


1. Introduction

The large-angle Bhabha process is well suited for the determination of the lurmnOSJty Lat
e*e~ colliders of the intermediate energy range /s = 26 ~ 1GeV [1, 2] As far as0. 1% accuracy '
is needed in the determmatlon of L the correspondlng requ1rement
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on the Bhabha cross section theoretical description appears. “Ag is. the unknown uncertainty
in the cross section due to hlgher order radiative corrections. A great attention was paid
to this process ‘during the last decades [3]. The Born cross section’ w1th weak mteractlons
taken into account as well as the radiative correctxons to it, 1nclud1ng the ‘emission of a slngle
virtual photon; soft and hard teal one, where studied in detail [4].’ ‘Both contrlbutlons the one
reinforced by "the large logarithmic multiplier” L = In{s/m?) (where 5 = (s + - )2 = 4e?

is thetotal center—of-mass (CM) energy square, m is the electron mass), and the one without
L are to be kept in frames (1): aL/w;, /. As for the corrections in the second order of the
perturbation theory, they are necessary in the leadmg and next-to-leading approx1matlons
and take the followmg orders respectlvely : :

( )2L2 ( )2 - (2)
The total two~loop (~ (a/7r) ) ‘correction could be constructed from., 1) the two~loop cor--
rections arising from the emission of two virtual photons; 2)-the one-loop: corrections to a
single real (soft and hard) photon emission; 3) the ones arising from the emission of two real
- photons; 4) the virtual and real ete” pair production. As for the corrections in third order

of the perturbation theory, only the leading ones proportional to (aL/x)® are to be taken
into account. Their calculatron can be performed by means of the electron structure functions
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method [4]. RIS
In this paper we consider the emission of two real‘hard photonS' : .,;; s
e (pe) +e” (p_) — eFlg) Fe “(g- )+7(k1) +7(kz) IR ¢
The relevant contrlbutlon to the "experimental” cross sectlon has the followmg form
Uexp—/d09+9—1 o , ‘ e ’ - (4)

where G)+ and G)_. are the experlmental restrictions prov1d1ng the 51multaneous detection of
both scattered electron and positron. At first that means that' their enérgy fractions should
be larger then a certain (small) quantity 5th/ £, &4y 15 the energy threshold of the detectors. )
The second condition restricts their angles in respect to'the beam axes, they should be larger:
then a certain ﬁmte value 1o (9o~ 35° in the experlmenta.l condltlons accepted in [1])

@

where 64 are the polar angles of the’ scattered leptons in respect to the bea.m axes (p ) We;k
accept the condition on the energy threshold of the charged particles reglstratlon
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Bolth‘ photons are assumed to be hard, their minimal energy
Wmin = A, Akl o Lotitn o (6)
could be considered as.the threshold of the photon registration. o . —
. The main (~ (al/x)?) contribution to the total cross section (5) arises from the collinear

region:’ when both emitted phqtogs move within narrow, cones alongthe charged particle
momenta (they may go along the same particle). So we will distinguish 16 kinematical régions:

ak; and ak; < 0y,  ak, and bk, < 0y, (7
m ‘ : )
; ?<<00 <<1: a#_by"‘ a,b=P-1P+1‘I~7‘I+-
The suixr?r}l{ed over spin ‘st;(x.tévs mqtfix elgmgﬂt module squéré in the fegions ( 7) have the form of
- the Born ones multiplied by the so called collinear factors. The contribution to the cross section

,‘?f‘lé,é‘Ch "_égi?n has‘wa’,l’sro the form of 2 -2 Bhabhé cross sections in the Born approximation
multiplied by factors of the form - o ) :
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do® = dovi[ai(z;,y;) In*(—2) + bilz;,95) In(—)]; - (8)

‘where z; = wife, y1 = ¢ e, yp = q3 /¢ are the energy fractions of the ‘photons and-of the
scattered electron and positron. The dependence on the auxiliary parameter 6, will be canceled
- in’ the sum of the contributions of the collinear and semi-collinear- regions. The last region
’co‘rresponds to the kinematics, when only one of the photons is emitted inside the narrow cone
01.< 9y along one of the charged particle momenta and. the secorid photon'is emitted outside

_-of any such a cone along charged particles (63> 0p): = g
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where dog; has the known form of the single hard bremsstrahlung cross section in the Born

approximation [5].

