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THE MEANING OF MODERN RELATIVITY 



L.b.s. ... the principle of relativity imposes con­
ditions which all physical laws have to 
satisfy. It profoundly influences the 
whole of physical science, from cosmolo-

- gy, which deals with the very large, to 
the study of the atom, which deals with 
the very small 

P.A.M.Dirac[ I] 

INTRODUCTION 

The special theory of relativity in its form generally accepted at present was 
in fact formulated at the beginning of our century. From the origin its construction 
was based on the radar procedure used, for example, for the synchronization of 
distant clocks and what is more this procedure served for Einstein as a direct 
derivation of the Lorentz transformation [2]. As known, historically the 
transformation was obtained from the invariant condition of Maxwell's equations­
when passing to a moving (inertial) reference system. 

Relativity theory made revolutionary changes in the representations of space 
and time going back to Newton. It opened new ways of trying to understand 
natural phenomena and served as the basis for relativization of many fields of 
physics including electrodynamics, mechanics, thermodynamics and so on. How­
ever, the process of origin and formation of new presentations · cannot be 
completely separated from the previous notions at once. Because of their 
habitualness these old notions «being unnoticed» are going on to serve the theory 
which rejects them in essence. First of all, this concerns the concept of rigid rod. 
Ideed, such fundamental essence as a reference system is thought to in the form 
of a frame of rigid rods and a set of synchronized clock placed at different points 
[3]. We would remind that the representation of a rigid (undeformed) rod was 
adopted from daily life in which we deal with very small (with respect to light) 
velocities. In essence, undeformation means that perturbation propagated, for 
example, from one end of the rod to the other one practically instantly. Otherwise 
one can say that the rigid rod realizes an instant (simultaneous) length. In the 



non-relativistic case this condition is actually fulfilled, and such a representation 
is quite justified. However, for motion velocities close to the light one, the 
velocity of _deformation propagation is a small value. Nevertheless, we continue to 
hold our previous positions subconsciously, i.e. to use the representation of rigid 

bodies. One known elementary derivation of the relation E = mc2 [4] can be a 
. typical example here, where it is implicitly that a rigid cylinder begins to move 
instantly [5] due to the radiation of a light flash. Hitherto this derivation is often 
adduced when relativity theory is started (see, e.g._, [6]). 

Another completely covariant formulation [7 ,8] operates with light or retarded 
distances directly observed in experiment _and leans on the ·radar method of 
distance measurement [9]*. Thereby in the frame of this formulation we get rid of 
series of fictitious notions and, in the first place, such as rigid scales (rods). This 
approach is related to the «asynchronous formulation» [12] purely mathematically. 

One can conclude already on the basis of the foregoing that the main 
difference of the two approaches must be connected with the behaviour of space 
sizes of materil bodies. Indeed, if in the first case we have the contraction of 
longitudinal sizes of moving objects, in the second one their elongation takes 
place. 

The main aim of this paper is to state basic peculiarities of. the covariant 
formulation and its difference from the traditional (Einstein's) approach. 

1. THE TRADITIONAL (EINSTEIN'S) APPROACH 

Just this approach is e~pounded in all text-books and monographs on 
relativity theory. The aspect of our interest concerns mainly a space part of the 
space-time. picture (i.e. such notions as length, distance and quantities formed on 
their basis). 

We would remind that according to Einstein, the length of a moving rod is 
called the distance between simultaneous positions of its ends [2]. Below for 
brevity the generally accepted approach leaning upon this definition following 
Born [6] is named Einstein's theory of relativity (ETR). It is obvious that its 
definition includes any small velocities of rod motion, i.e. in the limit and the rod 
at rest. Thus, one can say that in the frame of the traditional approach · we deal 
with simultaneous or instant distances (cf. with the instant form of Dirac's 
relativistic dynamics [1]). 

At the same time one of the main merits of relativity theory is to ascertain the 
relativity of simultaneity, i.e. its noninvariance or dependence on reference 

*It should be stressed that the previous approach [10,11}, whose basis arc observers supplied with 
similar clocks and radars, has rather a formal character. Therefore as a result of the transition to instant 

. distance all conclusions corresponding to Einstein's approach remain in force. 
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system. It is evident that the same defect will be inherent in the physical notion 
leaning on the simultaneity condition (t = canst.). Just for this reason the generally 
accepted definition of length (connected with the determination of simultaneous 
positions of rod ends) contradicts the principle of relativity as it depends on a 
reference system*. 

In the mathematical language these discorses come to a very simple demand. 
The introduced physical notion must be covariant, i.e. a moving rod must be 
described by a space-like 4-vector. The generally accepted definition of moving 
rod length gives a recipe of obtaining corresponding four numbers in each refer­
ence system. If the Lorentz invariance condition is fulfilled, these four values 
must represent the same 4-vector. Or otherwise, the interval corresponding to the 
contracted length must be a Lorentz-invariant one. 

The relativistic interval is a four-dimensional quantity defined by two point 
events and is an analog of three-dimensional distance between two points. Or as 
one says, the metric of Mink"owski's (four-dimensional) space is defined by the 
interval squared 

2 2 2 2 2 2 
-S = C /:,.t - L1x - t.y - /:,.z , (1) 

depending on the coordinate difference of these events. The interval is the main 
invariant of relativity theory, and so it is also named the fundamental invariant. 
Clocks and scales (rods) are material representatives of the interval. 

Remined that the interval is a quantity which does not change (it remains an 
invariable one) when transitting from one inertial reference system to another one. 
Since this transition is related to changing motion velocity, the interval invariance 
must mean its independence (constancy) of velocity**. 

Let us consider the traditional (Einstein's) definition of moving rod length 
IE from the viewpoint of the foregoing. Let for simplicity the rod be oriented and 

move along the x-axis of S-system. In the framework of this definition it is char­
acterized by two simultaneous events at its ends or a four-component quantity 

z; = (0, t.x, 0, 0) = (0, lE, 0, 0). (2) 

Therefore the space-like interval answering this moving rod takes the form 

sE=L1x=lE. (3) 

As known, a direct consequence of the simultaneity demand of endmark t.t = 0 
(simultaneity of this pair of events) is the contraction formula 

lE=l*(l-v2/c2)l/2_ (4) 

*In this connection see also [13]. . 
**In view of importance of the statement, below we prove a special theorem on this account. 
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Here l * is the rod length at rest (proper length) and v is its velocity (the velocity 
of the S*-system relative to S). 

