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1 Introductlon o

The difficulties associated.with the probabﬂrty densrty for photons were recognrzed

by Landau and Peierls as early as 1930 [1]. However, density obtained by them
was not positive definite and, thus, had no physical meaning. Later, Zeldovich (2]

obtained the following bilinear representation for a number of photons ;
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Here £ and H are electromagnetrc field Stréngths' The relation of photon nonlocaliz-
ability to other fundamental problems of modern physics has been discussed recently -
in ref. [3] which, in “fact, initiated this investigation. For the static magnetrc ﬁeld
there is a topologrca] invariant called’ hehcrty whlch is deﬁned as [4—6] :

(1)

'~‘r*f’Sk/A B‘dv (12)

Here A is the usua.l magnetrc vector’ potentra.l (H —'curlA) The main a.dvantage
of S is that it s invariant under the gauge transformation A - A + grad f under
the condition that either- 12 decreases suﬂicrently fast_at mﬁmty or the normal
component of H vanishes at some boundary inside which H and A are confined. -For
the static magnetic field S characterizes to what extent magnetic lines are coupled :
with each other. .It has meaning even for the single magnetic line. ‘In’ this case it
estimates the screwness of this line. The relativistic generalization of helicity was
introduced in ref. [7]. It is defined as an integral over the zeroth component of the
vector :

:jj“4FW“m”fﬁ” 3R Fop =0l S 0pAs(13)

where e“""“ is a completly antisymmetric fourth rank tensor with €123 = ] The '
components of the 4—current dcnsrty : * L

=i f, 7=H ®+AxE ‘uq
satisfy the equation ) . .
! ’ “;—ZE‘I; ) o o (]5)

It follows from this that j, is conserved only if E- 17 = 0. Thlb means that in a
relativistic case helicity (1.2) has physical meanmg ‘only for the very special elec-
tromagnetic fields.  Another approach adopted in refs. (8, 9] was grounded on the
observation made by Stratton [10] that for the free electromagnetlc field the stan-

- dard representatron of ﬁeld strengths .

5 = —grad@ A/c, 17='cur1A - -('1.6)"'
coexists with the followmg one - k

-

E=—cur117 | =‘—grad‘Il - V/c ’ o (1.7)
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.~QObviously, F and H may be united into the 2-nd rank tensor ‘ :
PO =, Fi=ep-By Fu=0Y, -8V, V.=(¥-V)

" The following 4-current ‘can be constructed from F‘“’ and V* '
L #=F .Y,
“Or, explicitly,

=

P=EV, j=E-v- HxV

It is'easy to check that 9, _7”' =—-- 2E ¢ 1t follows that 4—current Jr = jr— Gk is
conserved 3,J* = 0. The explicit C(J)mponeuts of J¥ are

o P=RA-EV, JkH o+ Ex A- E‘D-}-IIxV - (18)

Some words should be added concemmg tlle alternatlve representation of the electro-

" magnetic strengths (1.7). Tn ref. [11] the nontrivial configurations of electric dipoles
were found’ which are described adequately by the electric vector potential rather
than electric scalar one Further, a quite different functional form of the Fourier
transforms of A and V (sec Eq.(2.2)) suggest that they descnbe different degrees of
{recdom of the electromagnetrc ﬁeld

2 Relat1v1stlc hehc1ty and lts physmal meanlng

. The conservatlon of J”' suggests that tlle mtegral

/ (- A-E 7 o e

does not depend on trmc It is the relativistic generahzatron of helicity for an ; arbr—
irary free electromaguetlc field. For this field only transversal components of E and
i thave physical: meaning (however, sometinies (see, e.g., [12,13]) the physical sense
" is ascribed to the longitudinal component of electromagnetlc field). The longitudinal
component is most easxly eliminated 1l' the Coulomb gauge is used

th V=3=0, divA=div¥'=0

T A

To clarlfy the physical meaning of S, we perform the Fourier’ expansron of field
. strengths and potentials accordmg {o the following rule

,’ . ; G(z) /G(k)exp(tk z)d’ " ‘_: ) ,
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The requrrement o{ E, ﬁ, A V to be real leads to the followmg representatlon of thc
Fourier components [14] ; ; . ;

e ‘—(,z..<' - -.‘

AR = \/—(f(k) T, V(k) Ervls (f‘(E)‘ $FCER) )

