

ОБЪЕДИНЕННЫЙ ИНСтИТут ЯДЕРНыХ

 ИССЛЕДОВАНИЙB.M.Zupnik*

ZERO-CURVATURE REPRESENTATION
FOR HARMONIC-SUPERSPACE
EQUATIONS OF MOTION
IN $N=1, D=6$ SUPERSYMMETRIC GAUGE THEORY
Submitted to the Workshop «Supersymmetry and Quantum Symmetries», Dubna, September 23-26, 1995

[^0]
1 Introduction

The harmonic superspace $(H S)$ has been introduced in $\operatorname{Refs}[1,2]$ for a consistent description of the supergravity, supersymmetric gauge and matter theories with $N=2, D=4$ supersymmetry. The harmonic approach is a covariant version of the twistor methods and it has been intensively used for the construction of self-dual solutions in the ordinary and supersymmetric Yang-Mills and gravity theories [3, 4].

We shall use the standard notation $S Y M_{D}^{N}$ for supersymmetric gauge theories with (D, N)-supersymmetry in the space-time dimension D.

It should be noted that the twistor-harmonic methods have been applied for the integrability interpretation of the non-self-dual theories $S Y M_{4}^{3}$ [5]-[11], $S Y M_{5}^{4}$ [12] and $S Y M_{10}^{1}[13,14]$; however, the corresponding harmonic superspaces are very complicated. The simple harmonic $S U(2) / U(1)$ formalism allows to construct a general solution of the 3 -dimensional $S Y M_{3}^{6}$ equations [15].

The notion of $H S$-integrability is connected with a reformulation of the $S Y M$-equations as the conditions of zero-harmonic-superfield curvatures constructed by means of the covariant harmonic derivatives and the harmonized spinor or vector covariant derivatives. These conditions can be interpreted as the covariant conservation of harmonic analyticity [1]. The harmonic coordinates in the superfield formalism of $H S$-theories are the analogues of the auxiliary (spectral) parameters. The final construction of $H S$-solutions can be reformulated in terms of the ordinary coordinates.

We propose the $H S$-integrability interpretation of the supersymmetric $N=1, D=6$ gauge theory $S Y M_{6}^{1}$ connected via a dimensional reduction with the $S Y M_{4}^{2}$-theory. The $H S$-formalism of $S Y M_{6}^{1}$ has been considered in Refs $[14,16,17]$ by analogy with [1]. A review of the standard harmonic approach is presented in Section 2. We call this version of harmonic formalism a V-frame of the analytic basis, because it uses the analytic prepotential V^{++}[1] as a basic field variable. Section 3 contains a new version of the harmonic formalism (A-frame) using the nonanalytic harmonic connection A^{--}as an independent variable. It will be shown that the $S Y M_{6}^{1}$ superfield constraints and equations of motion can be reformulated as an dynamical zero-curvature equation plus a linear solvable constraint in this frame. The $H S$-approach produces also an infinite number of conservation laws and equations for the Bäcklund-transformation matrix in $S Y M_{6}^{1}$. Section 5 is devoted to the analysis of $S Y M_{6}^{1}$-solutions
in the V-frame for the gauge group $S U(2)$. We use a special harmonic representation of the $S U(2)$-prepotential and the simplest harmonic gauge [15]. This gauge simplifies a study of the spontaneous-breaking phase of $S Y M_{6}^{1}$. The A-frame analysis of $S U(2)$-solutions is considered in Section 6.

In conclusion the $H S$-integrability of the $S Y M_{4}^{2}$-theory is discussed briefly. In particular, self-dual and anti-self-dual solutions and a duality transformation have the simple representations in the A-frame. We hope that the $H S$-integrability of $S Y M_{4}^{2}$ can help to understand the remarkable quantum properties of this theory [18].

2 Harmonic formalism of $S Y M_{6}^{1}$

Different versions of superfield formalism produce the manifestly supersymmetric description of the off-shell $S Y M_{6}^{1}$-theory $[14,17,20,21]$. Consider $N=1, D=6$ superspace $M(6,8)[20,21]$ with the 6 vector coordinates $x^{a b}$ and 8 spinor coordinates θ_{i}^{a} where $a, b \ldots$ are the 4 -spinor indices of the Lorentz group $S U^{*}(4) \sim S O(5,1)$ and $i, k \ldots$ are the 2-spinor indices of $S U(2)$ group. Let $z=\left(x^{a b}, \theta_{i}^{a}\right)$ be the short notation for the coordinates in this superspace.

The plane spinor derivatives in $M(6,8)$ satisfy the basic relation

$$
\begin{equation*}
\left\{D_{a}^{k}, D_{b}^{l}\right\}=i \varepsilon^{k l} \partial_{a b} \tag{2.1}
\end{equation*}
$$

where $\partial_{a b}=\partial / \partial x^{a b}$. We shall use the following combinations of the spinor derivatives [20]

$$
\begin{gather*}
\left(D_{2}\right)_{a b}=(1 / 2) \varepsilon_{i k} D_{(a}^{i} D_{b)}^{k} \tag{2.2}\\
\left(D_{4}\right)^{i k l m}=(1 / 24) \varepsilon^{a b c d} D_{a}^{i} D_{b}^{k} D_{c}^{l} D_{d}^{m} \tag{2.3}
\end{gather*}
$$

where parentheses denote a symmetrization of indices. Write the usefu] identities for these quantities [20]

$$
\begin{equation*}
D_{a}^{(n}\left(D_{4}\right)^{i k l m}=0, \quad\left(D_{2}\right)_{a b}\left(D_{4}\right)^{i k l m}=0 \tag{2.4}
\end{equation*}
$$

By analogy with the $S Y M_{4}^{2}$-theory [19] the superfield constraints of $S Y M_{6}^{1}$ can be written in the following form $[20,21]:$

$$
\begin{equation*}
\left\{\nabla_{a}^{i}, \nabla_{b}^{k}\right\}+\left\{\nabla_{a}^{k}, \nabla_{b}^{i}\right\}=0 \tag{2.5}
\end{equation*}
$$

where $\nabla_{a}^{i}=D_{a}^{i}+A_{a}^{i}(z)$ is the covariant spinor derivative and A_{a}^{i} is the spinor gauge superfield in a central basis $(C B)$.

The $S Y M_{6}^{1}$ superfield equation of motion has a dimension $d=-2$ in units of length

$$
\begin{equation*}
\nabla_{a}^{i} W^{a k}+\nabla_{a}^{k} W^{a i}=0 \tag{2.6}
\end{equation*}
$$

where $W^{a i}$ is the covariant superfield-strength of $S Y M_{6}^{1}$

$$
\begin{equation*}
W^{a k}=(i / 12) \varepsilon^{a b c d} \varepsilon_{j l}\left[\nabla_{b}^{\dot{k}},\left\{\nabla_{c}^{j}, \nabla_{d}^{l}\right\}\right] \tag{2.7}
\end{equation*}
$$

The integrable superfield constraints (2.5) can be solved in the harmonic approach, and this solution generates a covariant off-shell description of the $S Y M_{6}^{1}$ theory. An integrability of the whole $S Y M_{6}^{1}$-system including Eqs (2.5) and (2.6) will be discussed below.