‘VV.e sh.ow below explicitly that the result of the integration over the siﬁgle hard phoion
| emission in eq. (9) in the kinematical region 03 > 6, (0% is the emission angle of the second
?ard photon in respect to the direction of one of the four charged particles) has the following
orm . . P e . . o 8 P . B -

[ 46 (k2) = 2@tz ek + a5 (10)

The collinear factors in the double bremsstrahlung process were firstly considered in papers
of the CAL.KUL collaboration. [6]. Unfortunately they have rather complicate form, which is
less convenient for further analytical integration in comparison with the expressions given

below, Calculation of the collinear factors may be considered as a generalization of the quasi-:

real electron method [7] for the case of a multiple bremsstrahlung. Another generalization is
need.ed for the calculations of the cross section of the process ete~ — ete~ete-.. We will’
consider it in a separate paper.

- It is interesting to note that the collinear factors for the kinematical region of the two hard

Photons emission along the projectile and the scattered electron are found to be the same as

for'the eleétrqn—Piotoh s'catt_'ering process considered by one of us (N.P.M.) in paper [8]. .
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There are 40 tree level Feynman diagrams which describe the double bremsstrahlung pro-

cess in ete™ collisions. - The expression for the differential cross section in terms of helicity

amplitudes was computed about ten years ago[6,9] It has a very complicated form. We'kridite

that the contribution from the kinematical region in which the angles (in.the CM system)
between any two final particles are large compared with m/e has the magnitude of the order

o’rim? L R -
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(ro is the classical electron radius). So, the corresponding events will have poor statistics at the
colliders with the luminosity £ ~ 10%' — 103?cm~2s~. More probable are the cases of double
bremsstrahlug imitating the processes ete™.— ete™ or eter — ete~7. That correspondsito
the emission of one or two photons along charged particles momenta. .

2 Kinematics in the collinear region

‘It is’ convenient. to.introduce. in the collinear region new variables and transform the phase

volume of " the. final state in-the:following way (here and: further we.will work in the CM,
system): :

Po g dkd%y e e
/dF = /—‘q‘i‘—l—z‘&‘(m}’— +mapy — Mg —daqy)

16q2q$_wlw2(27r)8
a2 1 1 '\2ﬂ'd¢ zp .m YLl '
mir - .
‘ AT AR AR Y E LAt
Podq
Jori= [ st or- e =N
. ) - S ) c
Cap=( 1'26)2, d=kiikay, - z;= i;"[_ Z0>1, . A;—t—h
et m P =K , e ; S

where 0; (1 =.1,2) is threrpolarv angle of the i-photon emission in respect to the momentum
of the charged particle which emitted the:photon; 74, A: depend on the specific emission -
kinematics, they are given in table 1. = .

Table 1. n; and ) for the different collinear kinematics. '

P-P- | 9-9~ | P+P+ | 949+ | P-P+ | 9-9+ | P-9- | P+9+ | P-9+ | P+9-

T y |1 111 1—zi| 1 |l=zy|""1 1=z 1

72 171 1 y 1 l—zy} 11 1 1<zy |1 [1=2z4

B 1 1 EZ z

M| 10 3 1 } 1, e t+21 1. A A _ 1+3
A2 l,. 1 1 z 1 i—m 1 | 1+%2 11145 1

The columns of the table correspond to a certain choice of the kinematics in the following
way: p_p_.means the emission of both photons along the projectile electron, p,q_ means
that the first of the photons goes along the projectile positron-and the second ~— along the
scattered electron and so on. The contributions from 6 remaining kinematical regions (when
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-the photons in the last 6 columns are mterchanged) could be found by the simple substitution
T & T2 We will use the momentum conservatlon law ‘

Mp-+ N2p+-= Mg+ /\z¢I+ ’ b (13)
and the following relations comlng from it: o R : :
1= hayn + daye, ', My sinb- = Aoz sin s, (14)
M —1n2 = Ay cosO_ + /\zyQ cosfy, 0.=47Pp_,

. .111.2‘
9+—-Q+P_ y”:?