Here w = ¢|k|. The function f(k) l>emg the plroton wave l'uuctlon in the momentum
space satlsheh the equatlons )

‘if?sf~wf, E-f=0

(m l'act f = e:rr(-—zwt) fo where fo does not depend on trme) Usmg (2 2) we,
evaluate the energy of the clectronmgnetlc field:

- ;s_/b—:fl—' z—/*w_f”f(k)f"(k)d-‘ki“

- lt fOIIOWs Trom ll]ln that p(lc) f (k)f(lc)/h is Ihe plrotons densrty m the momentum

space The total numbor ol' photons is given by

N= /’p(E)d’k e )
l‘lre same e\rpresmon is obtained if we substitute the Fourier expansions of £ and [I-
into (1.1) and perform mtegrahon over the spatlal variables. To clarify the physlcal

' meamng ()f S we change E i, A, V m (2 t) by thelr Founer expauhlons and get

et e .
S =8¢ z/k (f (k) xf k') —E : '}'1(2.4)
Now we. represent f in: tlre l'orm [14] i k
o f -—Cﬂfn—*-«lfI et . o (2.5)-

llere en ¢n(l &, are tlre unit vectors l'or the nglrt and left clrcularly polanzed photons.
(e}l €r = €1 - eL—l eRXeH-ze,‘, €7 X € = —ifk, Pk _k/k)
Snbstrtutron ol' (2 5) mto (2 4) grves . : ‘

b —‘87r(‘ /(lfRP lle )d3 ! (26)

It is easy to check: that tlle plloton density in the momentum space is grven by p(k) =
(lfnll + lf[,lz)/h This neans that S/8mch comcrdes with the difference of the right’
and left c1rcularly polarwed pllotonh Nence, (| fz> Z1f1.1?)/h and (1711 EV )/th
are the densities correspondm_g to this difference in the momentum and coordmate ‘
space; resp. Now we express f(k) in' Eq.(2:3) through its Fourier transform (f(k)
T);ff(:!:) exp(—zk :z:)r[’::) I‘llen N= fp(::)d’:: where p(:r) = |f(:r)| /h Since”
p(¥) is poartlve ‘definite it seems at first that p(::) may ‘be vrewed as’a candldate for
the photon densrty Ilowever, the observables ol' the electromaguetrc ﬁeld are tlre'



field strengths E and H. The vector function f( ) is a highly nonlocal function of
them. To see this, we express f(k) tllrough the Fourier components of Eand #

....

HG '\/—(E(’C) + & x H(k))
1t follows from this that the Fourier transform of ﬂE) that is, f(") depends on the
values of £ and /7 in the whole space, not at the pomt z ouly. This is geuera.lly
considéred as a serious drawback [14]. '

For the free electromagnetic field Llpk.m [15] ‘has obtained the conserved 3-rd
- rank tensor (the so-called zilch) (omposed of field strengths and its derivatives. 1t
was traceless and symmetric with respect to the first two indices. Later, Ragusa
has discovered [16] the antisynimetric counterpart of the zilch tensor. He explicitly

showed [17] that its components in-the momentum space are reduced tothe integral -

over the difference of right’ and left circularly polarized photons mnltlphed by ‘the

first or second power of w. Because of this the physical meamng of the zilch-type.

tensors is rather obscure. On the other hand, the helicity S given by (2.1) reduces to
the difference of right and left photons. It ineasures the screwness of the electromag-
netic_field and may be considered as a missing link in the list of the Lipkin-Ragusa
invariants. Qbviously, the helicity 'S equals zero for the plane linearly polarized elec-

tromagnetlc wave.  The following important theorem concerning massless partlcles.

was formulated i ;ref. (18].. : . ,

s . Theorem 1. A theory  that allows the ronstruction of a Lorentz-covarmnt con-
served four-current J, cannof contain massless particles of spin J > 1/2 with non-
wanishing values of the conserved charge fJod’

