


Nonrelatrvrstrc classical equations of - motlon of magnetlc mo- -
ment-in inhomogeneous electromagnetic field are well known. A
relativistic equat.lon of motion for a polarization vector of a pa.rtl-
cle moving in a homogenous electromagnetic. field was obtained by
Bargmann, Michel and Telegdi in 1959 [1] on the basis of Bloch’s
statement [2] that the equation for the mean value of spin operator
~in such fields coincide with the classical one. A large number of

papers (see for example [3], [4] and. references: therein)' are aimed "
at. constructmg a classical Hamiltonian in the case of mhomoge—
neous electromagnetlc and gravrtatrona.l ﬁelds Wlth the purpos° of
subsequent quantization. f . ‘
A classical description of a pa,rtlcle i8 possrble, if: ,
1. There is a classical trajectory, which i is defined by the mean
values of quantum operators, mcludmg the spin operator S
2. The pola.nzatron vector of a part.lcle has a constant abso-
lute value in the rest-frame assocmted mth the motlon along the'v ‘
classmal tra_]ectory _ P : S
In homogenous electromagnetrc fields these assumptlons are vahd
as Iong as the usual conditions for the quasiclassicity of the motion
hold [1] in mhomogeneous fields, however, their vahdlty has further
" essential physrca.l limits. These limits are associated, for instance,
with the splitting of a beam in an inhomogeneous magnetlc field
(Stern-Gerlach effect [5]) and with the relaxation of a transverse
(with reference to the field) polanza.tlon In this case after ‘the
sphtt.mg only the tm_]ectonea for particles w1th a deﬁnrte spin -pro-
jection on the field direction have a physical meaning, while the
averaged over the spin variables classical trajectory may appear to. -
~ be lying between the real trajectories, where there are practically
‘no particles.- The' relaxation of 2 transverse polanza.tron changes
the absolute value of the polanzatlon vector, thus violating the as-
sumption 2. The motion of  spin in an inhomogeneous magnetic
field in‘the: genera.l case does not- allow a classical description: The

“Bloch’s statement is restncted to homobenous ﬁelds and is not true
for. this cage. r il hal e LRl G b
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- We shall use a simple example allowing an. exact analytical s0-
lution” of a quantum problem, to demonstrate the mentioned pe-
culiarities of the motion in an inhdmogeneous field, and then the

case.

1 ‘EVolution of a("auss1an 'Wave' Packet

In a Llnearly Inhomogeneous Mag-'
netic Field |

To‘obtain a quantltatlve e'valua_tionto‘f the applicabiljty conditions
for the classical description of a nonrelativistic motion of a neutral

partlcle in a linearly inhomogeneous magnetic ﬁeld in a geometry
: correspondmg to Stern Gerlach experiment we shall use the analyt- -

ical solution of a qua.ntum problem about the passage of a gausslan

wave packet through such a field, obtained by Muller and Metz. {6]. -
The paper [6] employs the ngner-Weyl-Moyal (WWM) represen- .

tation of quantum mechanics (see [7], [8], [9]), genera.hzed by Varilly
-and Grasia-Bondia [10] to particles with an arbitrary spin. We shall
 present here the basic ideas and formulae of this representatlon for
spin 1/2. : :
Consider a densrty matnx pab(ql,qg,t) of a partlcle with spm
1/2 (a,b are spin variables). Let us construct a matrix distribution
efunctlon by the formula
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Van]h and Grama—Bondla supplemented the classical phase space
R® with a unit sphere S? - the set of ”classical spin” values.  They
have formulated ”the Stratonovich-Weyl rule” for the case being
consldered 1. e. the one-to-one correspondence between operators

qua.htatlve results of the ana.lys1s w1]l be extended to the relat1v1st1c '

,t) Lr. 'l(1) 8

‘A on Hilbert space ‘and- funct1ons w4 on the phase space R x S2

which - reduces the calculation of < A > to mtegratmg over. the
phase space. Thls correspondence for a spin js rea.hzed by

wp= Sp(A'-A’(9,¢))a'”“ @

: where the matnx elements N (6 $) may be expressed in terms of "

the sphencal harmonics and Clebsch Gordon coeﬂicrents For a spm

1/2, :
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We shall call a distribution functzon a function f(q,p, n,t) (n is