One can ﬁnd from eq. (13) (taking 7;, A, ¢ = cos@.. as the known quantltles) that

. " 2mn,
sinfy = sin o2 : (15)
* ¢+ i+ (n —nd)c’
2 c e gk 4+ (R = n)e
My = hnz . o /\zyzzfll 73 + (73 1)¢

m+n2+ (2 —m)c’ m+n+@m—m)’

*Each contribution from 16 ones to the cross section of process (3) can be expressed in
terms of the corresponding Born-like cross'section multiplied by its collinear factor:

1 2 ) .
dogo = g(%) 1'11'2(Z/\)I{(flv’\)daﬁ(nﬂ\)dzldzh ‘ (16)

207 .
doo(n, ) = == Bl1,X)dl(n,),

d3 _d o ‘; . . : = .
dfi(n,A) = /%i&‘(ﬂlp- +m2p — Mg = A2gy).
c o q9-qy
_ JAmmnede :
h MMle(mz —m)+m+ 7]2]2
#yitqa K L .
~j-*—i) ;5= (b mape)t = A€’ num = sz,

5t

B =

: cooom—e) e
__,\ =g T st ita=0
(mp- = hig-) = 171+fiz+(nz—fh)c '

T{_(q,;\) = m -/dzl-/dzz-/—)c(r],/\),

the sum over (r], A) means the sum over a.ll 16 colllnear kinematical reglons and the correspon-
dent (17, /\) could be found from table 1. K;(n, A) a.re listed below:

“.“.
1

7 I v
‘ ,c(,, po)= -A(Al,Az,A 21,23), x(q- )= 2yA(Bl,Bz,B T _2),,

2
K:,(P+P+) =l‘;/'-A(CnC_2,C,Il,-‘02), K:(Q+¢I+) 23/-'4(01,02,0 T’_)”

A(Al,AzyA 11112)— _AZAI CA?A; oz AvAg - AArziTo

i 3+ yr1~+~2m2(y +r?) +,2m2(y2 +r2)
AAz.‘ClIz AA?.TZ AAgII 2

yAr A 1+y* P4yr, Sy

K(pop) =2KiKe K(p-gy) = -2k, K(psal) =—2Kuks,  (18)
K(g-9¢) = 2KsK7, . K(piq-) = =20 Ks,  K(pygy) = —2KiKs,

. q 2m? . g2 2m? L ga 2m?
K, = +—, K;= : —y K=
! Alrlr, A% 2 . CngT21'+ 022’ =3 DzIztz D2
. g 2m? n g3 2m? . o 2m?

Ky = —— —_— Ke = —— _ —, Ke =
4 Ciziny + ct’ ‘ ® B,zoty 322‘ s Blrl 32 ’
1‘7=Dg1 T n=1-z, r=1-z,,
242 2

g=14r, @=1+1, g=yi+4 ,
94 =’J§+f§{ ty ﬁyr tzn la=yr+1p
y=1- Iy —
Y1, Y2 are the cnergy fractxons ol' thc scatterod e]cctron and posnron defined in eq. (15).
Expressions’ (18) agree with the results of paper:[6] by exception a more simple form of
K(g-q4); as-foreq. (17) it has an evident advantage in comparison to the corresponding

formulae given in paper [6]. Let us note that the remaining factors K(p, ¢} could be obtained
from the ones given in eq. (18) using the relations of the following type’

K‘:(P—qv—)(IIvI%AIj B2) = k(q_p;)(rz,zl, ‘427 Bl)' . (19)

Note also that the terms of the kind
- LA N 4
_mt

do not give logarlthmlcally rcml'orced oontrlbutlons we will omit thom below. 'lho denonn-
nators of the propagators entcnng cqs. (17,.18) are:. .- : ;

Al = (p— - k,) - m ’ A= (P— _;kl - I“‘Z)z :'5”12; ‘

(20)

=(¢-+ k) —m? . B= (- +h 4+ kp)? = m2, (21)
Ci=(- P++1~')2""12 ~C—( P+ + ky +ky)? — m?,
VD (‘I++k)2—m o (¢I++"1+1~2)—1"2

For the further lntegratlon it is uscful to rewrlto tho denominators in terms of lho ph()tom
energy fractlons z1,2 and their emission angles In the case of the emission of :both photons.
along p- we would have

A o ! SIS PR
i —z(l +2) — 12(I + z2) + :r]rz(..l + ~2) + )rlrz\/_zcos &, (22)
A; :

—=-u (1 + z.)

where z; = (e0;/m)?, ¢ is the azimuthal angle between the planes contaunng the space vector,
pairs (p_, k1) and (p_ ,k—_,) In the same way one can obtain in the casc ky, L2||q- :

B S
: ﬁ ='—(1 + J121) + —"(1 +y.z—.») + -‘0112(~| + ~2) + 21,:1-2‘/,.1-2cos¢ (23).
,/B .
me = _(1 + yl“l)



Then we perform the elementary azimuthal ;angle -integration and the integration over 21,2,
within the logarithmical accuracy using the procedure suggested in paper [8]:

2z 20 2x d¢ : : )
a= le4 / le / de ga. (24)
) o o .

