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The aim of this brief note is to raise a question, rather than to
give the answer on it. Why all observed elementary (not compos-
ite) particles have small electric charge |Z| < 1?7 May elementary
particles with |Z| > 1 exist?

This question can be-considered as a one more aspect of the known
charge quantization mystery. Although this quantization-can be un-
derstood in the framework of grand unification theories 1] or even
in the Standard model [2], the most elegant explanation dates back
to Dirac’s seminal paper [3] on magnetic monopols. Neither of these
approaches actually exclude the existence of multicharged particles.

As small electric charges can more easily escape detection than
b1g charges, theorists are more w1llmg in introducing the former in
their theories. So in the literature such exotics can be found as mil-
licharged [4] or minicharged [5] particles. They were experimentally
searched [6], but not yet found. As for multicharged particles, only
a few (to our knowledge) examples were suggested. Doubly charged
Higgs boson was introduced in [7! and doubly charged (but compos-
ite) lepton in [8]. Neither of them were found at yet [9].
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At least one reason can be imagined which makes big charges
uncomfortable. It is well known (10, 11] that, when a nucleus charge

increases, ground state electron energy level in its Coulomb field -

lowers and for some critical value of the charge, Z, ~ 170, plunges
into the Dirac’s sea of negative energy levels. After this the vacuum
becomes unstable. So Z, determines an ”electrodynamical upper
frontier” for the periodic system of chemical elements.

But a finite size of the nucleus, which removes Coulomb field sin-
gularity at the origin, plays an important role in reaching such a

conclusion and in calculation of Z.: The Dirac’s equation with bare

Coulomb potential becomes illdefined for Z > 137. And fundamental
- elementary particles (quarks, leptons,...) are believed to be point-
‘like. So at first sight the above described notion of critical charge
dos not make sense for them. .
However an arbitrarily precise localization is impossible for a rel-
ativistic particle, as was realized a long time ago [12]. This means

that in relativistic theory an elementary particle no longer can be

considered as a pointlike source for the Coulomb field.

The meaning of the localization for relativistic particles was care-
fully investigated [13, 14]. In particular, the most localized wave-
packet for spin zero particle with mass m, which does not contain any
admixture of negative frequencies, is glven by the Newton-Wigner
wave function [13] ‘

$(r) ~ (2 Kufrmr) o

where K, (r) is a modified Bessel function.

Unfortunately, ¥(r) in (1), belonging to the continuous spectrum,
is not normalizable and diverges at the origin as =2, But it can not
be expected that the one particle picture, which is assumed in (1),
remains valid for distances r <« 'm~!. Therefore, we may consider the
following simple model for pointlike elementary particle with electric
charge Ze,

(2670(r) = { Gyosrenz @)

Here p(r) stands for charge density at a point 7, and the constant C
is determined from the normalization condition

,iff'ST()
mr),ifr>ry’

4w /Ooo p(r)ridr = Ze (3)
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The cutoff parameter ry must obey ry < m~!. We have somewhat ar-

bitrarily take 7y = 0.01m™". The prescription p = 0 when r < ryis a

reflection of our desire Eq.2 to resemble topological soliton model for

electron [15]. Instead we may take p(r) = const = p(r;) for r < ry.

the results do not change significantly for massive enough particles

and for the lightest particle, still in the realm of our interest, the dif-

ference does not exceed 15%. Having in mind a qualitative nature of

our argumentation, such subtleties will be left beyond our care. Note

that in [15] 7 coincides with electron classical radius (137m)~?, so

giving some justification for our choice. If some charge e, probes the -
spherically symmetric charge distribution (2), the potentlal energy
of their interaction is

V= —tra [} [ 2p(x)ie + [ soe)ie] @ |

where a = Z—I‘;rﬂl, and opposite sign charges were assumed. -

Now we are inclined. to consider Dirac’s equation, with the po-:
tential defined from (2+4), for the ground state energy level in the.
situation when this level just dived into the negative energy sea,
that is E=-1, in units for which the probe particle mass m; = 1. For
m 3> my, this equation for the radial function G looks like [10]

vV 1V

G—-V—G+[V(V+2)+—V]G 0, | ‘('5)'

where points designate derivatives, for "exam'ple G=4%€

By substitution G(r) = /V (r)i(r), this equation takes the form
which is more convenient for numerical calculations

P+

1V v 3 (v
V(V+2)+ V+2V_4_(7)]¢_0' (6)
For large distances r > m™!, K} ,(mr) in (2) falls as e™2™". There-
fore the second term in (4) can be dropped for such distances and the
first term, because of the normalization condition (3), gives just the
Coulomb potential V(r) = —a/r, for which equation (5) is exactly
solvable in terms of the modified Bessel function of complex index
(10]

G(r) ~ Ky (V8ar), v=2Va2 - 1. | (7)
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Let us take some R >> (2m)~!. Equation (5) (in fact(6)) can be
numerically solved in the region 0 < r < R subject to the boundary
conditions G(0)=0, G(0) # 0. Then the smoothness of the loga-
rithmic derivative at r = R gives an equation which determines the
critical coupling av.:

2 HHul2) _ 2RG(r) )

‘ I‘iV(z) z=Bar G(T) r=R
The critical coupling so evaluated shows weak dependence on the
mass m and changes from a, ~ 1.03 for m = 10* to a, ~ 1.1 for

m = 20. These numbers correspond to the choice R = 10m_1 If

~we take R = 5m~! instead, the modifications don’t excced a few
percent. Roughly modeling particle-antiparticle situation by setting
m=2, we find o, = 2.5.