“a unit vector on S?), which corresponds to the matrix (1) according
»to the rule (2). Probabilities of finding a particle w1th a coordmate

¢ and momentum p may. be expressed- as

(@) - f AL OF
PO = [ 16,670, ©
Mean values of any operator A are glven by

A= [wEd R)1(6. 5P a i,

" Let us deﬁne a thsted product of two functlons on the phase
spa,ce by ) ‘

(f x9)() = f / ’fv(f“f’)g(?r”’;)‘L‘(% 7, 7")d7'd~f"*; S

where v = (¢, 5, 1), the mtegrals are taken over. the entlre phase '
space, and the kernel Lis given by . ,

L('r, ¥, 'r”) = 4—sp (Am(n A”’(n')A”z(n"))
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The tlme evolutlon of the dxstnbutlon functlon is descnbed by
the equatlon

af

fwhere wy is the function correspondmg to Hamiltonian accordmg

to. (2) The ‘motion of a neutral pertlcle in a magnetlc ﬁeld s
descnbed by the Pa.uh Hamiltonian

1.2 poma ' L T
h=LlF-BpE ,
2mp BN )

where L is the magnetic moment of the pa.rtlcle Consider the most
" simple linearly inhomogeneous magnetic field B = B'(-z,0,z) and
a’wave packet of a neutral particle with spin 1 /2 moving along

the y-axis is At t 0 the packet is described by the distribution"

mfunctlon ‘ , :
BTE =%(1+\/§a’oﬁ) fol#,0) - folu,ps) - fol2,0),  (6)

where -

)

olor) = ,»,a;?xp [ »(qazqo;) ] e""\[”‘, (?qo;pqo) |

iy is the polarization vector of the pa.rtlcle at t = 0, and o, and
< ggq are the packet widths in momentum and coordma.te spaces. For
‘a pure state they are connected by the uncertainty rela.tlonshlp

100 =1/2.In thls case there is a wave functlon which is given at
t=0by

RN . 1 f . z2 2 . (z — )2 .
) = —_— —— — y_ ML Y
(2,9, 2) T exp |- 7 g2 o8 -}-;py .

Its further evolutlon is described by the usual Schroedmger equa-
tion. Thls problem has been studied by Scully et al. [11]. The
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- consideration of the problem in the WWM formalism is' somewhat
- more complete, . {for.it. allows to account not only for the quantum
“diffraction of the packet, but also for its 5preadmg due to the initial -
_dispersion of momenta, which usually plays the decmve role in ac-

tual experiments (see, for example, [B]). If o & 79, ONE may ignore -

the terms proportlona.l 1oz in Hamlltoman (5) Then it becomes

B {
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For this Harmltoma,n Mu]ler and Metz have obta.med the exact

solution of the equatlon (4) ‘with the initial distribution function

(6):.
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(ao, cos <p + aoy sin <p) exp [ (z — 20— %) ] exp ["'Pi]

‘where p= #OB,’,(P ¢ — pt(z - pt/2m) (Here and below we use

the units system in which the coordmate and momentum pa.cket
w1dths a.re equal to unlty ) :



2 Beam Splitting and Relexation of Po-

larlzatlon In Inhomogeneous Magnetlc‘

_Field

A probablhty to ﬁnd a partlcle w1th a deﬁmte spin pro Jectlon in a
_point z is defined according to (3) by

R() = [w0.9)5(, po 0, )sinbdsddds, (3

B = [0, 01 (5 p 0, )sindebdpp,

; where wy = (1 + \/gcos 9), (1 —V3cos 9) are the func—
tions ’corresponding by (2) to the pro_]ectors ;

1 0) fo o)

“ Upon integrating we obtain

' v l4a, 1 o 1 popEet ,"(2‘20" 2‘%)2 |
Pi(z) = o 1 lexpd = ’
T( ) 2 VT 1+(;§;)2 p{ 1‘+('$T)2 } ‘(9)

R _ ;z—‘Zb_ e
Pl(z)= ! _1 —— - exp »;-:-( +4r2n) . (10)
Er A e

b The mean value of the z coordmate 18

<z>—/ z(PT(z)+P1(z))dz¥“‘°“t—+ . Z.(ll) |

2m 2

The beam sphttmg in momentum spar,e 1s convenlently de—
scnbed by the posmblhty of ﬁndmg a partlcle in the point z = 2,