The list of the relevant integrals is given in Appendix A. In this way one obtains the differential
cross section in the collinear region:
_a'l d3¢q,d%q. dz)dz,

' 11 ; _
e d e o gl e (25

2
IaT
+(y2 + T:) In ';z—yl -+ Ilzz(y —_ 1‘112) - 2T195][Bp_p_5p_p_
- 1 . ) i
By.,.6 b +21+41 (@ + 1) In 5L
+Bp.5, f’f”*] + 5alp(E 2+ 4lny)ggs + (7 + ri)ln ey
+z122(y — T122) — 2r101] X [Byog_0qq_ + Bq+q+5q+q+] ‘
9192 91 92
+BP—P+ 5p—p+{(L + 21) ' -2=- 2'_] + Bq—q+ 5q—q+[(L +21
rir2 T T2 -

+2 111(7'17'2))M - 29_1 - 29_2] + [Bp_g-bp_q- + Bp+q-5p+q—]
T2 ™ T2 . "

ngs 2&
niynt ‘7'1
By gy Sy g (L 42+ 2Inge) 2T — 2 — 2By,

. o 202

. g -
X[(L +2l+21lnwy) - 2y1_;1] + [Bpigi Opsas

r1yats L8

~ We used above symbol P12 for the interchange operator (Py2f(z1,z2) = f(z2,%1) ). We used
also the notations (see also eq. (18)):

l=1n01§, 95=y2+7'?a S - ’ (26)

where 0, is the collinear para_.méter. Symbol é,,, corresponds to the specific conservation law of
the kinematical situation defined by the pair p, g (see table1): bpg = 64(Mapy + Pl — Mg —
A2q4). Besides that, we imply:that.the first photon is emitted along momentum p and the
second — along momentum ¢ (p, ¢ = p-; P+ 4= q4)- These é-functions could be accounted
in the integration as that was done in the expression for dI(5,}) (see eq. (16)).” And, finally,
we define ’

ms | Mt

\_ mi Mt ) ,= e A
Bp.q—(/\lt'{"hs'{“l) ) t=(p- - g-)" 4 (27)

3 Contribution of the semi-collinear region

We will suggest for definiteness that the photon with momentum k; moves inside a narrow
cone along the momentum direction of one of the charged particles, while the other photon
moves in any direction outside such a cone along any charged particle. This choice allows us

to omit the statistical factor 1/2!. The quasireal electron method.{7] may be used to obtain
the cross section: : | . :

da_SC

ot g dqpd%ky . ks Ko '
— = 2
32smt 1 qPqQ kS v kS {p_kzép—Rp- (28)
KP+ . Kq ) Kq : L )

5 =4 —a+ . :

Pik2 peflpy + q-kz o-fla-t Q+k26q+Rq+} e )
We omitted in eq. (28) the terms of the kind m?/(p_k2)?, because their contribution does not
contain the large logarithm L. The quantities entering eq. (28). are presented below:

s + s [ t
kipy - kip- kg kig-  kipy-kige kapo - kag-
u' u o S

+

(29)

—— + .
‘ kipy -kig-  kigy-kaps ;
V is the known accompanying radiation factor. K; are the single photon emission collinear
factors: Ty o I
W - I
2o Vitdm) o (30)

K, =K, =— =
- o Tzt o)
C y3 + (y2+22)° -
. = .
_— 22(y27+ z3) N
Quantities R; reads: : v
R,_ = R[sr,,try,urys’, t', 4], Rp+ = R[.érz,t,u,s', tro,u'ry),  (31)
T tl tl tl " ’ ) tz tz t2 .
R, = Rls/t—,u,s'—t;u'—],: = Rs, t,u~—; 8"~ t'= '}y s -
T [ TR ynl’, ‘ Has = [ Dy vy, 1’
where function R has the form [10}:
‘ . | .
R[s,t,u,s',t,u] = ’ti' [ss'(s*+ SHFH(t + ) uu!(u? + u'z)] , (32)
. - ss ‘ .
o s=(peAap ) =gt ) t=(-me)h e
e i), u=(-—a)h V=(rra )
And finally we defined o 7 ]
& = &(pratpr—ar—a-—h), ‘A (33

