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The aim of this brief note is to raise a question, rather than to 
give the answer on it. Why all observed elementary (not compos­
ite) particles have small electric charge IZI .~ I? May elementary 
particles with IZI > 1 exist? 

This question can be considered as a one more aspect of the known 
charge quantization mystery. Although this quantization· can be un­
derstood in the framework of grand unification theories [1] or even 
in the Standard model [2], the most elegant explanation dates back 
to Dirac's seminal paper [3] on magnetic monopols. Neither of these 
approaches actually exclude th~ existence of multicharged particles. 

As small electric charges can more easily escape detection than . 
big charges, theorists are more willing in introducing the former in. 
their theories. So in the literature such exotics can be found as mil­
licharged [4] or minicharged [5] particles. They were experimentally 
searched [6], but not yet found. As for multicharged particles, only 
a few ( to our knowledge) examples were suggested. Doubly charged 
Higgs boson was introduced in [71 and doubly charged (but compos~ 
ite) lepton in [8]. Neither of them were found at yet [9]. 



At least one reason can be imagined which makes big charges 
uncomfortable. It is well known [10, 11] that, when a nucleus charge 
increases, ground state electron energy level in its Coulomb field 
lowers and for some critical value of the charge, Zc '.:::= 170, plunges 
into the Dirac's sea of negative energy levels. After this the vacuum 
becomes unstable. So Zc determines an "electrodynamical upper 
frontier" for the periodic system of chemical elements. 

But a finite size of the nucleus, which removes Coulomb field sin­
gularity at the origin, plays an important role in reaching such a 
conclusion and in calculation of Zc: The Dirac's equation with bare 
Coulomb potential becomes illdefined for Z > 137. And flindamental 
elementary particles ( quarks, leptons, ... ) are believed to be point­
like. So at first sight the above described notion of critical charge 
dos not make sense for them. 

However an arbitrarily precise localization is impossible for a rel­
ativistic particle, as was realized a long time ago [12]. This means 
that in relativistic theory an elementary particle no longer can be 
considered as a pointlike source for the Coulomb field. 

The meaning of the localization for relativistic particles was care­
fully investigated [13, 14]. In particular, the most localized wave­
packet for spin zero particle with mass m, which does not contain any 
admixture of ,negative frequencies, is given by the .Newton-Wigner 
wave function [13] 

'lj;(r) ~ (m)514K5;4(mr), 
r 

(1) 

where I<,,(r) is a modified Bessel function. 
Unfortunately, 'l/J(r) in (1), belonging to the continuous spectrum, 

is not normalizable and diverges at the origin as r-5/ 2• But it can not 
be expected that the one particle picture, which is assumed in (1), 
remains valid for distances r ~ ·m-1. Therefore, we may consider the 
following simple model for pointlike elementary particle with electric 
charge Ze, 

z _ 1 ) { 0 , if r ~ ro (2) 
( e) p(r = Cr-512 KJ14(mr) , if r > ro . 

Here p(r) stands for charge density at a point r, and the constant C 
is determined from the normalization condition 

41r Jo00 

p(r)r2dr = Ze 

2 

(3) 

The cutoff parameter ro must obey ro ~ m-1. We have somewhat ar­
bitrarily take r0 = 0.0lm-1. The prescription p = 0 when r ~ r0 is a 
reflection of our desire Eq.2 to resemble topological soliton model for 
electron [15]. Instead we may take p(r) = const = p(ro) for r ~ ro. 
the results do not change signi~cantly for massive enough particles 
and for the lightest particle, still in the realm of our interest, the dif­
ference does not exceed 15%. Having in mind a qualitative nature of 
our argumentation, such subtleties will be left beyond our care. Note 
that in [15] ro coincides with electron classical radius (137mt1, so 
giving some justification for our choice. If some charge e1 probes the 
spherically symmetric charge distribution (2), the potential energy 
of their interaction is 