We shall use the standard notation for $S U(2) / U(1)$ harmonics $u_{i}^{ \pm}$and the partial harmonic derivatives

$$
\begin{gather*}
{\left[\partial^{++}, \partial^{--}\right]=\partial^{0}} \tag{2.8}\\
\partial^{++} u_{i}^{+}=0, \quad \partial^{++} u_{i}^{-}=u_{i}^{+} \\
\partial^{-}-u_{i}^{-}=0, \quad \partial^{-} \quad u_{i}^{+}=u_{i}^{-}
\end{gather*}
$$

where ∂^{0} is the operator corresponding to $U(1)$-charge q. These harmonics and derivatives have simple representations in terms of the real $U(1)$ variable φ and the complex spectral variable λ (see e.g.[1, 24])

$$
\left(\begin{array}{ll}
u_{1}^{-} & u_{1}^{+} \tag{2.9}\\
u_{2}^{-} & u_{2}^{+}
\end{array}\right)=\frac{1}{\eta(\lambda)}\left(\begin{array}{cc}
1 & -\lambda \\
\bar{\lambda} & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-i \varphi} & 0 \\
0 & e^{i \varphi}
\end{array}\right)
$$

where $\eta(\lambda)=\sqrt{1+\lambda \bar{\lambda}}$. The convenient representation of the harmonic derivatives has the following form:

$$
\begin{gather*}
\partial^{++}=e^{2 i \varphi}\left[\eta^{2}(\lambda) \bar{\partial}_{\lambda}-(i / 2) \lambda \partial_{\varphi}\right] \tag{2.10}\\
\partial^{--}=-e^{-2 i \varphi}\left[\eta^{2}(\lambda) \partial_{\lambda}+(i / 2) \bar{\lambda} \partial_{\varphi}\right], \quad \partial^{0}=-i \partial_{\varphi} \tag{2.11}
\end{gather*}
$$

where corresponding partial derivatives are introduced.
Consider the harmonic (twistor) transform from the central basis of $S Y M_{6}^{1}$ to the analytic basis $(A B)$

$$
\begin{equation*}
u_{i}^{+} \nabla_{a}^{i}=u_{i}^{+} h^{-1} D_{a}^{i} h \tag{2.12}
\end{equation*}
$$

where $h(z, u)$ is a bridge matrix satisfying the basic harmonic equation [1]

$$
\begin{equation*}
\left(\partial^{++}+V^{++}\right) h(z, u)=\nabla^{++} h=0 \tag{2.13}
\end{equation*}
$$

Discuss briefly a terminology of the harmonic approach used in this paper. A notion of the basis ($C B$ or $A B$) includes the choice of the gauge group representation (τ-group or Λ-group [1]) and the complete set of relations between covariant derivatives. We use also a notion of the frame in the analytic basis that means the choice of independent field variables and basic equations generating the complete system of equations.

The analytic connection V^{++}with $\boldsymbol{q}=+2$ (prepotential) determines the off-shell structure of $S Y M_{6}^{1}$ in the V-frame. It lives' in an analytic harmonic superspace with the coordinates $\zeta=\left(x_{A}^{a b}, \theta_{+}^{c}\right)$

$$
\begin{gather*}
x_{A}^{a b}=x^{a b}+(i / 4)\left(\theta_{+}^{a} \theta_{-}^{b}-\theta_{+}^{b} \theta_{-}^{a}\right) \tag{2.14}\\
\theta_{+}^{a}=u_{+}^{i} \theta_{i}^{a}, \quad \theta_{-}^{a}=\dot{u}_{-}^{i} \theta_{i}^{a} \tag{2.15}
\end{gather*}
$$

The plane differential operators in the analytic coordinates $\left(\zeta, \theta_{-}^{a}\right)$ have the following form:

$$
\begin{gather*}
\partial_{A^{+}}=\partial^{++}+(i / 2) \theta_{+}^{a} \theta_{+}^{b} \partial_{a b}+\theta_{+}^{a} \partial_{a}^{+} \tag{2.16}\\
\partial_{A}^{-}=\partial^{--}+(i / 2) \theta_{-}^{a} \theta_{-}^{b} \partial_{a b}+\theta_{-}^{a} \partial_{a}^{-} \tag{2.17}\\
D_{a}^{+}=\partial_{a}^{+}=\partial / \partial \theta_{a}^{a}=u_{i}^{+} D_{a}^{i} \tag{2.18}\\
D_{a}^{-}=-\partial_{a}^{-}-i \theta_{-}^{b} \partial_{a b}=u_{i}^{-} D_{a}^{i} \tag{2.19}
\end{gather*}
$$

Note that the $A B$-superfields can be described in terms of the central coordinates z, u, too. Write the useful relations and definitions for spinor derivatives:

$$
\begin{equation*}
\left\{D_{a}^{-}, D_{b}^{+}\right\}=i \partial_{a b}, \quad\left(D_{2}\right)_{a b}=D_{(a}^{+} D_{b)}^{-} \tag{2.20}
\end{equation*}
$$

The V-system of equations in the $S Y M_{6}^{1}$-theory contains off-shell constraints and an equation of motion. The basic V-frame constraints are:

1) The harmonic zero-curvature ($H Z C$) equation $[14,22]$

$$
\begin{equation*}
\left[\nabla^{++}, \nabla^{--}\right]-\partial^{0}=\partial_{A}^{++} A^{--}-\partial_{A}^{--} V^{++}+\left[V^{++}, A^{--}\right]=0 \tag{2.23}
\end{equation*}
$$

where $A^{-}\left(\zeta, \theta^{a}, u\right)$ is the harmonic connection with $q=-2$. The harmonic connections can be expressed via the bridge matrix h but we treat the $H Z C$-equation as an independent basic equation. The general perturbative and non-perturbative solutions of the basic harmonic equations (2.13) and (2.23) have been discussed in Refs $[2,14,15,22]$.
2) The 'kincmatic' V analyticity condition ($V Z C$-cquation) [1]

$$
\begin{equation*}
\left[\nabla_{a}^{+}, \nabla^{++}\right]=D_{a}^{+} V^{++}=0 \tag{2.24}
\end{equation*}
$$

3) The conventional spinor constrain $[11,22]$

$$
\begin{equation*}
\left[\nabla^{--}, \nabla_{a}^{+}\right]=\nabla_{a}^{-}=D_{a}^{-}+A_{a}^{-}=D_{a}^{-}-D_{a}^{+} A^{-} \tag{2.25}
\end{equation*}
$$

This constraint allows us to write the spinor connection A_{a}^{-}in terins of the harmonic connection A^{--}.
4) The initial $C B$-integrability condition is solved trivially by the tran-sition to $A B[1]$

$$
\begin{equation*}
u_{i}^{+} u_{k}^{+}\left\{\nabla_{a}^{i}, \nabla_{b}^{k}\right\}=0 \Rightarrow\left\{\nabla_{a}^{+}, \nabla_{b}^{+}\right\}=\left\{D_{a}^{+}, D_{b}^{+}\right\}=0 \tag{2.26}
\end{equation*}
$$

Secondary constraints follow from the basic constraints 1)-4)

$$
\begin{gather*}
{\left[\nabla^{-}, \nabla_{a}^{-}\right]=0,\left\{\nabla_{a}^{-}, \nabla_{b}^{-}\right\}=0} \tag{2.27}\\
\left\{\nabla_{a}^{+}, \nabla_{b}^{-}\right\}+\left\{\nabla_{a}^{-}, \nabla_{b}^{+}\right\}=0 \tag{2.28}
\end{gather*}
$$

The V-frame $S Y M_{6}^{1}$-equation of motion has been obtained in Ref [14] by the use of a corresponding nonpolynomial action

$$
\begin{equation*}
F^{++}=(1 / 4) D_{a}^{+} W^{\prime a+}(V)=\left(D^{+}\right)^{4} \Lambda^{--}(V)=0 \tag{2.29}
\end{equation*}
$$

A perturbative solution for A^{-}has the following form.