In our case, for the particles of the spin 1 (photons) there are the conserved
4-vector given by (1.8) and conserved charge given'by (2.1).: At first glance, this dis-
. agrees with Theorem 1. However, the proof of this theorem given in [18] contains the

lmphcnt assumption that the wave function of a massless particle with definite values
of 4-momentum and helicity is an clgenfunctlon of rotation (a.ronnd 3—momentnm) n
,an arbitrary Lorentz reference frame (wntten in italics helu,zty meaus the projection
of the spin onto the direction of motion in contradistinction to hehcnty defined by
(2.1)). This in turn means that the wave function of a particle is unlqnely (up toa
nonessential phase factor) defined by its 4-momentuin'and Aelicity and, thus, is gauge
invariant. In quantum electmdynamlcs there is no complete agreement as to what
one means by the wave function of the photon. ‘Some authors (see,e.g., [19]) mean
by it the 4-potential A,, while others (sec,e.g., [20]) prefer to deal with stress tensor,
F,, . Evenin dlffereut editions of the same beok ([14],[21]) various definitions are
sometimes adopted The gaugc—lnvanant definition of photon wave function adopted
in_ref.; [18] corresponds to the the second deﬁmtlon, ie., to F,. In this basis (ie.,
in F,,) all the matrix elcments of the 4-vector (1.8) are equa.l to zero. Tlns is not
the case for the: basls assocmted wnth the 4-potential. A
We briefly summarize the content of this section: ﬂw uantltv (” 1) 1s found whlch
generahzcs hehcnty notion for the’ arbltrary free clec

correspondmg to this generalized helicity taken at some space point is expressed

magnetlc ﬁcld LIt comcxdes:
with' the difference of the right and left photons comnposing this field.” The density

through the va]ues of electromagnetlc strengths and potentla]s taken at the same
pomt ; . ; :

3 Gauge-mvarlant representatlon for th'
of weak gravitational field ‘

In the mentioned above ref. [18] another theorem was proved as well.

Theorem 2. A theory that allows the construction of a conserved Lorentz—couaﬂant '
cnergy -momentum ©* for which f(')o"(f’:z: is the’ energy momentum fou.r-uector can~
not contain massless particles of spin j > 1.

This meauns, in partlcular, that a gange—mvarlant denslty of the ﬁeld energy does
not exist”for the' Lorentz-covariant field of the.spin, 2. It was ‘shown in ref.’ [22],
that Einsteinian gravitational equatxons in the weak field limit and in the absence of
masses coincide with the equations describing the massless’ spin “2'field. Then, the
above Theorem reflects the well-known difficulty with the energy density’ problem in
the General Relativity [23]. In this section, we find the gauge-invariant expressron for
the energy of the weak gravitational field consisting of gravitational waves.-However,
this expression reduces to a double mtegral similar to (1.1). Following ref. [22], we
mtroduce the gauge—mvanant (m the sense deﬁned below, see Eq (3 7)) qnantltles

(3 1)

Here R,“,W i8. the R.lemann tensor Accordmg to [22], the symmetnc traceless ten-
sors E;; and H;j in the weak ﬁeld hmlt satlsfy equatxons strongly resembhng the

Rﬁh = —kalelmanlmm ’ Hl'j 45|mnR41mn =‘ EmmRm

_ Maxwe]han ones

f-’(dakEIj + EatH-'j =0, . 3;5-'5 =0 o
Cad
Dy — 1‘0¢E;,- =0, 8F;=0"

For the weak gravntatlonal field (g, = S+ s (R} < l) the standard eqna.tlons ‘
connectmg the curvature tensor with Chmtoﬂe] symbols have the form [24] +¢voit

: Rl.wptr =0, P[.wa T' a rpvp

Here I'ye = 3@k + O,k — 9 h,,,) Havmg taken into account (3.1) these Eqs '
can be presented in the form sxmllar to the electrodynamlc ones (] 6) a.nd (l 7)

: HIJ= fcmnamAnJ) EIJ _v——at iJ—aAOJ 3 (3 3)
E.J = —€|mnamvn“ H.J =—za¢ ({n BVOJ F e e (3_4)
Here Vo
L
2

[T - FRCIE A : ] ' . ' ce ' i
o A.J = 1P4j.‘, AoJ‘ = P4j4, V|J= "'Efjmnrmyr.i) , VOJ = fimnrmnA . (35) .