Based on (4), it follows that the interval sE depends evidently on the motion 

velocity 

sE=l*{l-v2 /c2)l/2_ (5) 

As noted above, such a dependence means that the traditional definition does not 
satisfy the Lorentz invariance condition of interval [14). Or otherwise, the 
contracted length is not a 4-vector component [15), and consequently the 
generally accepted definition does not satisfy the demand of Lorentz covariance. 

But from the viewpoint of relativity theory it is a terrible sentence meaning 
in essence that there is no place for simultaneous (instant) length in this theory. 

Certainly, it arouses astonishment that this important check ( of the interval 
invariance of the rod) was not carried out after introducing Minkowski's 4-
geometry [16] although the very statement of a question is formulated in the 
known «Lectures on physical foundations of relativity theory (1933-1934 )» by 
L.Mandel'shtam [17), where it is said that «immoving scale measures a space-like 

interval», i.e. s = l *. 
It would be quite appropriate to remind here about the principle of 

observability as well. According to it, one should not introduce non-observable 
quantities into science*. In other words, it is impossible to propose such 
operations which are not realizable for measuring these quantities. The known 
Einstein's (macroscopic) mark procedure of sim~ltaneous position of the ends of 
a moving rod with the help of a great number of clocks placed in space and 
preliminary sychronized does not give rise to objections at first sight. But in 
practice t~e main field of relativity theory application is the phenomenon of 
microworld which this procedure is simpy inapplicable to. 

2. MODERN APPROACH 

(CAMPLETEL Y COY ARIANT FORMULATION) 

The essence of the covariant formulation consists in that it deals with distan­
ces directly observed in experiment (in particular, measured by the radar method) 
between nonsimultaneous points. As known, in electrodynamics these distances 

*As one states [18], the traditional definition «is a completely useless concept in physics». «Nobody 
will ever see the Lorentz contraction. To define it operationally, one has to assume an infinite velocity 
of light, contrary to relativity, i.e., in contradiction with the theory that supposedly introduces that 
definition». Also [ 19]: «It is obvious therefore, that Lorentz contraction, as defined in the special 
relativity, is not an observable effect, or, which is the same, is not a real physical phenomenon». 
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are called retarded. Still earlier similar (light) distances were applied to determine 
the aberration angle of star light. 

One can say that the transition to the covariant formulation is connected with 
the removal of actually non-observed (i.e. fictious) instant distances. As a result, 
the space-time structure, the basis of relativity theory, suffers a radical change. In 
particular, we have an increase of longitudinal sizes of relativistic objects (the 
elongation formula) instead of familiar contraction. 

2.1. The Concept of Covariant (Radar) Length 

Light or retarded distances. The notion of «light distance» arose in essence 
long before the origin of relativity theory. Just the light distance defines the 
aberration angle. The aberration of star light is the phenomenon known long ago 
which was first observed as early as 1727 by Bradley [20]. 

However, the immediate usage of such distances is connected with the 
Lienard-Wiechert potential [21,22]. For the electric potential created by point 
charge e moving with velocity v, we have 

<l>= e = e 
R ( 1 - !3n) R ( 1 - l3 cost}) . 

rel rel 

(6) 

Here Rrel is the vector of the retarded distance between the charge and the 

observation point, 13 = v / c, n = R / R . Using the transformation formula for 
rel rel 

the potential and taking into account that in the rest system of the charge the field 
is described by Coulomb's potential 

we obtain [23] 

<1>* =_!___ 
R* 

R* = R ( 1 - A cos l'J)y, rel I-' 

(7) 

(8) 

where y= (1 - l32f 1 /Z_ This equation expresses the transformation law for 
retarded distance when passing from the proper system S* of the source to the 
S-system where it moves with velocity v. Certainly, the formula (8) can be also 
derived directly from the Lorentz transformation for time. For two of the most 
characteristic cases when the field propagates in the direction of source motion 
(forward, t'} = 0) and in the opposite direction (backward, t'} = 7t) we have 

Rf= ( I + l3)R*y, (9) 

Rb= (I - l3)R*y. (10) 
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The covariant (radar) length. The nontraditional definition of relativistic 
length [24,25] is based on the radar method of measuring distances*. In its 
frames, for example, the propagation time of a light signal in the forward and 
backward directions along the rod is measured. This is identical to the 
corresponding procedure used to verify the formula for relativistic time 
retardation. In fact, on the basis of the latter we arrive at the elongation formula. 
Here we give another derivation of it. 

For simplicity, suppose that the rod is oriented and moves in the direction of 
the x-axis (from left to right) with velocity v = pc. A signal is sent at the instant 
of passing the left end. The light reaching the right end is reflected there and 
returns to the left end. For the distance covered by the light signal, when it moves 
forward, in the same direction as the rod (overtaking the right end of the rod) we 
have 

1=l*(l+P)y. (11) 

Here l * is the length of the rod at rest. This formula is the direct consequence of 

substituting quantities L1x * = l * and b.t * = l * / c answering the light signal 
propagation along the resting rod (in the direction of x-axis) in the Lorentz 
transformation 

* A * L1x = (Llx + pCb.t ) y, (12) 

when changing the direction of light propagation, we must change the sign of the 
space coordinates in (12). Thus, when the light signal (after reflection) moves in 
the direction opposite to that of rod motion (toward the left end of the rod), it 
traverses the distance 

lb=l*(l-P)y. (13) 

As a result, for the covariant (radar) length we find 

Ir= ½<1+ lb)= l *y (elongation formula) (14) 

We emphasize that 1 and lb define distances between points taken at different 

times, i.e., they obviously correspond exactly to the two most characteristic 
modifications of retarded distances (9) and (I 0) in electrodynamics. 

