0.00036 \div 0.00037$,
$m_{E} \pm 4170 \div 4230 \mathrm{GeV}$.

1V.an estimation of the creation cross section and decay widths of the vector bosons

For estimation of the creation cross sections of the vector bosons $\mathrm{B}^{ \pm}, \mathrm{C}^{ \pm}, \mathrm{D}^{ \pm}, \mathrm{E}^{ \pm}$at resonance in pp reaction we can use standard formula [6] ($\mathrm{g}_{\mathrm{W}}=\mathrm{g}_{\mathrm{X}}$):

$$
\begin{align*}
& \sigma_{X}=\frac{4 \pi^{2}}{3}\left(-\frac{\mathbf{r}_{X}}{m_{X}}\right) \operatorname{Br}(X \longrightarrow q \bar{q}) \operatorname{Br}(X \longrightarrow f) \tag{7}\\
& \\
& \iint d x_{1} d x_{2} u_{i}\left(x_{1}\right) \bar{u}_{k}\left(x_{2}\right) \delta\left(x_{1} x_{2}-M_{X}^{2} / s\right)
\end{align*}
$$

where $s=\left(p_{p}+p_{p}\right)^{2}, \operatorname{Br}(\ldots)$ is branching mode probability, $u_{i}(x)$ are quark structure functions, $i=u, d$, s quarks, m_{X} is mass of the X vector boson, $X=B, C, D, E$ is boson, T_{X} is total width of the x vector boson.

Using expression (7) at energy $E=1.8 \mathrm{TeV}$ (FNAL) we obtain the next values for creating cross sections of $B \pm$ boson at resonance:

> a) $\sigma(\mathrm{u} \overline{\mathrm{d}} \xrightarrow{\mathrm{B}}$ all $) \cong 245 \mathrm{pb}$, $\sigma(u \quad \bar{d} \xrightarrow{B} \bar{\nu}): \cong 20 \mathrm{pb}$
in this case we used quark structure functions of u, d quarks from [7].

in this case we used u, s quark structure function from [8]. Using standard expression for width $\boldsymbol{\Gamma}$ (...)
$\Gamma(\mathrm{B} \longrightarrow e \bar{\nu}, \nu \overline{\mathrm{e}})=-\frac{g_{\mathrm{B}}^{2} \mathrm{~m}_{\mathrm{B}}}{48 \pi}$,
we obtain the next values for $\Gamma(B \ldots)$, when $g_{B} \cong g_{W}$
$\boldsymbol{P}(\mathrm{B} \longrightarrow e \bar{\nu}, \nu \overline{\mathrm{e}}) \cong 0.48 \mathrm{GeV}$,
$\Gamma(B \longrightarrow \mathrm{C} \longrightarrow \bar{\nu}, \nu \overline{\mathrm{e}}) \cong 1.44 \mathrm{GeV}$,
$\Gamma(B \longrightarrow u \bar{s}) \cong 3 I^{\top}(B \longrightarrow e \overline{)})$,
if $\Gamma(B \longrightarrow u \bar{s}) \cong \Gamma(B \longrightarrow u \bar{d}) \quad$ then,
$\Gamma_{\text {tot }} \cong 4.30 \mathrm{GeV}$.
v. CONCLUSION
A dynamical analogy of the Kobayashi-Maskawa matrix (inclding
CP-violation), i.e. a phenomenological expansion of the weak
interaction theory working on a tree level is proposed. For this
purpose four doublets of vector bosons $\mathrm{B}^{ \pm}, \mathrm{C} \pm, \mathrm{D}_{\mathrm{f}}^{ \pm}, \mathrm{E} \pm$ are introduced.
Estimation of their masses (${ }^{m_{B}} \cong 170 \mathrm{GeV} ., m_{C} \cong 345 \mathrm{GeV}$. ,
$\left.m_{D} \cong 1000 \mathrm{GeV} ., \cdot \mathrm{m}_{\mathrm{E}} \cong 4200 \mathrm{GeV}.\right)$ is performed. The quasielastic reactions proceeding through the exchange of these bosons are listed. The estimation of the creation cross section for energy $E=1.8$ TeV. (FNAL) and decay widths of B boson is given.

The author expresses profound gratitude to the board of directors of Science Resear. Inst. of Appl. Mathem. and Automation KBCC RAC (Nalchik) where was done a main part of this work.

REFERENCES

1. Kh.M. Beshtoev, JINR, E2-94-293, Dubna, 1994.
2. M. Kobayashi .and K. Maskawa, Prog. Teor. Phys., 1973, 49, p. 652.
3. L. Maiani , Proc.Int. Symp. on Lepton-Photon Inter., Hamburg, DESY, p. 867.
4. S. Glashow, J. Iliopoulos and L. Maiani , Phys. Rev., 1970, D2, p. 1285
5. Review of Particle" Prop:, Phys. Rev. 1992, D45, N 11.
6. G. Kane, Modern Elementary Part. Phys., Adison Visley P.C., 1987.
7. D.W. Duke, J.F. Owenss, Phys. Rev., 1984, D30, p. 49.
8. A.E. Dorochov, N.I. Kochelev, Elem. Part. and Atomic Nucl.
(Particles and Nuclei), 1995, 26, p. 5.