Usmg a gauge Au, = 0 Vo; = 0 we find the following' cxpressions for ‘the Fourier

transforms of Eij(Z), Hij(%), Ai;(2), Vi;(Z) strongly resembling electromagnctxc'

ones (2 2)

kY

R - 3 : . : 3
lJ(k) 2 zf(f-z(k)'*'fu ( k)): ‘ 'J(k) \/Eflmn m(fn;(k)"fnz ( k'))
e »/_‘ i o VE
Aij(k) = \/—(fu(l") f-; (=F), Vilf) = - \/2_5.,,.,. m(fn,(’»)+fn, (k)

Here G is a Newtoman gravxtatlonal constant. Symmetnc traceless tenbors f.,(k)
satlsfy the equatmns

Q'

1atfl1"‘wflp kf-; —0

'The Hllbert condmou 7/ h“,, F— —3 h.,,p =0 usua.lly nnpOSed ou h“,, [24] leads to the

'followmg equatlon on h“,, ) _
’ L ) } Dh“., =0

The gauge ¢ transformatlon : EER ,
» h‘w—»h“,,+()v,,+3v“, Ou,=0 . (7
does riot change the tensor Rm'pa: conserves the Hilbert condition and does not

change the: total energy and momentum-of the weak. gravitational field (as it adds
' complete divergence to the energy-momentum pseudotensor). The gauge transfor-

mation’(3.6) may -be used to obtam h,u, sahsfymg thc followmg transversal gaugo

conditions {25] s : . . P
heye =0, h{ = hu = 0 h.. = 0 b =0 R

By taking into account of (3.6) tlns gels '

1

Efirlznamhn.j) VOJ =0

Ue'mg’)the standard definition of the energy-momentum pseudotensor [24], one casily
finds the following expression for.the energy of the. weak gravitational field ;

= / Us@P +Vs@DP= 08

On tllc other hand tlua energy may be presented as a double mtegral ovcr tlle bxlocal
gauge—mvanzxnt density

Lo Ey(R)E@) + @R a0
£= 647r2G/ ' EET] Fedy )

Expressing in (3.8) and (3.9) A;;, Vi;, Eij and -H;; through their Fourier transforms
and performing the integration over the spatial variables we arrive at

f?flf-'j('?)l’wd’k 7 - (3.10)

1 :
A= —Eéath;j, Ag; =0, Vij=

ety
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A postcnon the dlstmctlon of l:r - i/'] degreeb in (l 1) and (3 9) may be reahzed by

the dimensional considerations. In (3 9) the fields E;; and I;; have dimensions {L] 72, -2

* the integral has dimension [L] aund with account of thc factor standing in front of the ’

lntcgral onc obtains the dimension of energy. In (1:1) the electromagnetic strengths
E and fI have dimensions [e]/[L] (e is a charge), the integral has dimension [e]?
and the whole. expression (1.1) i5. dimeusionless; as it ‘should ‘be: The following
fact remains unclear to us. In the case of a weak gravitational field there are two
equivalent expressions for encrgy corresponding to the local (3.8) and bilocal (3 9)
densities. In the electromagnetic case, there is only. bilocal density for the sum (1.1)
of right and left photons and local deualty for their difference (2.1).

4 Conclusmn

We have prove(l that for tllc free electromagnetic ﬁcld the conserved gauge—nonmva— :
riant 4-pseudovector can be constructed. The. integral over its zeroth component is
a gauge-invariant, mdependent of time quantlty that coincides with thé dlﬂerencc

of the right and left photous composing the field.: This ‘conserved mlegral is a
relativistic gellera.luatlon of the hehc1ty, well- known topologlcal invariant_ wndely
used for the description of the static. magnchc field. The existence of such a
quantity does not contradict the well- known theorem prohlbntmg the existence of .

. the conserved gange-invariant 4—curr(‘nt composed only of the electromagnetic ﬁeld

strengths (likewise there is no gauge invariant densnty of the gravxtahonal field
density). For the weak gravitational field rcducmg to the grawtahonal waves it is
possible. to mtmduce the qu'mtllles strongly rebemblmg lho clectroma.gnehc :

_potentlals The energy. density of weak gnwtatlonal field may be’ cxpressed’ .
. tllrough qnddrah( mml)mahom of these potentnalq On the othor hand, the enorgy
“of the' gravitational field” may be represented as a double mtcgral over the’ bllmear ‘

gauge-invariant density. The existence of tllebe two r(‘pr(‘bontatlons does noL R

. contradict the theoremn mentioned above. To the end, we note the similarity of the

electrodynamic Eqs. (l 6).(1.7),{2:2) to the gravitational ones (3. 2),(3:4), (3.6).
Probably, this will be a " balm for those who believes into the vector gravuatlonal

“ theory ( its nice expomhon may.be lound n the' book [26]) Yel. tlua sum.lanty Is

limited by the weak gravntahona.l fields.
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