$$
\begin{equation*}
A^{-}(V)=\sum_{n=1}^{\infty}(-1)^{n} \int d u_{1}, \ldots d u_{n} \frac{V^{++}\left(z, u_{1}\right) \ldots V^{++}\left(z, u_{n}\right)}{\left(u^{+} u_{1}^{+}\right) \ldots\left(u_{n}^{+} u^{+}\right)} \tag{2.30}
\end{equation*}
$$

where the harmonic distributious $\left(u_{1}^{+} u_{2}^{+}\right)^{-1}[2]$ are used. Eq(2.29) is cquivalent to the analyticity condition on the $A B$-superfield-strength $W^{a+}(V)$,

The harmonic distributions liave a simple complex representation

$$
\begin{equation*}
\frac{1}{\left(u_{1}^{+} u_{2}^{+}\right)}=c^{-i\left(\varphi_{1}+\varphi_{2}\right) \frac{\eta\left(\lambda_{1}\right) \eta\left(\lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}, ~} \tag{2.31}
\end{equation*}
$$

Using this representation, $\mathrm{Eq}(2.10)$ and the known formula for complex distributions

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\lambda}_{1}} \frac{1}{\lambda_{1}-\lambda_{2}}=\pi \delta\left(\lambda_{1}-\lambda_{2}\right) \tag{2.32}
\end{equation*}
$$

one can reproduce the differential relation [2]

$$
\begin{equation*}
\partial_{1}^{++} \frac{1}{\left(u_{1}^{+} u_{2}^{+}\right)}=\delta^{(1,-1)}\left(u_{1}, u_{2}\right)=\pi e^{i\left(\varphi_{1}-\varphi_{2}\right)} \eta^{4}\left(\lambda_{1}\right) \delta\left(\lambda_{1}-\lambda_{2}\right) \tag{2.33}
\end{equation*}
$$

The equation of motion simplifies in the normal V-gauge [1] which is an analogue of the $W Z$-gauge of the simplest superficld theories

$$
\begin{array}{r}
V_{N}^{++}=(1 / 2) \theta_{+}^{a} \theta_{+}^{b} A_{a b}\left(x_{A}\right)+\left(\theta^{+3}\right)_{a} u_{i}^{-} \psi_{i}^{a}\left(x_{A}\right)+\left(\theta_{+}\right)^{4} u_{i}^{-} u_{k}^{-} D^{i k}\left(x_{A}\right) \tag{2.34}\\
\left(\theta^{+3}\right)_{a}=(1 / 6) \varepsilon_{a b c d} \theta_{+}^{b} \theta_{+}^{c} \theta_{+}^{d}, \quad\left(\theta_{+}\right)^{4}=(1 / 24) \varepsilon_{a b c d} \theta_{+}^{a} \theta_{+}^{b} \theta_{+}^{c} \theta_{+}^{d}
\end{array}
$$

where $A_{a b}, \psi_{i}^{a}$ and $D^{i k}$ are the component fields of a gauge supermultiplet. $S Y M_{6}^{1}$-action in the normal gauge is the 4 -th order polynomial

$$
\begin{equation*}
S_{N}=\sum_{n=2}^{4} \int d^{12} z d u_{1} \ldots d u_{n} \frac{\operatorname{Tr} V_{N}^{++}\left(z, u_{1}\right) \ldots V_{N}^{++}\left(z, u_{n}\right)}{\left(u_{1}^{+} u_{2}^{+}\right) \ldots\left(u_{n}^{+} u_{1}^{+}\right)} \tag{2.35}
\end{equation*}
$$

This action generates the 3-d order V-equation of motion equivalent to the component $S Y M_{6}^{1}$ equations of motion. An analysis of the nonlinear equation (2.29) is a difficult problem even in the normal gauge. Thus, the V-frame is useful for the solution of the off-shell constraints (2.5) and quantization [2] but is not very convenient for the search of the classical solutions.

The original works on harmonic superspaces $[1,2]$ and Refs $[14,15]$ use the regular harmonic functions V^{++}and $h(z, u)$ treated as the convergent or formal harmonic series. Regular harmonic functions $f(u)$ correspond to globally defined functions on the sphere S^{2}, and irregular functions can contain poles and other singularities. The assumption of regularity is natural for the perturbation theory (e.g. in the normal gauge) but it leads to unreasonable restrictions on the nonperturbative solutions. We shall discuss the irregular bridge functions in Section 3.

3 New harmonic frame for the $S Y M_{6}^{1}$ equations of motion

Now we shall consider a new harmonic representation of the $S Y M_{6}^{1}$ equations which allows to prove the $H S$-integrability of this theory and to solve the equation with a dimension $d=-2$. Only the complete system of covariant equations in the analytic basis has an invariant meaning, however, one can change the choice of field variables and independent equations. A basic field variable of the V-frame is $V^{++}=h \partial^{++} h^{-1}$. It is clear that one can use other functions of the bridge h as the field variables of $A B$.

Let us treat the harmonic connection $A^{--}=h \partial^{--} h^{-1}$ as a basic superfield of the classical $S Y M_{6}^{1}$ theory in the A-frame. The complete A-system of $S Y M_{6}^{1}$-equations for covariant derivatives with $d \geq-2$ is identical to the corresponding V-system, however we change the interpretation, the basic set and the order of the dynamical equations and the auxiliary field structure of the harmonic formalism in the new frame. The $H Z C$-equation (2.23) in this frame is treated as an integrable equation for the connection $V^{++}\left(A^{--}\right)$. A basic A-bridge equation contains the covariant derivative ∇^{--}, and $\mathrm{Eq}(2.13)$ becomes a secondary equation. Harmonic equations with $d=0$ do not guarantee the conservation of analyticity. We shall preserve the standard transform between $C B$ and $A B(2.12)$, the basic $A B$ constraints $(2.23),(2.25)$ and (2.26) but treat analyticity in the A-frame as a new dynamic zero-curvature equation instead of the 'kinematic' analyticity constraint of the V-frame (2.24).

It should be underlined that the nonlinear in V^{++}equation (2.29) transforms to a linear kinematic constraint of the new A-frame:

$$
\begin{equation*}
\left(D^{+}\right)^{4} A^{-}(z ; u)=0 \tag{3.1}
\end{equation*}
$$

Using a nilpotency of D_{a}^{+}we can obtain the following general solution of this constraint:

$$
\begin{equation*}
A^{-}(z, u)=D_{a}^{+} A^{a(-3)}(z, u) \tag{3.2}
\end{equation*}
$$

where $A^{a(-3)}$ is the on-shell $S Y M_{6}^{1}$ prepotential.
Now the whole $S Y M_{6}^{1}$-system reduces to the dynamic analyticity (zero-spinor-curvature) condition which we shall call $A Z C$-equation

$$
\begin{equation*}
\left[\nabla_{a}^{-}, \nabla^{-}\right]=D_{a}^{-} A^{--}+\partial^{--} D_{a}^{+} A^{--}\left[D_{a}^{+} A^{-}, A^{--}\right]=0 \tag{3.3}
\end{equation*}
$$

where the constraint (2.25) is used.
This condition and the representation (3.2) generate a nonlinear equation for the superfield $A^{a(-3)}$

$$
\begin{equation*}
D_{a}^{-} D_{b}^{+} A^{b(-3)}+\partial^{--} D_{a}^{+} D_{b}^{+} A^{b(-3)}-\left[D_{a}^{+} D_{b}^{+} A^{b(-3)}, D_{c}^{+} A^{c(-3)}\right]=0 \tag{3.4}
\end{equation*}
$$