In the framework of the four-dimensional representation, the covariant length 
is given by the spatial part of the half-difference of the two 4-vectors that describe 
the processes of light propagation in the forward and backward directions along 
the rod. In the moving S-system the 4-vector of covariant length is of the form 

*One can say that introducing this method, a moving observer simply «spies» the procedure of 
mea~uring the length of the rest rod (in another reference system) but uses his own measuring devices 
(clocks). 
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i A * l * l = (..,1 y, y, 0, 0). r (15) 

For this we have for the interval squared 

s; = (/ *y}2- (Pl *y)2 = (/ *)2, (16) 

i.e., the Lorentz invariance demand is satisfied. 
We draw the readers attention to the recently published book [26] where both 

existing approaches are considered in detail, and preference is given to «the 
hypothesis of length expansion». Also, «the logical contradiction in the process of 
deriving the length contraction» is accounted. Besides, note the statement [ 19] of 
the importance of «the retarded length» as the basis of «relativity theory (in 
contrast to the special relativity theory)». 

2.2. The Previous Difficulties of Theory Are Removed 

«Problem 4/3». Its main point is that we come to the formulae which differ 
from the required relativistic ones when calculating the electromagnetic field 
energy and momentum of a moving charge 

en= [(I+ p2 /3) µc y, (4/3) pµc y, 0, O]. (17) 

Here µ = £* / c
2
, £* is the electromagnetic energy of a charge at rest. We note at 

once that this result is a direct consequence of using the contraction formula for 
a space volume element. At the same time the use of elongation formula (14) does 
not lead to a similar difficulty (see, e.g., [27]). 

It should be emphasizes that in the frames of this problem the very first 
indirect evidence of contracted length noncovariance (exactly, contracted volume) 
was obtained when Laue used the obviously covariant expression 

Gi = J TikdVk. (18) 

Here Tik is the energy-momentum tensor of the electromagnetic field, dVk is the 

four-dimensional quantity that has only one time component in accordance with 
the generally accepted definition (see, e.g., [29]) 

E E * -l dV = (dV , 0, 0, 0) = (dV y , 0, 0, 0). n 
(19) 

Since the Lorentz covariance of Tik is beyond doubt, it is obvious that the ~<source 
of noncovariance» is the element of the contracted volume. 

It should be stressed that the formula of space volume increase corresponding 
to (14) was first introduced [30] just when solving· the «problem 4/3». But may 
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be it is particularly important that within the frames of the covariant formulation 
there is no need to ascribe to charge an extra mechanical mass which is due to 
«Poincare stresses». 

The «paradox» with the capacitor energy or the violatio11 of the law of energy 
conservation. The electrostatic energy of a plane-parallel capacitor, which plates 
are normal to the x*-axis, is equal to 

(£ *)2 
.... * * X * I!. =EV =--crl 

81t 
(20) 

where E* is the energy density of an electric field £ * , CJ is the area of the plates, 
X 

I* is the gap between them. As £ * (and, consequently, E *) and cr are not 
X 

transformed when passing to the moving S-system, the formula for energy of a 
moving capacitor 

E=EV=E*crl (21) 

is practically defined by /. If in accordance with ETR, we take contracted length 
IE then evidently we come to a contradiction with the known relativistic formula 

E = E*y. What is more, in this case the energy of a moving capacitor is smaller 
than its energy at rest. Though, as known, in order to set a capacitor in motion, it 
is necessary to spend some energy (it is transferred to the capacitor). 

Thus, in the framework of ETR we also have the contradiction with the law 
of energy cons.ervation conditioned again by the use of noncovariant contracted 
length. 

A similar difficulty does not arise if / is given by the radar length / [27] 
r 

which, in 'accordance with (14), increases proportionally to y as it is required. 
On the charge of a carrent-carrying conductor or the violation of the law of 

charge conservation. Let us consider an element of a line conductor at rest 

(directed along the x*-axis) which the current with density j} flows along. Let the 

densities of negative and rest positive charges p: and p: be equal, and therefore 

the total density be · p * = 0. Thus, from the viewpoint of an observer from the 
S*-system the wire does not take a charge 

t:iq* = p*1:1v* = o, (22) 

where t:iq* is the charge and 1::iv*, the volume element of the conductor. 
Let us transit now to such a reference system relative to which negative 

charges are at rest. Based on the transformation formula for the total density in S, 
we obtain 
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* 2 p = p - + p + = -p - p y. (23) 

Attracting the volume contraction formula 1:1 V = 1:1 V *y-1 corresponding to (4 ), we 
conclude that from the viewpoint of the S-system the wire has a positive charge 
(see, e.g., [6a, 32] 

A • A" * L.l.q = -p - I-'~ 1:1 V . (24) 

Thus, it is evident that in the frames of ERT the invariance of an electric 
charge violates. What is more, this result may be interpreted otherwise. A neutral 
current-carrying conductor takes a charge (without removing electrons outside) as 
a result of motion. In other words, the use of noncovariant quantity has led us to 
the violation of the law of charge conservation. 

In the frames of the covariant formulation 

l::iq = / 1:1 V. ,. (25) 

where the 4-vector of a volume element 

1::iv; = c1:1v*y, -p1:1v*y, o.o). (26) 

As a result, we obtain 

t:iq = i o t:i vo +ii 1:1v1 = (-p: p2y)1:1 v *y+ <-Pp :r)(-Pl:1 v*y) = o. (27) 

i.e., the demand of charge Lorentz invariance is really fulfilled, and, consequently, 
the charge is conserved. 

For the last few years the considered example is discussed (see e.g., [33] and 
references therein) in connection with the following question: does the electric 
charge appear in an electrically neutral conductor after current excitation in it? 
This means that the current arises only due to setting conductivity electron in 
motion. Since in this case the number of electrons does not change and as before 
it is equal to the number of positive ions, one can speak of the appearance of a 
electric field due to the difference in the behaviour of the fields moving and 
resting charges (see, e.g., [34 ]). 