V ~ -41ra [} { x 2p(x)dx + {X) xp(x)dx] , (4) 

where a = z~;d, and opposite sign charges were assumeq.. 
Now we are inclined to consider Dirac's equation, with the po.:. 

tential defined from (2+4), for the ground state energy level in the 
situation when this level just dived into the negative energy sea, 
that is E=-1, in units for which the probe particle mass m1 = 1. For 
m ~ m1, this equation for the radial function G looks like [10] 

.. v . [ 1 v] 
G-vG+ V(V+2)+;v G=O, (5) 

where points designate derivatives, for example,G = ~~. 
By substitution G(r) = JV(r)'l/J(r), this equation takes the form 

which is more convenient for numerical calculations 

[ . .. (")2] .. IV V 3 V 
'ljJ + V(V + 2) + --+ - - - - 'ljJ = 0 . 

rV 2V 4 V (6) 

For large distances r ~ m-1, KJ;.i(mr) in (2) falls as e-2mr. There­
fore the second term in ( 4) can be dropped for such distances and the 
fust term, because of the normalization condition (3), gives just the 
Coulomb potential V(r) = ~o./r, for which equation (5) is exactly 
solvable in terms of the modified Bessel function of complex index 
[10] 

G(r) ~ K;,,(~), v = 2✓0.2 -1. 
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(7) 



Let us take some R ~ (2m)-1. Equation (5) (in fact(6)) can be 
numerically solved in the region 0 ~ r ~ R subject to the boundary 
conditions G(0)=0, G(O) -=/= 0. Then the smoothness of the loga­
rithmic derivative at r = R gives an equation which determines the 
critical coupling ac: 

z~I 2RG(r)I 
J(;11d(z) z=v'Bor = G(r) r=R : 

(8) 

The critical coupling so evaluated shows weak dependence on the 
mass m and changes from D'c ~ 1.03 for m = 104 to D'c ~ 1.1 for 
m = 20. These numbers correspond to the choice R = lOm- 1. If 
we take R = 5m-1 instead, the modifications don't exceed a few 
percent. Roughly modeling particle-antiparticle situation by setting 
m=2, we find D'c ~ 2.5. 

\Ve infer the following main conclusion from the above considera­
tions: every pointlike electric charge Ze, such-that z;;

2 

~ ~~ > 2+3 
destabilizes the vacuum; 

The actual. value of O'c' can be even smaller, if we remember that 
field theoretical effects discrease Zc in the case of nucleus [16] and 
some investigations show that chiral phase transition is expected in 
strongly coupled QED for D'c ~ f [17]. 

In any case in the following we will treat D'c ~ 2 + 3 as a fair 
estimate. So Zc ~ 15 + 20 can be considered as an "electrodynamical 
upper frontier" for pointlike elementary particles. 

But there is quite a lot space from 1 to Zc. Where are particles/ 
inhabiting this interval? 

Particles with a ~ ~~- > 1 ( we will call them maxicharged par­
ticles) are of particular interest, because their interactions are es­
sentially nonperturbative. For example, an "onium" from such a 
particle and antiparticle will decay more willingly into (n+l) pho­
t~ns than into n photons, because now Ze > l. This means that in 
fact it decays into an infinite number of soft photons, that is into a 
classical field. 

Another remarkable property of the maxicharged particles is that 
their classical radius r 0 = ~ ( a ~ Z 2 /137) is bigger than their 
quantum size (Compton wavelength) >.. = ¾- Because of this prop­
erty it is not very easy to produce them in, for example, electron 
positron collisions. If T ~ ¾ is the production. time of maxicharged 

1 

.. 
t, 

particle-antiparticle pair and To their annihilation time, then [18] 

T (,\)
3 

2 - ~a - = a- < 1. 
To ro 

So the pair is annihilated before they are created [18]! This suggests 
that maxicharged particles can be rather illusive objects, irrespective 
of their masses. 