This equation has the following gauge invariance:

$$
\begin{equation*}
\delta A^{a(-3)}=R^{a(-3)} \Lambda+\left[\Lambda, A^{a(-3)}\right]+D_{b}^{+} \Lambda^{a b(-4)} \tag{3.5}
\end{equation*}
$$

where a general symmetrical spinor $\Lambda^{a b(-4)}$ and an analytic scalar Λ are the Lie-algebra valued superfield gauge parameters. The spinor derivative of $\delta A^{a(-3)}$ produces the standard $A B$-gauge transformation $\delta A^{--}=\nabla^{--} \Lambda$

$$
\begin{gather*}
\left\{D_{a}^{+}, R^{a(-3)}\right\}=\partial_{A}^{-} \tag{3.6}\\
R^{a(-3)}=\theta^{a} \partial^{-}+\frac{i}{4} \theta_{-}^{a} \theta_{-}^{b} \theta_{-}^{c} \partial_{b c}+\frac{1}{2} \theta_{-}^{a} \theta_{-}^{b} \partial_{b}^{-} \tag{3.7}
\end{gather*}
$$

Let us consider a regular harmonic functions $A^{a(-3)}(z, u)$ and choose a normal A-gauge for the on-shell superfield $A^{-}=D_{a}^{+} A^{a(-3)}$

$$
\begin{gather*}
A_{N}^{-}=\theta_{-}^{a} \beta_{a}^{-}(\zeta, u)+\frac{1}{2} \theta_{-}^{a} \theta_{-}^{b} \alpha_{a b}(\zeta, u)+\left(\theta^{-3}\right)_{a} \psi^{a+}(\zeta, u) \tag{3.8}\\
\left(\theta^{-3}\right)_{a}=D_{a}^{+}\left(\theta^{-}\right)^{4}=(1 / 6) \varepsilon_{a b c d} \theta_{-}^{b} \theta_{-}^{c} \theta_{-}^{d}
\end{gather*}
$$

where β, α and ψ are the analytic functions. This gauge has a residual gauge invariance with restricted parameters $\partial^{-} \Lambda=0$

$$
\begin{equation*}
\delta \beta_{a}^{-}=\partial_{a}^{-} \Lambda+\ldots, \quad \delta \alpha_{a b}=\partial_{a b} \Lambda+\ldots \tag{3.9}
\end{equation*}
$$

Note that $\left(\theta_{-}\right)^{4}$ term vanishes due to the constraint (3.2).
The superfield A_{N}^{--}contains a physical part A_{P}^{--}and an auxiliary-field part H^{--}. All auxiliary harmonic component fields vanish as a consequence of $\mathrm{Eq}(3.4)$ so the physical harmonic connection be

$$
\begin{equation*}
A_{P}^{--}=(1 / 2) \theta_{-}^{a} \theta_{-}^{b}\left[A_{a b}+\varepsilon_{a b c d} \theta_{+}^{c} u_{-}^{i} \psi_{i}^{d}\right]+\left(\theta^{-3}\right)_{a}\left[u_{+}^{i} \psi_{i}^{a}+\theta_{+}^{b} F_{b}^{a}\right] \tag{3.10}
\end{equation*}
$$

where $A_{a b}\left(x_{A}\right)$ and $\psi_{i}^{a}\left(x_{A}\right)$ are the vector and spinor fields and $F_{b}^{a}\left(x_{A}\right)$ is an independent field-strength.
$\mathrm{Eq}(3.4)$ generates the usual connection between F_{b}^{a} and $A_{a b}$ and the component $S Y M_{6}^{1}$ equations. Thus, the A-frame corresponds to the firstorder component $S Y M_{6}^{1}$ formalism. It is evident that all frames of $A B$ are equivalent on-shell and have identical component solutions for the physical fields.

It should be underlined that an alternative equivalent form of the $H S$ integrability condition in the A-franc can be written as dynamical $V Z C$ equation

$$
\begin{equation*}
\left[\nabla_{a}^{+}, \nabla^{++}\right]=D_{a}^{+} V^{++}\left(A^{--}\right)=0 \tag{3.11}
\end{equation*}
$$

where $V^{++}\left(A^{--}\right)$is a solution of $\mathrm{Eq}(2.23)$. A perturbative form of this solution is an analogue of the solution (2.30) but contains the new harmonic distribution

$$
\begin{equation*}
\frac{1}{\left(u_{1}^{-} u_{2}^{-}\right)}=e^{i\left(\varphi_{1}+\varphi_{2}\right)} \frac{\eta\left(\lambda_{1}\right) \eta\left(\lambda_{2}\right)}{\lambda_{1}-\bar{\lambda}_{2}} \tag{3.12}
\end{equation*}
$$

satisfying the relation

$$
\begin{equation*}
\partial_{1}^{-} \frac{1}{\left(u_{1}^{-} u_{2}^{-}\right)}=\delta^{(-1,1)}\left(u_{1}, u_{2}\right) \tag{3.13}
\end{equation*}
$$

The third equivalent form of the dynamical A-frame equation can be written as

$$
\begin{equation*}
\left[\nabla^{++}, \nabla_{a}^{-}\right]=\nabla_{a}^{+} \Rightarrow\left[\nabla^{++},\left[\nabla^{-}, \nabla_{a}^{-}\right]\right]=0 \tag{3.14}
\end{equation*}
$$

The bridge matrix $h_{1}=h\left(A^{-}\right)$of the A-frame is a solution of the following harmonic equation

$$
\begin{equation*}
\nabla^{--} h_{A}=\left(\partial^{--}+D_{a}^{+} A^{a(-3)}\right) h_{A}=0 \tag{3.15}
\end{equation*}
$$

This equation on the sphere $S U(2) / U(1)$ is the harmonic part of the linear problen for the $I I S$-integrable $S Y M_{6}^{1}$-system. A key point of the harmonic approach is the integrability of the bridge lianonic equation. If we restrict ourselves by regular solutions for h_{A}, then the consistency conditions on the regular harimonic connections appear $[23,15]$. The explicit solutions for the $S U(2)$ gauge group be considered in sections 5 and 6 .

Consider a typical example of the linear harmonic differential equation that arises in an analysis of the bridge equation

$$
\begin{equation*}
\partial^{+} f^{(-2)}=\rho^{0}(u)=c+c^{(i k)} u_{i}^{+} u_{k}^{+}+\ldots \tag{3.16}
\end{equation*}
$$

where f^{0} is a regular hamonic function. For $c \neq 0$ this equation has no regular solution in terms of the harmonic expansion. However, Eq(3.16)
in the complex cocrdinates (2.9) has the integral solutioin with a simple complex pole kernel. The harmonic analogue of this integral representation is

$$
\begin{gather*}
f^{(-2)}(u)=\int d u_{1} G^{(-2,0)}\left(u, u_{1}\right) f^{0}\left(u_{1}\right) \tag{3.17}\\
\partial^{++} G^{(-2,0)}\left(u, u_{1}\right)=\delta^{(0,0)}\left(u, u_{1}\right)=\pi \eta^{4}(\lambda) \delta\left(\lambda-\lambda_{1}\right) \tag{3.18}
\end{gather*}
$$

In contrast to the standard harmonic distributions [2] $G^{(-2,0)}\left(u, u_{1}\right)$ has not any illustrative harmonic expansion, but it has the simple complex representation

$$
\begin{equation*}
G^{(-2,0)}\left(\lambda, \lambda_{1}\right)=e^{-2 i \varphi} \frac{\eta^{2}(\lambda)}{\left(\lambda-\lambda_{1}\right)} \tag{3.19}
\end{equation*}
$$

Thus, one can admit the appearance of isolated harmonic singularities in the bridge function and even in the harmonic connections. As a rule we shall use regular initial data and choose the gauge freedom to obtain the solutions with a minimal number of singularities.