‘which equals :

P(zo)— ! = - eX ———(ﬂ)—} - (12)
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For the further ana.lysm we shall need a.lso the probablhtles of
finding a pa,rtlcle with'a momentum Pz They are glven by

lda, 1 ( pt’)2 |

2o e~ (-2)], 09

o 2\/7_rexp[ (,+2“;. ,_(14)
The beam sphttmg in the momentum spar,e 15. charactenzed bytr,

the proba,blhty P (pz = O), whlch equa.ls SRR v

\, , Pl(pz) _.’

P = o) }p - (_2_)] (15)

At last let us’ ﬁnd the components of the polanzatlon vector

‘By the rule (2), Pauli matrixes -

0’,’? 10)% i 0 )T o —1)
correspond to the functmnl EF R T eV | i
w,,(@ ¢>) \/§sm9cos¢, |
. ;‘ w,v(G c;b) 351n Hsm c;b, , o
w.,, @, c;b) \/5 cos@
,;The mean va.lues we axe mterested m axe glven by ; ;‘ s

 a=<as=[[s (57@9) Pafp=
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Wlth the dlstnbutlon functlon (7) we obta.ln

i

a; = (d;o c}oé ,u.édt — ayo 5in gzot) exip L ('L;t) (Zf;) , (16)
ag, = (a,‘co sin pzot + ayo eos pzot) exp L— (——2-) - (Z—rn-) , (A7)
| T a=a (18)

; The first factors in (16), (17) correspond to the regular preces-
“sion of the polarization vector with a frequency uzo = poH(z0); the
~second factors describe the relaxation of the transverse polarization
(here and later-the words ”longitudinal” and ”transverse” refer to

the direction in reference to ‘the:field, not to the particle velocity)
It is convenient to.introduce the absolute value of the transverse
polarization vector, grven by, vy SR :

Formulae (12), (15) and (19) involve three charactenstlc times:
(4m/p.) V2, ="2/4, 73 = m. The physmal meaning’ of these

para.meters is clear from (12) and (15) 71 is the time of the beam

_ splitting in coordinate space in the: case:of: quasmlassrcal .motion
(73 > 7); 7 is the time of the beam splitting in the momentum
- 8pace (lt equals the time" of ‘the’ spatla.l splitting in the case of a
great quantum dlffractlon T3 < 7'1), 73 is the quantum diffraction

characteristic time. In dimensional units these times are: T =

(20q/a)1/ , T2 = apfma, Ty.="may[d,, where a = po/2m |dB, [dz|

15 the classical acceleration due to mhomogeneous magnetlc field.
Ifa pomt source is located at a distance d from a diaphragmof a

radius oy, the value of o, is defined by the angular spreading of the

8

beam O’qp/d and the quantum dlffractron h/ oq. For alarge angular .

e

spreading aqp/d > hfa, we have Op _.,aqp/d In the opposrte hrmt
op = hif g ,
The characterrstrc tlmes are related by

| :lel_zszTa.u' R (20) :

.. Using the introduced‘notationtlet us rewrite (19) as

e SOSIC) B

Let us analyze thxﬂ formula Con51der first the case of the quasr-
classrcal motion, 73 3> 7. Then (20) rmphes that T2 << 7. Itis seen
from (21) that the relaxation time of the transverse polanzatron in

‘thls case. equals 3. The relaxatron of the transverse polanzatron

is governed by the beam sphttrng in momentum space and occurs
much more qu1ckly then the spatral separatron of the beam Rl

In the case 73 <. 7. (great quantum dn‘fractlon) (20) 1mphes -
that 7, > 7. The trmes of the beam sphttlng m momentum and?
coordinate : spaces are both equa.l to 73, and the relaxatron time of
the transverse polanzatlon ‘a8 seen from (21) is; equa.l to 7. Thus,
the: relaxation of the: transverse polarrzatron of a beam in- an in-
homogeneous magnetic field always occurs. more qurckly then, the
spatial splitting of the beam; in the quamclassrcal case the char- ;
acteristic time of the relaxatron equals o, /ma, and in the case of
great quantum diffraction — (20 /a)ll 2