A
’

85y = 8*(P_'+ pira—qy — ¢ = k1)
- = 5%(P-+pg, —‘VQ+—¢1—yLy—l—2‘ =)y ot

o
i

I g
3
1

ER : y + z LR
8(p- +pr — 94— — g~ k).
L ; . o L L : j . ) ,
Performing the integration over the angular variables of the collinear photon’ we obtain'’
e VoL PqidPqidh
g =
T 16swh gl qlkD

1.5 A W RS
+—Kq, R, bqs +~_’Cq;Rq;5q-;}' o
LY Y1

AoV (Ko Ry b+ Ryb) @)



: In ‘order to see that the sum of cross sections (25) and (34)

o e R
do™ = do<oll | / do,(d"—ol) - (35)

does not depend on the auxiliary parameté’r 0o it is convenient to represent the terms entering
eq. (34) in the form: R S

, R . Lo e . .
VR, 6, = H,UP—P—JP‘P.—- + ml’p-m‘sp—p# + Hyp;q-ép—q- o (36)

1 .
+k Vp_gqybp_qy + [VRp_dp_]{a
19+ . N T

1
[V]?‘P-é-l’—]f = VRP—JP— - Z~EE.UP—Q-‘6P—'JH ) q1= P— Pty G- 44,

and so’'on in the same way for the other terms from eq. (34). Integrating [VR,_6,_|/ over the
angular variables we may integrate over the whole phase volume for k1, i.e. we will obtain’a
finite contribution in the limit 8, — 0. Using the explicit expressions for quantities

Vpiq; = (VI _"?}Qj),kxq,~0), - ) (37)

which are listed in Appendix B, we can see the cancelation of terms L - { from eq. (25) with
terms S I

k?‘]? dO, '

which appear from 16 regions in the serni—collinear kinematics: -
Physical results are the sum of the obtained differential cross-section integrated in the
experimentally accessible region ’ T e Tt

1 L A<,z <], <0, 0y <m=0g. T (39)
with the contributions of virtual and real soft photon cm‘issii)n'corrections‘. It should not
- depend on A. [T T S
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Appendix A.

We present here the list of integrals (see eqgs. (21 ~ 24)):

Az Ly 1 Tor? T2
AlA,  zyzer? [2 o+In 1y 1 v ]’

1 Lo (17 gl o TmI o L RURRERE P RE

<= —L l y = ——_—, 40

AA 111271~[2 ot Ily] AAL gz ( )
\ 1 L] 1 S Lo . :

= = Lo +2lnyy),
A1A; Tz’ A1 By "'~y1171Iz( °-+ Ivlyl)
Lo=lnz=L+1, {=1In@2. :

The remaining integrals could be obtained using simple substitutions defined eqgs. (21 - 24).

Appendix B

We put here the total list of quantities vp,q, eﬁtering eq. (37): B

442+ %) A,
Ypp- = m‘l‘Bp-p-’ Upsps = —yTTzz— P+P4
41 +73) dy(1+rY)
Vo_q- = _117%39—0-’ Vgsgs = TBq+q+7
- _ 4@+ (v 2 o 4(y3 + (y2+71)?)
i P+a+ T I,l(yz + Il') . P+¢1+" P—9+, -‘Cl(y? +$1) P—9+4
At nta)) o = M+t 2)?)
P—j— - 31(’.’/1'*'1'1) P-9-2 P+9— - Il(yl +7$1) P+9-"
4(1?_*_ 7.2) ; . 4(1_*_,.2)A .
Vgpq- = TLBq—qiz Upyp- = _zl_rl_pr'P“
41+ 41+,
Up_py = Tlrl— -9+ Ugqy = T P—P41
4(1.+r?) ‘ . 4(1 +1?)
q—P—_= TBP—Q—7 ”q+p1‘»‘ = T P4+a4)
a(14rd) a1+
q4p- = Tlvl'Bqu Vgps = #Bpw-j o
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