The $C B$-gauge superfield does not depend on the harmonics

$$
\begin{equation*}
A_{a}^{i}(z)=h^{-1} D_{a}^{i} h-u^{+i} h^{-1}\left(D_{a}^{+} A^{--}\right) h \tag{3.20}
\end{equation*}
$$

This superfield satisfies the relations $\partial^{ \pm \pm} A_{a}^{i}(z)=0$ and also the equations (2.5) and (2.6) which are equivalent to the component $S Y M_{6}^{1}$-equations.

Thus, one can consider irregular harmonic superfields if the following general rule is used ${ }^{1}$: The physical component fields 'live' in the central basis.

4 Conservation laws and Bäcklund transformations in $S Y M_{6}^{1}$

The most attractive feature of integrable field theories is an infinite number of conservation laws. The explicit construction of the conserved quantities follows immediately from the zero-curvature representation and has a clear geometric interpretation in terms of the contour variables [28]. Analogous constructions arise also for the integrable $S Y M_{4}^{3}$ equation [10].

The $H S$-integrable theories possess the specific properties. The corresponding zero-curvature equations contain covariant spinor and harmonic

[^1]derivatives and mean a conservation of the analyticity in $H S$ [1]. Now we shall try to show that ordinary conservation laws follow from the dynamic harmonic-spinor analyticity equation of $S Y M_{6}^{1}$-theory. Consider a vector covariant derivative in the 1 -frame
\[

$$
\begin{equation*}
\nabla_{a b}=-i\left\{\nabla_{a}^{+}, \nabla_{b}^{-}\right\}=\partial_{a b}+i D_{a}^{+} D_{b}^{+} A^{-} \tag{4.1}
\end{equation*}
$$

\]

The basic equation (3.4) generates the relation

$$
\begin{equation*}
\left[\nabla^{-}, \nabla_{a b}\right]=0 \tag{4.2}
\end{equation*}
$$

Let us choose a time variable $t=x^{12}$

$$
\begin{equation*}
\nabla_{t}=\nabla_{12}=\partial_{t}+A_{12}, \quad A_{12}(z, u)=i D_{1}^{+} D_{2}^{+} A^{--} \tag{4.3}
\end{equation*}
$$

It is evident that ∇_{t} commutes on-shell with the covariant harmonic derivatives (4.2):

It should be stressed that the bridge is a natural harmonic analogue of the contour variables of integrable theories in the zero-curvature representation : The transformation law of the bridge has the following form:

$$
\begin{equation*}
\delta h_{A} \doteq \Lambda(\zeta, u) h_{A}-h_{A} \tau(z) \tag{4.4}
\end{equation*}
$$

where Λ and τ are the gauge parameters in $A B$ and $C B$, correspondingly. The covariant constancy of the bridge in the all spinor and vector directions is a consistency condition for the dynamic analyticity equations (3.4) or (3.11), for instance

$$
\begin{equation*}
\nabla_{t} h_{A}=\partial_{t} h_{A}+A_{12} h_{A}-h_{A} A_{t}(z)=0 \tag{4.5}
\end{equation*}
$$

where $A_{t}(z)$ is a time component of the gauge $C B$-superfield.
One can choose a special τ-gauge for the $S Y M_{6}^{1}$-theory

$$
\begin{equation*}
A_{t}(z)=0, \quad \partial_{t} \tau(z)=0 \tag{4.6}
\end{equation*}
$$

The A-frame covariant derivative ∇_{12} commutes with D_{1}^{+}and D_{2}^{+}. The simplest conserved quantities in the τ-gauge can be constructed as Λ invariant functions of h_{A}, for example

$$
\begin{equation*}
C^{++}(z, u)=\operatorname{Tr}\left(D_{1}^{+} h_{A} D_{2}^{+} h_{A}^{-1}\right), \quad \partial_{t} C^{++}=0 \tag{4.7}
\end{equation*}
$$

It is not difficult to built the conserved quantities invariant under the τ - and Λ-gauge transformations

$$
\begin{equation*}
P^{a b(\pm \pm)}=\operatorname{Tr} W^{a \pm} W^{b \pm}, \quad \partial_{a b} P^{a b(\pm \pm)}=0 \tag{4.8}
\end{equation*}
$$

where $W^{a \pm}$ are components of the on-shell superfield-strength

$$
\begin{gather*}
W^{a+}=\left(D^{+3}\right)^{a} A^{--}, W^{a-}=\nabla^{--} W^{a+} \tag{4.9}\\
\nabla_{a b} W^{a \pm}=0, \quad \nabla_{a b} W^{a \pm} W^{b \pm}=0 \tag{4.10}
\end{gather*}
$$

Note that the last equation is not valid off-shell.
The Bäcklund transformations ($B T$) play an important role for integrable theories as transformations in the spaces of solutions. For the $S D Y M$ and $S D S Y M$ solutions these transformations have been considered in Refs $[29,30]$. We shall discuss $B T$ in the $H S$-formalism of $S Y M_{6}^{1}$.

Let A^{--}and \hat{A}^{--}be two different solutions of the $S Y M_{6}^{1}$-system (3.4). Consider the corresponding bridges h_{A} and \hat{h}_{A}. Then the Bäcklund transformation between these solutions has the following form:

$$
\begin{equation*}
\hat{A}^{--}=D_{a}^{+} \hat{A}^{a(-3)}=B^{-1} A^{--} B+B^{-1} \partial^{--} B \tag{4.11}
\end{equation*}
$$

where the B-matrix can be written in terms of two bridges

$$
\begin{equation*}
B(A, \hat{A})=h_{A} \hat{h}_{A}^{-1} \tag{4.12}
\end{equation*}
$$

It is easy to derive the equations for the matrix B in terms of the background solution A^{--}, h_{A}. Formally the new superfield variable \hat{A}^{--} has an independent $\hat{\Lambda}$ transformation, and it is 'invariant' under the Λ transformation of a background superfield. $\mathrm{Eq}(4.11)$ can be treated as a harmonic equation for B in terms of the background solution A^{--}, h_{A} and the second prepotential $\hat{A}^{a(-3)}$. The analyticity equations $(3.4,3.11)$ for the second solution \hat{A}^{--}produce the following Λ-covariant equations

$$
\begin{equation*}
\nabla^{++}(A) \beta_{a}^{+}=0, \quad \nabla^{--}(A) \nabla^{-}(A) \beta_{a}^{+}=0 \tag{4.13}
\end{equation*}
$$

where $\beta_{a}^{+}=D_{a}^{+} B B^{-1}$. Validity of these equations is evident in the representation (4.12)

$$
\begin{equation*}
h_{A}^{-1} \beta_{a}^{+} h_{A}=h_{A}^{-1} D_{a}^{+} h_{A}-\hat{h}_{\dot{A}}^{-1} D_{a}^{+} \hat{h}_{A}=u_{i}^{+}\left[A_{a}^{i}(z)-\hat{A}_{a}^{i}(z)\right] \tag{4.14}
\end{equation*}
$$

'lhis representation is equivalent to the following form of the Bäcklund transformation of the spinot $C B$ gauge superfield:

$$
\begin{equation*}
\hat{A}_{a}^{i}(z)=\Lambda_{a}^{i}(z)+h_{A}^{-i}\left[u_{-}^{i} \beta_{a}^{+}-u_{+}^{i} \nabla^{-}(A) \beta_{a}^{+}\right] h_{A} \tag{4.15}
\end{equation*}
$$

The equations for B are simplified in the case of infinitesimal Bäcklund transformations $B=I+\delta B$

$$
\begin{equation*}
\delta B=D_{(a}^{+} \nabla_{b)}^{-} B^{a b} \tag{4.16}
\end{equation*}
$$

The analyticity produces an additional restriction on $B^{a b}$.