"The obtained results allow us to analyze the hmlts of apphca— |
bility of the nonrelatlvmtrc classical ‘equation for the motion of a
polanzatron vector in ‘the’considered field, which was obtained by‘v
assuming the conse_rvatron of 1ts absolute value Tt has the‘form )

offxd e

The equatrons of motron for the quantum mean . values of spin*
drﬂ'er from (22) ‘This fact is -connected wrth the correlation be-
tween coordmate and spm vanables, Whrch 1s also responsrble forv



'the negative values of the drstnbutron functron (12].. It is readily
~ seen from (16) and (17) that EEEE

o
.:c - z e zy 23) -
q "o ("'2 - & ) ; : 23)
Co o f2t Aty
ay = ,va,‘ -. (;25 + ;f—) ay. ‘ (24)

- The additional terms in the right sides of (23) and (24) describe
the relaxation of the transverse polarization. Their form depends
on the model in use (gausslan beams). In general, the motion of the
polanza.tlon vector in an inhomogeneous magnetic field does not al-

- low a classical description. The equation (22) is an approximation;

it describes the motion of the polarization vector rather well when
~ the change of its absolute value over the precession period is neg-
- ligible and time is small in comparison with the relaxation time of
'fthe transverse pola.nzatlon, but it does not hold at greater t.
"‘Qualitative results of the performed analysis of the transverse
polanza.tlon rela.xa,tron remain valid for the relativistic motion of a
particle in the conditions of Stern-Gerlach experiment. The char-
“acteristic trmes in this case differ from nonrelatrvrstrc ones because
‘of the changed kmematlcs o ’ Rh

20, 1/2 g "a',,’,"‘ma k
= ( 7) y T2 = £ y T3 = V0 q’y);
’ . a moa . GP, \
\ ; ‘where mg is the rest mass, @ = /2mo [dB /dz], y= (l—vz/cz)"l"2

is the relativistic factor of the particle (we assume the transverse
motron nonrelativistic) The relationship (20) holds i in this case too.
- So, the conditions of the classical description are violated be-
_cause of the beam depolarization. The depolarization is due to the
- separation of the bea.ms with different spin projections in momen-

"tum or coordinate : space, i. e. wrth disappearing of interferention’ -

_ effects. This conclusion holds for a motlon of partrcles both neutral
I and cha.rged in arbitrary’ external ﬁelds R ’

SR 1)

Relativistic classicalreQuetious for a coordinate and a pola.nze.;

" tion vector in an arbitrary inhomogeneous electroma.gnetlc ﬁeld '

according to [4 ] have the form (for a neutral pa.rtrcle)

d . B v H g : . :
Cda* | Auy o
'5? =~—qu“”a,, +I-1'0U”F"VU,\G - U" dzf’_ G",' - (28)

where u# is the four-veloc1ty of the partlcle, a* is the polarrzatlon

vector, F#* is the electromagnetic field tensor, and €apc4 18 an abso-

lutely antlsymmetnc tensor. "
In this case in addition to the hmrts of apphcablhty of the c]as—,

‘sical equations discussed above one has to evaluate the va.hdlty of.

considering the terms in (26), connected with Thomas precession

_(third term in the right side of (26)) The relaxation of the trans-.
- verse- polarization over the penod of Thomas precession must be
" negligible, for the condition a,a” = const was used to- deduce the

equations (25 - 26). e DR
- To generahze the equatlon (25) on the motlon in a gra.vrtatlonal‘

" field it is proposed [3 ] to introduce’ (m the first order of h) a term :

ab iy Ad‘ 8
« ER“V'U. eabcda u,

where'RZ(,’,,is the Riemann tensor. .This ,addit‘ioua;l;term, a.s,wellva's
the right side of (25), is linear in relation to the polarization vector

_and therefore must also cause the splitting of the quasmla.ssrcal :

tra_]ectorles and depolanzatlon of the beam. P
‘The authors are indebted to A. V. Bobylev, V.. K Igna,tovrch

V. L. Lyuboshitz a.nd especially to |M. I. Podgoretsku for helpful&
dlscussrons
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