The Lewis-Tolma11 «paradox» of a right-a11gled lever [35]. The essence of this 
known problem lies in the appearance of a torque (Nz :t:- 0) in the reference system 

S, where a lever is moving while in its proper system S* 

N* =X*F* - r*p* = 0. 
Z _v X (28) 

Here X* and Y* are the lever arms directed along the x*- and y*-axes F_~ and F_: 

the forces applied to them with X * = Y * = l * and F* = p* = F*. On the basis of the 
X y 

principle of relativity and in the S-system an analogous equality should be valid 
which we present in the form 
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XY-I = F r 1• (29) 
X y 

According to the transformation formulae for force components F_J F_r = y, 

whence for the transformation of the longitudinal arm we have the elongation 
formula (14). At the same time the application of the contraction formula leads to 
the violation of equality (29) and appearance of one of the most known «paradox» 
of relativity theory. The right solution of this paradox was first given by Arzelies 
only in 1965 [36 ]. 

Other difficulties (and their removal) are one or another analogs to the cases 
considered above. Therefore we restrict ourselves only to their enumeration. 

Let us begin with one more example of relativistic formulation of statics -
the treatment of the classical Trouton-Noble experiment with a changed capacitor 
[37] (it is similar to the last example). The other classic.al Michelson-Morley 
experiment can be also explained without using the contraction hypothesis [5]. 

Within the framework of the covariant formulation the problems rigid body 
dynamics are solved successively [38]; in particular, we point to little known 
«paradox» of Einstein [39]. By analogy with the «problem 4/3» the difficulty with 
the momentum and energy of liquid is removed [40]. 

2.3. Direct Experimental Verifications 
of the Covariant Formulation · 

The relativistic Doppler effect. As far as we know, at present the wave length 
of an orange line of crypton-86 is in fact assumed to be the standard of length. 
On the basis of (14) we obviously have the transformation formula of wave length 

'A= 'A*y. (30) 

According to the demand of the principle of relativity, the number of wave lengths 
packing up in the moving standard meter remains actuall unchangeable. As it 
follows from (30), the wave length of light radiated by moving atoms must 
increase as follows 

o'A = 'A - 'A* ~ ! A.2'}.., * - 2 1--' • (31) 

Just this phenomenon is observed in experiments on the investigation of the 
relativistic Doppler effect; the first of them was realized by ,Ives and Stilwell [41 ]. 

We note that the change of wave length (when moving) to the red end of the 
spectrum (red shift) is the well-known fact as well as formula (30) (see, e.g., 
[42]). However, in this case it is lost sight of that we have in essence another law 
(different from the generally accepted one) of transformation of the length of a 
moving scale. Indeed in formula (30) 'A describes, for example, the distance be­
tween the neighbouring combs of a wave which «are taken» at different instants 
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whereas according to the generally accepted (Einstein's) definition, the distance 
between simultaneous positions of its ends is called the length 'of a moving scale. 
When the contraction formula is valid, the effect should have another sign, i.e. the 
shift of the lines should occur to the violent end of the spectrum. 

Cherenkov's radiation. The Lienard-Wiechert electrical potential in medium 
with refractive index n is* 

<I>= .e 
n2R(l -Pcosl'}) · 

(32) 

As it follows from the last expression, the potential becomes infinite at 

cos l'} C = (Pn)-1 (33) 

that corresponds to the appearance of Cherenkov's radiation. Virtual quanta of the 
electromagnetic field are conyerted to real photons of visible light at the expense 
of a sharp increase of the field energy density. It should be stressed that for this 
the Cherenkov angle is given just by the retarded (light) distance. On the other 
hand, the usual transition (in accordance with Einstein's approach) to instant 
distances (see, e.g., [43a]) 

R(l - Pn cos l'}) ➔ R (I - p2n2sin2e)112 
s 

(34) 

leads us to Heaviside's potential [ 44] 

e 
<I> = / . (35) 

H n2R (1 - f32;i2sin20) 1 2 
s 

As known, the generally accepted representation of the field of a moving charge 
in the form of spheroid is the consequence of this very expression. But this 
transition (34) leads to the change of the radiation angle. Indeed, as one can see, 
Heaviside's potential turns into infinity at the angle 

0 = arccosec Pn (0 > 1t/2). (36) 

But since in experiment (for example, in Cherenkov counters) l'} c is measured, 

this means that just the covariant formulation is adequate to nature. On the other 
hand, the transition to the observation moment can be considered as, in its way, 
the violation of the relativity principle. Indeed, in so doing the observation 
moment is distinguishable with respect to the radiation one. In other words, as if 
the equality between the radiating charge and the registering device is violated. 

In the conclusion of this part we present comparative Table I of some 
distinctive results of the former (Einstein's) approach and the modern formulation. 

*Below we omit index «ret» and, on the contrary, introduce index «s» for the instant or synchronous 
distances. · 
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Table 1 

EINSTEIN'S APPROACH MODERN FORMULATION 

Transformation of longitudinal sizes 
• -I l= l Y l=l*y 

Energy of a physical object 

E=mc2 E=myc2 

Torque of a system in equilibrium 

N:=0 (Fx•,F;*o), N,*O N =N• =0 
z z 

Momentum and energy of electromagnetic field 

LIR · • A.2 • R • • 
Gx==

3 
E y, E=(l+p /3)E y Gx=t'..E y, E=E y 

C C 

Electrical potential 

e 
<I> -_,, __ 1!_P - 132sin2e>'12 

e 
<l>Lw= R(I - (3 cost'.}) 

Charge of a current-carrying conductor 

q * q* (charge non-invariance) 

Transformation of electric dipole moment 

. 
q=q 

• -1 * ' • • 
d

11 
=dlly , d.1 =d.1 dll =du, d.1 =d.1"f 

Transformation of heat, temperature and pressure 

Q= Q*y-1, T= T*y-1 Q= Q*y, T= T*y 

• • A.2 • .2 • 
p=p_____ _ Pu =(p +p E )r, P.1 =p 

Relativistic Doppler effect 

A.=A.•y (elongation formula) 

cosec 0= (3n 

E➔ E, p ➔ -p, M ➔ -M 

<I> ➔ <I>, A ➔ -A 

Cherenkov angle 

Time inversion 

sect'.}= (3n 

E ➔ -E, p ➔ p, M ➔ M 

<I> ➔ -4>, A ➔ A 

2.4. New Results of Theory 

2.4.1. Kinematics and Mechanics 

The Lorentz invariance of interval means its independence of velocity, i.e. 
constancy [14]. In view of importance of this statement, we formulate it as a 
theorem and prove it [45]. 