$5 \quad V$-frame analysis of $S U(2)$ solutions in the simplest harmonic gauge

The $I S$-integrability interpretation allows us 10 analyze the explicit constructions of the $S Y M_{6}^{1}$-solutions by analogy with the hamonic formalism of $S D Y M[3,4]$ or $S Y M_{3}^{6}[15]$. Let us go back to the V-frame and consider the case of the gauge group $S U(2)$. We shall use a harmonic representation of the general SU(2) prepotential $[15,24,25]$

$$
\begin{equation*}
V^{++}=\left(U^{+2}\right) b^{0}(\zeta, u)+\left(U^{0}\right) b^{(+2)}(\zeta, u)+\left(U^{-2}\right) b^{(+1)}(\zeta, u) \tag{5.1}
\end{equation*}
$$

where $b^{0}, b^{(+2)}, b^{(+4)}$ are arbitrary ral analytic superficlds and (l^{q}) are matrix generators of the Lie algebra $S U(2)$ in a harmonic representation

$$
\begin{equation*}
\left.\left(U^{ \pm 2}\right)_{k}^{i}=u_{k}^{ \pm} u^{ \pm i}, U^{0}\right)_{k}^{i}=u_{k}^{-} u^{+i}+u_{k}^{+} u^{-i} \tag{5.2}
\end{equation*}
$$

An analogous representation of the prepotential was used as a special Ansatz for instanton and monopole solutious in the harmonic fomatism [26, 27].

Consider the infinitesimal gange transfomations of the harmonic conponents $b^{(q)}$

$$
\begin{gather*}
\delta b^{0}=\partial_{A}^{++} \Lambda^{(-2)}+2 \Lambda^{0}+2 b^{0} \Lambda^{0}-2 b^{(+2)} \Lambda^{(-2)} \tag{5,3}\\
\delta b^{(+2)}=\partial_{A}^{++} \Lambda^{0}+\Lambda^{(+2)}+b^{(+1)} \Lambda^{(-2)}-b^{0} \Lambda^{(+2)} \tag{5.4}\\
\delta b^{(+4)}=\partial_{A}^{++} \Lambda^{(+2)}+2 b^{(+2)} \Lambda^{(+2)}-2 b^{(+1)} \Lambda^{0} \tag{5.5}
\end{gather*}
$$

where $\Lambda^{(9)}$ are the real harmonic components of the analytic $S U(2)$-gauge matrix A. Remark that the $\left(\theta_{+}\right)^{4}$-component in (5.5) contains the term $\partial^{a b} \lambda_{a b}(x)$ with a total derivative of vector function from $\Lambda^{(+2)}$.

The simplest general gauge for $S U(2)$-prepotential is

$$
\begin{equation*}
V^{++}\left(b^{0}, \rho\right)=\left(U^{+2}\right) b^{0}(\zeta, u)+\left(U^{-2}\right)\left(\theta_{+}\right)^{4} \rho \tag{5.6}
\end{equation*}
$$

where b^{0} is an arbitrary analytic function and ρ is a constant part of the trace of the auxiliary scalar matrix field with $d=-2$ in $b^{(+4)}$ that can be written as $D_{i k}^{i k}(x)=\rho+\partial^{a b} \int_{a b}\left(x_{A}\right)$. The $\rho \neq 0$ solutions characterize the phase of the $S Y M_{6}^{1}$-theory with the spontaneous breaking of symmetry.

Stress that this $\left(b^{0}, \rho\right)$-gauge has the residual gauge invariance with $\Lambda^{(+2)}=0, \Lambda^{0}=$ const and an arbitrary parameter $\Lambda^{(-2)}$. The additional condition $\left(\partial^{++}\right)^{5} b^{0}=0$ fix the Λ-gauge and results in the vanishing of harmonic components with isospin $T>4$ in b^{0} [25]

$$
\begin{align*}
& b^{0}\left(V_{i k l m}, u\right)=\left(D_{4}\right)^{i k l m} V_{i k l m}+4\left(u^{+} u^{-}\right)_{i k}\left(D_{4}\right)^{l m n(i} V_{l m n}^{k)}+ \tag{5.7}\\
& (60 / 7)\left(u^{+2} u^{-2}\right)_{i j k l}\left(D_{4}\right)^{m n n}\left(i j V_{m n}^{k l)}+(100 / 9)\left(u^{+3} u^{-3}\right)_{i_{1} \cdots i_{6}}\left(D_{4}\right)^{n\left(i_{1} \cdots\right.} V_{n}^{\left.\cdots i_{6}\right)}+\right. \\
& (50 / 9)\left(u^{+4} u^{-4}\right)_{i_{1} \cdots i_{8}}\left(D_{4}\right)^{\left(i_{1} \cdots V^{\cdots} i_{8}\right)}
\end{align*}
$$

where an analogue of the Mezinchescu prepotential with $d=2[31]$ and the irreducible symmetrical combinations of harmonics $\left(u^{+q} u^{-q}\right)_{i_{1} \ldots i_{2 q}}$ are used. The analyticity of this representation follows from the identity (2.4).

The phase of $S Y M_{6}^{1}$ and $S Y M_{4}^{2}$ with $\rho=0$ was considered in Refs $[15$, $24,25]$. The $H Z C$-equation (2.23) has the following solution in the ($b^{0}, 0$)gauge

$$
\begin{equation*}
\Lambda^{--}\left(b^{0}, 0\right)=\left(U^{+2}\right) a_{0}^{(-4)}+\left(U^{0}\right) a_{0}^{(-2)}+\left(U^{-2}\right) a_{0}^{(0)} \tag{5.8}
\end{equation*}
$$

where $a_{0}^{(q)}$ are harmonic-quadrature functions of the prepotential b^{0}

$$
\begin{gather*}
a_{0}^{(0)}=\frac{b(z)}{1+b(z)}, \quad b(z)=\int d u b^{0}(z, u) \tag{5.9}\\
a_{0}^{(-2)}(z, u)=\int d u_{1} \frac{\left(u^{-} u_{1}^{+}\right)}{\left(u^{+} u_{1}^{+}\right)} \frac{b^{0}\left(z, u_{1}\right)-b(z)}{1+b(z)} \tag{5.10}\\
a_{0}^{(-4)}(z, u)=[1+b(z)]\left[\partial^{--} a_{0}^{(-2)}-a_{0}^{(-2)} a_{0}^{(-2)}\right] \tag{5.11}
\end{gather*}
$$

Note that this solution has a singular point $b(z)=-1$.