In fact, the notion of maxidiarged particles was introduced by 
Schwinger [19]. Below wc rcpcat his arguments from ,vhich more 
clearly defined and shaped out notion of maxicharged particles can 
be deduced. 

Electrodynamics with electric charges e and magnetic charges g 
reveals the duality symmetry, which can be viewcd as a rotation in 
the (e,g) space. However, this symmetry should bc spontaneously 
violated [20], that is we should have the definite dircction for the 
electric axis in the. ( e,g) spitce. In fact this dircction cai1 bc guessed 
from the fact· that the only small charges surround us in our world 
[1~]. First of· all, iet. us introduce an invariant definition of smajl 
charges '[1~):. we wiH,say that,a partide -with electric cha.rge ea :.i1id/ 
magneticcliarge ga befongs:·to the category of small charges if.• .. -: : 

,e2+ g2 a _____ a < 1. 
47r 

(9) 
--·~.~, 

Correspondingly big charges (maxicharged particles in our tei-miri6f: · -
ogy) . ai:e defined throng~ •. __ 

, . - . 
. :2 : . 2 . .· 

, ea+ ga > 1 . 
41r -

If a and b are an arbitrary pair of small chargcs, thC'n 

2+·2 2+ 2 (agb - ebga)2 < ea .% Cb g1, < l . 
41r ....,. 471" 471" 

(10}; ~· 

(11) 

On the other side, Schwinger's symmctri<"al quantization <"ondition 
reads: 

Cagh -:- ebga 
.471" = n' {lZ)" 

where n is an.integer. 
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Now (11) and (12) are compatible only if n = 0! Therefore, for 
any pair of small charges we have [19] 

9a Qb 
- == -
Ca Cb 

This means that small charges occupy a single line in the ( e,g) space, 
and it seems from our every day experience that just this line is cho­
sen as representing electric charge axis after spontaneous breakdown 
of the duality symmetry. In other words none of small charges pos­
sess any amount of magnetic charge. Dyons can live only in the 
wonderland of maxicharged particles! 

Now we turn to more speculative line of reasoning. the most nat­
ural symmetrical solution of Dirac's (nonsymmetrical) quantization 
condition 

eg n. . . - = - , n - mteger ; 
41r 2 

would be e = g. So in such a hypothetical world singly charged 
particles will havEc a= ~: = 0.5, and doubly charged particles -·a= 
2. Clearly triply charged particles lay beyond the vacuum stability 
border, if we adopt the above.cited value for the critical coupling 
ac '.::::'. 2 7 3.. In fact even doubly charged particles look suspicious 
enough. So maybe the observed absence of multicharged particles 
is mere reminiscence of the epoch when there was a full harmony 
between electrical and magnetic forces? 

Note that the above picture to have any chance to be valid, some­
thing must happen to the scale in the duality space, not only to 
the orientation of the electric axis, because we know quite well that 
a '.:::::'. (137)-1 and not 0.5! Can we hope that the present value of 
the fine structure constant is associated to th_e symmetry breaking 
between electric and magnetic forces and so can be understood from 
purely symmetry considerations?·. Here we have a tempting associ­
ation that just from conformal ( or scale) symmetry considerations 
Armand Wyler obtained his marvelous forrri1ila [21]: 

9 ( 7f) 1/4 1 
a = l61r3 5! '.::::'. 137.03608 . 

(For discussions of this formula, see [22]. Some different "deriva­
tions" of this or similar formula can be found in [23], and for other 
attempts to calculate the fine structure constant, see [24]). 
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Maybe this "number in search of a theory" [2-5] at last finds it in 
electro-magnetic duality and its breaking? 

\Ve feel that it is time to finish. Russian folklore says that "one 
simpleton can ask so much questions that hundred sages fail to an­
swer". The only consolation for us is the hope that questions raised 
in this essay do not fall into such a category. 

The work of one of the authors (N.V.M.) was supported in part 
by the U.S. Grant NSF DMS 9418780. 
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