The theorem. If an interval does not depend on motion velocity, it is Lorentz­
invariant. 
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For clearness w~ suppose that s = I *.fi:13c), where I* is the constant, 

f = (I - Ii)'', and Pc - the velocity. We imply a moving rod as a material repre-
sentation of the interval. · 

Necessity. Let a= 0. Then in two reference systems, where the rod moves 
with the velocities Pc and P

1
c, we have 

s=l*(I -P2
)
0 =!* and s

1 
=l*{I-P~)0 =/*, 

i.e., the demand of interval invariance s = s
1 

is really fulfilled. 

Sufficientness. It is obvious that the demand of the Lorentz invariance is 
observed if the equality 

1*0-P2)"=l*cI-P~)" 

is valid. But this is possible if a= 0 only (since P -:I= P
1
). 

So, the theorem is proved. The inverse theorem can be proved as easily as the 
theorem. · 

As in relativity theory a 4-interval takes the place of the previous «pre­
relativistic» invariant - distance (length), one should say more correctly about 
the interval of a rod instead of its length. In the rest system of the rod, i.e., in 
essence in the non-relativistic limit, their values coincide that ensures the 
succession of corresponding theories and necessary uniqueness of the interval. 
Taking into account of the interval Lorentz invariance leads only to the «radar 
definition» of the moving rod len8th. 

On the other hand, the space-like interval is defined by the length of a resting 
rod. In a moving system its «space part» (the rod length in motion) because of the 
negative sign (pseudo-Euclideanness) is always greater than the interval itself. 
And this means again that bodies elongate (but not contract) when moving. 

Visible sizes of a moving rod. Just when considering this problem [46,47], 
doubt on the unconditionedness of the previous theory statement of the 
contraction of moving bodies was first cast. As it was founded, the «mean visible 
size» is just defined by the radar length. On the other hand, this problem exceeds 
the limits of simple visual observations and turns out in essence to be decisive 
when the interaction of moving charged particles in an ondulator, the passage of 
charged clot through a resonator and so on are considered [ 48]. 

The addition rule of 4-velocities d and v; is defined by formulae [ 49] 

v°c=iv., 
I 

U a= ua + va uo + u° 
vo+c 

(37a,b) 

here U i = dX i / d't is the relative velocity, i.e., the 4-velocity of one particle in the 
rest system of another one, a= 1,2,3. 
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Using the relative 4-velocity, in particular its space-like component, i.e., 
I U I , one can considerably simplify some well-known relations. Among them is 
the expression for the number of collisions dv occurring in the volume element dV 
over the time dt (see, e.g., [43b]) 

dv = CJVrel.n 1nzdVdt. (38) 

Here cr is the interaction cross-section, n
1 

and n
2 

are the densities of particle 

beams. Its relativistic generalization looks as 

dv = CJ I U I n;n;dVdt, (39) 

where n; and n; are the beam densities in their rest systems. This formula is more 

obvious than the conventional expression [43b] with the utilization of the Moeller 
flux. 

Non-covariance of the law of energy inertia (LEI) or the law of mass and 
energy equivalence [50). As known, LEI is considered as one of the main results 
of the special theory of relativity. It is mathematically expressed by Einstein's 
famous formula 

E=mc2
. (40) 

For the first time the statement that an inert mass should be ascribed to any energy 
E was voiced by Einstein [31] as long ago as the «pre-covariant» period of 
relativity theory, i.e., before its four-dimensional formulation (in the late tenth). 
However, in his article of 1912 we read: «One of the main results of the theory 
of relativity is the statement that any energy E has the proportional to it inertia 

(E/c
2
)» [4). Further on, Einstein returns repeatedly to the proof of formula (40). 

Although LEI is considered as a consequence of relativity theory it 
contradicts its very essence. Mass and energy equivalence takes place only in the 
rest system when a material body after energy loss (say, in the form of radiation) 
remains at rest. In all other reference systems such equivalence does not take place 
since the mass is a Lorentzian scalar (invariant) and energy is the component of a 
4-vector. What is more, if energy answers any mass, then mass answers not any 
energy. A detailed discussion of this problem can be found in Okun's article [51). 

Thus, Einstein's formula (40) is valid only in the rest system. In general, the 
Lorentz-covariant relation between mass and energy is given by Minkowski's 
formula [16] 

E=myc2 

that is the time component of the known equation (see, e.g., [43c]) 

/=mui, 

where/ is the 4-vector of energy-momentum. 
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(41 ') 

I 

' I 

l 
I 
I 

I 
i 

)' 

l 

2.4.2. Electrodynamics 

The fonn of the electric field of a moving charge. Based on the Lienard -
Wiechert potential, equipotential curves for relativistic charge are given by the 
equation of an ellipse [52) 

R = a(l - ~ cos ~)-1. (42) 

Here a= e / <I> is the focal parameter anct' ~ the eccentricity of the ellipse that 
evidently streched in the motion direction. As it follows from (42), the field of the 
charge is drawn out forward as its velocity increases and acts at ever greater 
distances. For longitudinal and transverse sizes we have 

RII - 2"(a, R .L -2ya. (43) 

One can say that there is a kind of relativistic Jong-range effect [53). But the 
main thing is that this field behaviour differs significantly from its habitual repre­
sentation as a spheroid described by the equation 

Rs= a(l - ~2sin2erl/2, (44) 

which follows from formula (35) at n = I. 
Macroscopic sizes of field of super-relativistic changes [54 ]. The behaviour of 

longitudinal and transversal sizes of the electromagnetic field of proton and 
electron with increasing their velocity is presented in Table 2. The atomic size 
a= l A that answers the production of the simplest bound system, for example, of 
the indicated particles, is taken as an initial one. As is seen, at a proton enc.-gy of 
E = 10 TeV the longitudinal size of the field is 2 cm(the transverse one is 2 µm); p 

for an electron with an energy of Ee= 50 GeV, R
11 

= 2m, R .L = 2 µm. To the point, 

the known relativistic growth of ionization losses is just conditioned bl the 
considered effect. For cosmic particles of relatively low energy of E =10 TeV 

p 
the longitudinal size reaches a very large value of 200 m (R .L = 0.2 mm). Thus, 

one can say that elementary particles acquire characteristics of macroscopic 
objects. Therefore the division into micro- and macroobjects becomes in a sense 
conditional (relative). What is more, at high energies the production of atoms of 
macroscopic sizes becomes possible. 