The classical action of $S Y M_{6}^{1}$ in the $\left(b^{0}, 0\right)$-gauge has the following form [24, 25]:

$$
\begin{equation*}
S(b)=\int d^{14} z[\ln (1+b(z))-b(z)] \tag{5.12}
\end{equation*}
$$

where $b(z)=\left(D_{4}\right)^{i k l m} V_{i k l m}(z)$ is a constrained potential.
The $S Y M_{6}^{1}$-equation of motion in the $\left(b^{0} ; 0\right)$-gauge has only one independent component

$$
\begin{equation*}
\left(D^{+}\right)^{4}\left[\frac{b(z)}{1+b(z)}\right]=0 \tag{5.13}
\end{equation*}
$$

A spinor part of the gauge $C B$-superfield can be written in terms of the single superfield $b(z)$. [25]

$$
\begin{equation*}
\left[A_{a}^{l}(z)\right]_{i}^{k}=\frac{1}{1+b(z)}\left[\delta_{i}^{l} D_{a}^{k} b(z)-(1 / 2) \delta_{i}^{k} D_{a}^{l} b(z)\right] \tag{5.14}
\end{equation*}
$$

Note that the $S Y M_{4}^{1}$-constraints (2.5) in this representation follow from the identity

$$
\begin{equation*}
\left(D_{2}\right)_{a b} b(z)=0 \tag{5.15}
\end{equation*}
$$

The harmonic equations (2.13) and (2.23) with the prepotential $V^{++}\left(b^{0}, \rho\right)(5.6)$ can be integrated in quadratures. The integration procedure uses a nilpotency of the term $\rho\left(\theta_{+}\right)^{4}$.
$\mathrm{Eq}(2.23)$ has the following harmonic components in the ($\left.b^{0}, \rho\right)$-gauge:

$$
\begin{gather*}
\partial^{++} a_{\rho}^{(-4)}+2\left(1+b^{0}\right) a_{\rho}^{(-2)}-\partial^{-} b^{0}=0 \tag{5.16}\\
\partial^{++} a_{\rho}^{(-2)}+\left(1+b^{0}\right) a_{\rho}^{(0)}-b^{0}-\rho\left(\theta_{+}\right)^{4} a^{(-4)}=0 \tag{5.17}\\
\partial^{++} a^{(0)} \rho-4 \rho \theta_{-}^{a}\left(\theta^{+3}\right)_{a}-2 \rho\left(\theta_{+}\right)^{4} a_{\rho}^{(-2)}=0 \tag{5:18}
\end{gather*}
$$

Note that it is convenient to analyze harmonic equations in the central coordinates z, u.

Consider the harmonic equation for $a_{\rho}^{(0)}$ which follows from these equations

$$
\begin{equation*}
\left(\partial^{++}\right)^{2} a_{\rho}^{(0)}=2 \rho\left(\theta_{+}\right)^{4}\left[2+b^{0}-a_{\rho}^{(0)}-b^{0} a_{\rho}^{(0)}\right] \tag{5.19}
\end{equation*}
$$

Using (5.9) as a zero approximation one can obtain an exact solution for $a_{\rho}^{(0)}$ by two iterations and then the other harmonic components can be calculated.

The classical action in the $\left(b^{0}, \rho\right)$-gauge has the following form:

$$
\begin{equation*}
S\left(b^{0}, \rho\right)=\int d^{14} z d u \cdot b^{0} \int_{0}^{1} d s a^{(0)}\left(s b^{0}, \rho\right) \tag{5.20}
\end{equation*}
$$

where s is an auxiliary parameter.

6 The A-frame analysis of $S U(2)$-solutions

Now we shall discuss properties of the $S U(2)$-solution in the alternative A-frame. The first step of this approach is a solution of harmonic equations in the representation (3.2) and then the dynamical analyticity equation should be used.

Consider the harmonic (U^{q})-components of the $A Z C$-equation (3.3)

$$
\begin{gather*}
D_{a}^{-} a^{(0)}+\partial^{-} D_{a}^{+} a^{(0)}+2 D_{a}^{+} a^{(-2)}+2 a^{(-2)} D_{a}^{+} a^{(0)}-2 a^{(0)} D_{a}^{+} a^{(-2)}=0 \tag{6.1}\\
D_{a}^{-} a^{(-2)}+\partial^{-}-D_{a}^{+} a^{(-2)}+D_{a}^{+} a^{(-4)}+a^{(-4)} D_{a}^{+} a^{(0)}-a^{(0)} D_{a}^{+} a^{(-4)}=0 \tag{6.2}\\
D_{a}^{-} a^{(-4)}+\partial^{-} D_{a}^{+} a^{(-4)}+2 a^{(-4)} D_{a}^{+} a^{(-2)}-2 a^{(-2)} D_{a}^{+} a^{(-4)}=0 \tag{6.3}
\end{gather*}
$$

These equations are equivalent to the dynamical equations $D_{a}^{+} b^{(q)}(A)=$ 0 for the harmonic components of $V^{++}(5.1)$ in the A-frame.

The analyticity equations imply the following condition

$$
\begin{equation*}
\nabla^{++} W^{+a}=\nabla^{++}\left(D^{+3}\right)^{a} A^{--}=0 \tag{6.4}
\end{equation*}
$$

producing the relations between harmonic components of W^{+a}. Remark that the additional conditions $D_{a}^{+} a^{(0)}=0$ or $\left(D^{+3}\right)^{a} a^{(-2)}=0$ correspond to pure gauge solutions of $S Y M_{6}^{1}$.

By analogy with (6.4) one can obtain the general relations between the harmonic components of $\mathrm{Eq}(3.1)$:

$$
\begin{equation*}
\left(D^{+}\right)^{4} a^{(-4)}=0 \Leftrightarrow\left(D^{+}\right)^{4} a^{(0,-2)}=0 \tag{6.5}
\end{equation*}
$$

The on-shell dependence of the superfields $a^{(q)}$ allow us to simplify the $S Y M_{6}^{1}$-equations.

Now the convenient 'hybrid' choice of the field variables will be considered. Let $a^{(0)}, a^{(-2)}, b^{(+2)}$ and $b^{(+1)}$ be the independent variables and b^{0} and $a^{(-4)}$ be treated as the functions of these variables. We can use the gauge (5.6) and Eqs(5.16-5.18) in this frame, too.

Using $\operatorname{Eq}(5.17)$ one can obtain the relation for the dependent function of the hybrid frame

$$
\begin{equation*}
b^{0}(A)=\frac{1}{1-a_{\rho}^{(0)}}\left[\partial^{++} a_{\rho}^{(-2)}+a_{\rho}^{(0)}-\rho\left(0_{+}\right)^{4} a_{\rho}^{(-4)}\right] \tag{6.6}
\end{equation*}
$$

The analyticity condition $D_{a}^{+} b^{0}(A)=0$ is a single dynamical equation in this approach. It should be stressed that this equation describe the general $S U(2)$ solution.

Consider a solution of the harmonic bridge equation (3.15) for the case $\rho=0$

$$
\begin{equation*}
h_{A}=\exp \left[(1 / 2)\left(U^{0}\right) \ln \left(1-a_{0}^{(0)}\right)\right]\left[1-\left(U^{+2}\right) a_{0}^{(-2)}\right] \tag{6.7}
\end{equation*}
$$

This solution has only one singular point $a_{0}^{(0)}=1$ More general solution can contain additional singularities. An arbitrariness in the bridge solution is connected with the gauge freedom of $\mathrm{Eq}(3.15)$. $\mathrm{Eq}(6.7)$ produce a relation for $a_{0}^{(-1)}$.

The polynomial form of the corresponding dynamical equation is

$$
\begin{align*}
& \left(1+\partial^{++} a_{0}^{(-2)}\right) D_{a}^{+} a_{0}^{(0)}+\left(1-a_{0}^{(0)}\right) D_{a}^{+} \partial^{++} a_{0}^{(-2)}=0 \tag{6.8}\\
& a_{0}^{(0)}(z)=\left(D_{2}\right)_{a b} A^{a b}(z), a_{0}^{(-2)}(z, u)=D_{a}^{+} A^{a(-3)}(z, u) \tag{6,9}
\end{align*}
$$

Remark that this one-component equation is covariant under the residual gauge transformations of the $\left(b^{0}, 0\right)$-gauge. The consistency condition for this equation follows from the restriction (5.15)

$$
\begin{equation*}
\left(D_{2}\right)_{a b} \int d u b^{0}(z, u)=\left(D_{2}\right)_{a b}\left[\frac{a_{0}^{(0)}}{1-a_{0}^{(0)}}\right]=0 \tag{6:10}
\end{equation*}
$$

One can try to solve these equations in superfields or in components and then use the b^{0}-solution for the construction of the bridge to the central basis.

Thus, the $S Y M_{6}^{1}$-system reduces to $\operatorname{Eqs}(5.13)$ or (6.8) in the $\left(b^{0}, 0\right)$ gauge. This reduction simplifies significantly the initial $S Y M_{6}^{1}$-system and gives the hope to obtain the explicit solutions of this problem.

7 Conclusion

The harmonic-superspace integrability of $S Y M_{6}^{1}$-theory guarantees the analogous property of its $N=2, D=4$ subsystem $S Y M_{4}^{2}$. Consider the
representation (3.3) in the Euclidean version of $S Y M_{4}^{2}$

$$
\begin{equation*}
A^{-}(z, u)=D_{\alpha}^{+} A^{\alpha(-3)}+\bar{D}_{\dot{\alpha}}^{+} \bar{A}^{\dot{\alpha}(-3)} \tag{7.1}
\end{equation*}
$$

where two-component spinors are used.
The case $A^{\alpha(-3)}=0$ corresponds to the general self-dual solution of $S Y M_{4}^{2}$

$$
\begin{equation*}
W(A)=\left(D^{+}\right)^{2} A=0 \tag{7.2}
\end{equation*}
$$

The self-dual prepotential $A^{o(-3}$ satisfies also the nonlinear $A Z C$-equation (3.4).

Note that $S Y M_{4}^{2}$-equations in $H S$ are covariant under the discrete transformation

$$
\begin{equation*}
\theta_{i}^{\alpha} \leftrightarrow \bar{\theta}_{i}^{\dot{\alpha}} \quad A^{\alpha(-3)} \leftrightarrow A^{\dot{\alpha}(-3)} \tag{7.3}
\end{equation*}
$$

that is a residual form of the Lorentz transformation in $D=6$. This discrete transformation corresponds to the duality transformation between self-dual and anti-self-dual solutions. Specific features of $S Y M_{4}^{2}$-solutions will be discussed elsewhere.

It scems natural that the effective quantum action of $S Y M_{4}^{2}[18]$ can be rewritten in terms of $N=2$ superfields. Note that the simplest harmonic gauge for the gauge group $S U(3)$ contains analytic components b_{3}^{0} and $b_{8}^{(+2)}$ corresponding to the Cartan generators of $S U(3)[24,25]$. Analogous harmonic gauges can be found for any gauge group.

The integrable theory $S Y M_{4}^{3}$ can be described in the framework of $S Y M_{4}^{2}$ with the special hypermultiplet interactions [2]. An analogous construction exists for the integrable $S Y M_{6}^{2}$-theory in terms of $H S_{6}^{1}$-superfields. It seems natural to consider the A-frame $H S$-equations of more general interacting $S Y M$-supergravity-matter systems. Any $H S$-integrable system can be reduced to the dynamical analyticity conditions and some solvable linear constraints. This formulation may help to build the explicit classical solutions and to study quantum solutions.

The author would like to thank cordially. E.A.Ivanov and V.I. Ogievetsky for stimulating discussions and critical remarks and C.Devchand, A.A. Kapustnikov, A.D.l'opov, K.S.Stelle and M.A.Vasiliev for discussions. I am grateful to A.'T.Filippov, D.I.Kazakov and the administration of LTP JINR for support and hospitality. This work is partially supported by ISF-grant RUA000 and INTAS-grant 93-127.

References

[1] A.Galperin, E.Ivanov, S.Kalitzin, V.Ogievetsky and E.Sokatclev. Class. Quant Grav 1 (1984) 469
[2] A.Galperin, E.Ivanov, V.Ogievetsky and E.Sokatcher, Class, Quant. Grav. 2 (1985) 601
[3] A.Galperin, E:Ivanov, V.Ogievetsky and E.Sokatchev. Amn. Phys. 185 (1988) 1
[4] C.Devchand and V.Ogievetsky, Plys. Lett. B297 (1992) 93
[5] E.Witten, Phys Lett. 7713 (1978) 394
[6] A.Galperin, E.Ivanov, S.Kalitzin, V.Ogicvetsky and E.Sokatchev, Plys. Lett. 151B (1985) 215
[7] Yul.Manin, Gauge fields and complex geonetry, Nauka Publ. Moscow, 1984; English transl.: Springer, Berlin, 1988
[8] I.V.Volovich, Lett.Matli.Pliys. 7 (1983) 517
[9] A.A.Rosly, Class.Quant.Grav. 2 (1985) 693
[10] C.Devchand, J.Matli.Phys. 30 (1989) 2978
[11] C.Devchand and V.I.Ogicvetsky, Berezin Memorial Volume, ed. R.L.Dobrushin et al.(AMS 1994);1ep-ili/9310071
[12] E.Sokatchev, Phys.Lett. 13217 (1989) 489
[13] E.Witten, Nucl. Phys. 13266 (1986) 245
[14] B.M.Zupnik, Yad.Fiz. 44 (1986) 794; Englislı transl.: Sov. I. Nucl. Phys. 44 (1986) 512
[15] 13.M.Zupuik, Yad.Fiz. 48 (1988) 1171; Euglish trausl.: Sov. J. Nucl. Phys. 48 (1988) 744
[16] B.M.Zupnik, In: Group-theoretical wethods in plyysics (HI international seminar, Yurmala-1985) v.1, p.52, Nauka Publ., Moscow 1986
[17] P.S.Howe, K.S.Stelle ànd P.C.West, Class. Quant. Qrav. 2 (1985) 815 [18] N.Seiberg and E.Witten, Nucl.Phys., B426 (1994) 19
[19] R.Grimm, M.Sohnius and J.Wess, Nucl.Phys. B133 (1978) 275
[20] J.Koller, Nucl. Phys. B222 (1983) 319
[21] P.S.Howe, G.Sierra and P.K.Townsend, Nucl. Phys. B221 (1983) 331
[22] B.M.Zupnik, Teor.Mat.Fiz. 69 (1986) 207; Pliys. Lett. B183 (1987) 17.5
[23] E.Ivanov, Phys.Lett. 13205 (1988) 499
[24] B.M.Zupnik, Phys. Lett. 3209 (1988) 513
[25] B.M.Zupnik and L.V.Tolstonog, Teor. Mat. Fiz: 80 (1989) 391
[26] S.Kalitzin and E.Sokatchev, Class: Quant. Grav. 4 (1987) L173
[27] O.V.Ogievetsky, in: Group-Theoretical Methods in Physics, ed H.-D. Doebner et al., Springer Lect. Notes in Phys. 313 (1988) 548
[28] L.D.Faddeev and L.A.Takhtajan, Hamiltonian methods in. the theory of solitons, Nauka Publ., Moscow, 1986; English transl.: Berlin, Springer, 1987
[29] E.Corrigan, D.B.Fairlie, P.Goddard and R.Yates, Comm. Math. Phys. $58(1978) 223$
[30] C.Devchand and A.Leznov, Comm.Math.Phys., 160 (1994) 551
[31] L.Mezinchescu, JINR preprint P2-12572, Dubna, 1979

[^0]: *E-mail address: zupnik@thsun1.jinr.dubna.su

[^1]: ${ }^{1}$ This rule for the harmonic method has been formulated by V:I.Ogievetsky