Attention should be given to the fact that at an energy of 1016 eV the field of 
a cosmic particle (proton) only entering the atmosphere already reaches the sur-

face of the Earth. At E = 10
18 eV the longitudinal size is 2-105 km, i.e., it is much 

larger than the Earth diameter. A longitudinal field size of 2· 109 km is signi­
ficantly larger than the distance from the Earth to the Sun for cosmic particles of 
maximum energy of 1020 eV. - -
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EP, TeV 0 
. 

R
11

,mm 10-7 

R1_, µm 10-4 

y 

'9+ 

0.07 I 

10-3 0.2 

0.015 0.2 

--- ... -~ ... _ 
~-

____ .,, __ _ 

Table 2 

10 

20 

2 

103 50 5 E,. GeV 

2-105 2-103 20 R11 , mm 

200 20 2 R1_, µm 

The electric field oscillation of 
atoms [55] is a direct consequence of 
the different field behaviour of moving 
and resting changes. Let us consider 
the simplest Bohr atom formed by a re-

: x sting positive charge (nucleus) and a 
moving negative one (electron). The 
equipotential curve answering the gi­
ven position of electron is presented in 

Fig. the figure*. As seen, the atom looks 
like a neutral one only at an angle of 

cp = 7t /2 to the motion direction of electron. In the «forward» direction the atom 
seems negatively charged and «backward» - positive. Or otherwise, as the 
electron rotation leads to the change of directions of its motion, then at the given 
observation point the atom potential will oscillate according to the formula 

<I> ~ ~ . ~ sin cp 
- R 1 - p sin cp · (45) 

Here cp is the polar angle of electron in the plarie of its rotation, where the effect 
is maximum. Although the amplitudes of different signs differ, the mean (per 
period) value of the potential is equal to zero owing to the influence of the 
Doppler effect. 

As elementary particles are also composite systems according to the modem 
representations, an analogous effect takes place for them. 

Relation of the formation length with the field sizes of a moving charge 
[54].Remind that the concept of formation length (way) was introduced by I.Frank 
[56] when considering the radiation of a uniformly moving oscillator in a 
refractive medium. He defined it as the interval of the path which waves are 
radiated by a source in phase. The corresponding formula (for refractive index 
n = 1) is of the form 

1-~ 
f- 1 - p cos~' (46) 

where ')., is the wave length of radiation; ~ the angle between the directions of 
wave emission and charge motion. 

*In order to stress the effect, we take 13 = 0.75 although for Bohr atom 13 = 10-2. 
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As it follows from a simple comparison of equations (46) and (42) all the 
peculiarities of the formation length behaviour simply reflect the field behaviour 
of a moving charge. For this the radiation itself can be interpreted as «knocking 
out» quanta of the charge «accompaniment field». 

Based on the Lienard - Wiechert vector potential, by analogy with (42) we 
have 

e~ 
RA = A(l - cos ~) 

(47) 

Now we would like to pay attention to the following. The radiation of a 
moving charge is in essence the conservation of virtual quanta to real ones. Based 
on the electromagnetic coupling constant, it follows that the ratio of the 

interaction energy of two charges e2 /')., at distance ')., which is carried by a virtual 
photon to the energy of a born real quantum with wave length')., is a./21t. Indeed, 

~=e2 I he 
21t ')., ').,. (48) 

Substituting the corresponding relation for momentum (eA =a.he/"-) in (47), we 
obtain 

R = e2~ 
f (a.he /"-)(1 - p cost}) 

~')., 
1 - p cost}. 

(49) 

Thus, expressions (49) and (46) derived in absolutely different ways are com­
pletely coincident. It should be stressed that the behaviour of both the field sizes 
and the formation length are essentially defined by the «retardation factor» 
K = 1 - cos t}. This factor defines on the whole the intensity of «velocity 
radiation» (as bremsstrahlung, though). Therefore the larger the formation length, 
the more the probability of quantum emission just in this direction. 

The radiation conditioned by the «velocity part» of the e_lectromagnetic field 
of a moving charge. Its varieties are the following: Cherenkov's radiation, 
transition radiation and radiation in gas below Cherenkov threshold. At large 
velocities for the radiation intensity in a solid angle element we have [57] 

W ~ e2~c sint}(l-n+n
2

)
112 

v - 41tn4R2 r4c1 - Pn cos t}>6 , 
n 

(50) 

where y = (1 - P2n2f 1 
/

2
. As seen, all radiation is concentrated in a very narrow n 

cone around the direction of a particle,motion. In the limit p ➔ I this radiation 
can serve as a direct target designation of a particle. Certainly, this fact is the 
direct consequence that the relativistic charge field is stretched forward and not 
squeezed in the motion direction. This property of the field forward direction of a 
relativistic charge explains, in particular, the empirical rule for finding the 
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direction of the optical transition radiation emitted «backward» when a particle is 
flying into medium. According to it, the radiation is «going» in the particle 
velocity direction and is reflected from the surface like from the mirror. 

rt should be noted that the discussed radiation is considerably weaker than the 
radiation of the field «acceleration part». 

The «Cherenkov bremsstrahlung» [58,59]. On the other hand, the 
bremsstrahlung intensity to a solid angle element, when the velocity and 
acceleration are parallel, is described by the formula 

2 2 . 2.~ 
W =_e_ w sm u 

h 3 6" 4nnc (I - Pn cos i}) 
(51) 

When the condition (33) is fulfilled, this term also increases sharply. One can say 
that we have its way of Cherenkov bremsstrahlung (CB). As far as one can judge, 
this phenomenon has been observed in the experiment [58] recently. In the very 
general case we have another («mixed») term side by side with (50) and (51 ). 

At the same time the energy loss for Cherenkov's radiation by a uniformly 
moving charge is evidently accompanied by its braking that leads to the 
appearance of the field «acceleration part» and consequently to the «induced» CB. 

The power-force tensor [5] is an analog of the energy-momentum tensor and 
it also serves to describe the continuous distribution of matter. For example, the 
electromagnetic power-force tensor takes the form. 

P ik I -iFk I =-;;1 1 u, 

where JJk is the electromagnetic field tensor. 

2.4.3. Thermodynamics 

(52) 

Ott's formulation of thermodynamics [60] was proposed in the beginning of 
the 60s and is different from the traditional one tracing back to Plank [61] and 
Einstein [3]. [n the framework of the traditional approach, for example, the 
transformation formula for temperature is 

* -1 T=T Y (53) 

whereas Ott offered 

T=T*y (54) 

following from the corresponding transformation formula for heat amount LlQ. 
The equation of the state of ideal gas connects temperature and space volume. 

For this the demand of the Lorentz covariance of the equation with the use of the 
elongation formula for space volume simply leads just to Ott's formula (54) [40]. 
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Let us also present simple and, in our opinion, convincing enough arguments 
in favour of Ott's formulation of relativistic thermodynamics. For this let us 
consider a material body that loses some heat energy due to radiation. In so doing, 
we are interested in the case when in the radiation process the state of body 
motion does not change. Then it is evident that the transformation formula for 
LlQ (in this case it is an electromagnetic energy) should with necessity give the 
known relativistic equation [62] 

LlQ =LlQ*y. (55) 

Hence based on the second law of thermodynamics and the invariance of entropy, 
Ott's formula (54) simply follows. 

2.4.4. The Lorentz-Covariant Theory of Gravitation [63,64] 

Remind that relativistic generalization of the Poisson equation takes the form 

□ gi = 4nGJ ;_ (56) 

Here the 4-current mass density figures on the right; whence it follows that the 
relativistic gravitational potential should be also described by a 4-vector. The 

expression for i can be obtained by means of the Lorentz transformation of 
Newton's potential and is of the form [65] 

i GMUi 
g =- -­

UiR .. 
I 

(57) 

Here M is the mass of a moving particle, ui its 4-velocity, and R the retarded 
distance. 

For the relativistic Newton force of gravity we have. 
· ik 

F'=-mG uk, (58) 

where G ik is the gravitational field tensor, u i the 4-velocity of a trial particle mass m. 

In accordance with that G ik is an antisymmetrical or symmetrical tensor for 
the gravitational field (in the absence of acceleration) we obtain 

2 
G ik = -G M_c (UiRk =f- ifR i). 

(U'R.)3 
I 

(59) 

As a result, based on (59) for the relativistic Newton force we have 

mMr2y 
F = -G 2 3 [n(l + J3B) =f- Il(l + J3n)], (60) 

R (1 - Bn) 

where n = R/ R, J3 = ua / u0
, y= (1 - p2r 112

, B = Va/ v°, T = (I -B2r112. 
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Certainly, we cannot avoid the question concerning the explanation of four 
known gravitational effects even despite sufficient persuasiveness of the above 
reasons. In this connection we note the following beforehand. 

Three of the mentioned effects are in fact connected with changing 
(decreasing) the light velocity in the gravitational field. And one can say that we 
have here a certain analogy with the decrease of the light velocity in medium (due 
to electromagnetic interaction) according to the formula c = c / n, where n is the 

n 

refractive index. In case of a (weak) gravitational field, as one would think, we 

have n = 1 + 2<1> / c2. The main difficulty is apparently to explain the displacement 
of Mercury's perihelion. 

However, one must mark the following here. The use of eq. (60) instead of 
Newton's non-relativistic force when calculating the advance of Mercury's 
perihelion must lead to different from the presently accepted one. «Therefore the 
«residual» precession (if it exists at all) may be different from the presently 
accepted 43 seconds» [66]. 

2.4.5. High-Ehergy Physics 

The Yukawa relativistic potential. Taking into account all peculiarities of the 
transition from Coulomb's potential to the Lienard - Wiechert one [67], we have 
(see, e.g., [53]) 

exp (-µR iu.) 
<I> =-g , I 

1t 1t R 1R . . 
(61) 

I 

as a result of the Lorentz transformation of Yukawa' s potential. Here µ is the pion 

mass, u i the 4-velocity of nucleon, 1f= c = 1. From (61) it follows that the pion 
field takes 'the form of a revolution ellipsoid streched in the motion direction. In 

particular, its distinctive sizes are R
11 

- 2W,-I and R l. - µ-1 

According to contemporary representations, hadrons consist of quarks which 
interact between themselves by gluon exchange, and so just quarks define in fact 
the behaviour of the «boundary region» of hadrons*. For the spinor field the 
Yukawa relativistic potential takes the form 

~exp(-µ uiR.) 
<I> =-g . q I 

q q ...fi' u 1R. 

where µ is the mass of constituent quark. q 

I 

(62) 

*The pions, as one considers, are produced as a result of hadronization only at the very «boundary» 
of hadrons. As, on the other hand, for constituent quarks \ z 0.7 F (cf. with \ z 1.4 F), then exactly 

quarks - these are to some extent «hidden paraineters» - might mainly define the short-range action of 
nuclear forces. 
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According to the modern electroweek theory, weak interaction is conditioned 

by the exchange of w±_ and z0-bosons just as electromagnetic one is due to 
photon exchange. For this the weakness and a small radius of weak interaction is 
explained by that W- and Z-bosons are very heavy particles (m1V' 1112 - 80 GeV). 

The time component of the Yukawa relativistic (vector) potential [53] of weak 
interaction is 

o . ( ;R) u exp -111 11 . 
<I> _ g II' I 

w-- II' ;R 
ll i 

(63) 

,., 
Here a «weak charge>> is defined by equality gw = G ~~. where G F is the Fermi 

constant and M the proton mass. 
The expla11atio11 of the i11teractio11 cross-section growth at high energies [68] 

I 

leans upon the indicated n;Iativistic long-range effect of nuclear field. In 
particular, it leads to the effective growth of transverse sizes of hadrons defined 
in fact by the field equipotentials. One can say that hadrons «swell». This growth 
occurs only at the ex

0

pense of nuclear field quanta having spin. At the same time 
the transverse sizes of the pion field, as it follows from (61 ), remain invariable 
with the increase of velocity. Therefore changing the transverse sizes of hadrons 
must be defined by the behaviour of the quark i.e., spinor field. The calculations 
using the Yukawa relativistic quark potential (63) indicate the growth of 

R l. - (In y)°·8. It must lead to the corresponding increase of cross-sections 

proportionally (In y}1-6
. 

At present time this result is, one can say, the only physical ground of the 
given experimental fact. It should be noted that we have here a definite analogy 
with the logarithmic growth of ionization losses at relativistic velocities (due to 
far collisions). 

Relativistic rapprochement of i11teractions [69]. A significant growth of 
interaction potentials at the given distance from a «charge» (in the forward 
hemisphere relative to the motion direction) is the other side of the relativistic 
long-range effect. One can say that we have here the relativistic intensification of 
interactions. For this' the difference in the spin structure of field quanta and mass 
influence lead to their different growth. And a slowed-up growth of the strong 
interaction in comparison with the electromagnetic and weak ones must lead to 
their rapprochment. 

Based on (6), (63) and (62) for the ratios of the corresponding interaction 
energies, we obtain (in the «forward» direction, where the effect is maximum) 

a;"" 10-3 ..Jy exp (µR
11 

/2y), 

a;"" 10-6 Yy exp (-300µR
11 

/y), 
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(64) 

(65) 



where for simplicity g "'g , µ "'600 µ and f3 '.:::'. I. The calculated results are q It w 

listed in tables 3 and 4. Analogous ratios ae and aw, where the strong interaction 
It It 

is described by the piqn field (61 ), are presented there. As it seems, the 
rapprochement of electromagnetic and strong interactions must occur at 

y '.:::'. 2-10
6 

that answers a proton energy of about 2-103 TeV. At the same time, if 
the behaviour of the strong interaction were defined by the pion field, than it 
would occur at E "'2 Gev and be discovered already in experiment. As to the es 

rapprochement of the weak and strong interactions, it must occur at an energy of 

£ ... 1 == 10
12 

GeV. It is much larger than En but smaller than the energy in the 

model of «grand unification» that is estimated as l0 14 + 1016 GeV. 

Table 3 
-------------

2 )()1 104 10' 2-lo'' 

a 
, 

4 ,r,-1 1 )() 2 7 10 2 
0.2 q 

a' Jff ·1 

" 

Table 4 

y I 103 
104 I05 106 

108 I Ow ro•2 
a w 

0 3-I0-5 10-4 3· I0-4 ro-3 ro-2 0.1 q 

aw 0 ro-3 ro-2 0.1 " 

It is interesting to mark that for y '.:::'. I 06 at a distance - I A the weak 
interaction reaches the quantity of the «static» electromagnetic one. As a result, 
the production of «weak» hydrogen atom (with neutron instead of proton) 
becomes in principle possible. 

The invariant variable bik [70] used in relativistic nuclear physics is expressed 

through the relative 4-velocity Ui. Supposing i = 1 and k = 2, we have 

h 12 =2cuD-1), lul =h
12

0 +b
12

/4). (66a,b) 

The antiparticles existence is a peculiar result [71] of the Minkowski formula 
( 41) that we rewrite in the form 

0 o dx 2 dt E=p c=mc-=mc -. 
dt dt (41") 

As it follows from ( 41 "), we have the motion of objects with negative energy 

l c = - IE I backward in time when reflecting the time t = - I ti . This is 
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completely equivalent to motion in the negative direction along the x-axis with 

momentum p
1 = - Ip I at mirror reflection. But the first picture is in absolute 

X 

disagreement with our every-day macroscopic experience based on the existence 
of «time arrow». Since we pertain to the macroscopic world, we are not even 
capable of «seeing» a particle moving backward in time. We shall perceive this 
phenomenon an as «reinterpreted» one. Figuratively, this is like when the images 
of objects seen by the eye are turned upside-down (reinterpreted). So, according 
to the reinterpretation procedure, the initial and final states exchange what leads 
to chanding the sign of particle energy, momentum, charge and helicity. For 
example, we «see» positively charged positron instead of an electron, etc. 

It should be emphasized that the well-known difficulties inherent in the Dirac 
vacuum (infinite charge, infinite negative energy and so on) are as a result 
remowed. On the other hand, such questions as, say, the mass equality of particles 
and antiparticles, their life-times and so on (special proofs are need in the 
generally accepted approach) do not in general arise here. 

As it follows from the above-said, the T-operation in essence leads us to 
antiparticles. Therefore, as it seems, T-invariance vi_olation must result in the 
impossibility of the «introduction» of antiparticles itself, i.e., it should be 
accompanied by the violation of the law of lepton charge conservation (for 
example, in K

1 
-decays). 
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CONCLUSION 

The interpretation of relativity theory generally adopted at the present time 
leans upon Einstein's definition of the moving rod length and operates in fact with 
instant (simultaneous) distances. However, these quantities are not the 4-vector 
components, i.e., they do not satisfy the demand of Lorentz covariance. 

The modern completely covariant formulation, on the contrary, deals with the 
«prepared by nature» light or retarded (i.e., nonsimultaneous) distances and the 
covariant or radar length introduced on their basis. In its framework the former 
difficulties of the theory are solved. Among them are the Lewis - Tolman 
«paradox» of a level, the «problem 4/3», the non-invariance of charge of a 
current-carrying conductor and so on. The relativistic Doppler effect, Cherenkov 
radiation, etc., are direct experimental evidence in favour of this formulation. 

Among the new results of theory we mark the following: 
- the proofs of non-covariance of the contracted length, and the law of 

energy inertia; 
- the effect of field relativistic long-range, the phenomenon of oscillation of 

an atom electric field, and the relation of the formation length with the field sizes 
of a moving charge; · 
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! : 

- the united description of Cherenkov's radiation, transition radiation and 
radiation below the Cherenkov threshould, and the «Cherenkov bremsstrahlung»; 

- the Lorentz-covariant theory of gravity; 
- the Yukawa relativistic potential, the explanation of interaction cross-

sections growth at high energies, and the phenomenon of interaction 
rapprochement at super-high energies, etc. 
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