We infer the following main conclusion from the above considera-
tions: every pointlike electric charge Ze, such that Z:;Z = 1Z327 >2=+3
destabilizes the vacuum. _

‘The actual value of acean be even smaller, if we remember that
field theoretical effects discrease Z. in the case of nucleus [16] and
some investigations show that chiral phase transition is expected in
strongly coupled QED for . = § [17]. ,

In any case in the following we will treat a. ~ 2 + 3 as a fair
estimate. So Z, = 15-+20 can be considered as an ”electrodynamical
upper frontier” for pointlike elementary particles.

But there is quite a lot space from 1 to Z.. Where are partlcles
inhabiting this 1nterval7

Particles with o ~ 137 "> 1 (we will call them max1charged par-
ticles) are of particular interest, because their interactions are es-
sentially nonperturbative. For example, an "onium” from such a
particle and antiparticle will decay more willingly into (n+1) pho-
tons than into n photons, because now Ze > 1. This means that in
fact it decays into an infinite number of soft photons, that is into a
classical field.

_ Another remarkable property of the maxicharged particles is that
o

their classical radius rp = £ (a &~ Z%/137) is bigger than their

me

quantum size (Compton wavelength) A = 7—11- Because of this prop-
erty it is not very easy to produce them in, for example, electron
positron collisions. If 7 ~ # is the production time of maxicharged
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particle-antiparticle pair and 7y their annihilation time, then [18]

T A .
—~a(—>' =a?<1.
7o 7o

So the pair is annihilated before they are created [18]! This suggests
that maxicharged particles can be rather illusive objects, irrespective
of their masses.

In fact, the notion of maxicharged particles was introduced by
Schwinger [19]. Below we repeat his arguments from which more
clearly defined and shaped out notion of maxicharged particles can
be deduced.

Electrodynamics with electric charges e and magnetic charges g
reveals the duality syminetry, which can be viewed as a rotation in
the (e,g) space. However, this symmetry should be spontaneously
violated [20], that is we should have the definite direction for the
electric axis in the (e,g) space. In fact this direction can be guessed
from the fact that the only small chargeés surround us in our world

: ,._[19] Flrst of all, let .us introduce an invariant definition of qmaﬂ -

charges [19] we w1l} 83y that a particle with- elcctn(‘ charge - e,, an -
magnetic charge g,, belongs to the category of small charges 1f

e “’“. 1. (9)

Correspondmgly b1g chargeq (mdmcharged pdrtl( les in our tornnno[—b c

AL

L (10) -

P

If a and b are an arbitrary pair of small charges, then

(Cas —ays o Cat 95 b+ 00
. 4 - Ar 4r
On the other side, Schwinger’s symmetrical quantization condition
reads: ’

<1. (11)

Cagk;rebga =n, | . (12)”

where n is an integer.
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Now (11) and (12) are compatible only if n = 0! Therefore, for
any pair of small charges we have [19)

9a _ 0

€a B ey

This means that small charges occupy a single line in the (e,g) space,
and it seems from our every day experience that just this line is cho-
sen as representing electric charge axis after spontaneous breakdown
of the duality symmetry. In other words none of small cliarges pos-
sess any amount of magnetic charge. Dyons can live only in the
wonderland of maxicharged particles! .

Now we turn to more speculative line of reasoning. the most nat-
ural symmetrical solution of Dlrac s (nonsymmetrlcal) quantlzatlon
condltlon '

kg n
in 5 , -~ 1nteger 5
would be e = = g. So 1n such a hypothetical world smgly cha,rged
particles wxll have o = £z = 0.5, and. doubly charged particles - o =

2. _Clearly triply charged particles lay beyond the vacuum stability-

border, if we adopt the above.cited value for the critical coupling
o, ~ 2+ 3. In fact even doubly charged particles look suspicious

enough.  So maybe the observed absence of multicharged particles -

is mere reminiscence of the epoch when there was a full harmony
between electrical and magnetic forces?

Note that the above picture to have any chance to be valid, some-
thing must happen to the scale in the duality space, not only to

the orientation of the electric axis, because we -know quite well that:

a ~ (137)7! and not 0.5! Can we hope that the present value of
the fine structure constant is associated to the symmetry breaking
between electric and magnetic forces and so can be understood from
purely symmetryconsiderations?- Here we have a tempting associ-
ation that just from conformal (or scale) symmetry considerations
Armand Wyler obtained his mé,rvelpus formula [21]:

‘ 9 1/4 1
~ 1673 (5) ~ 137.03608

(For discussions of this formula, see [22]. Some different ”deriva-
tions” of this or similar formula can be found in [23], and for other
attempts to calculate the fine structure constant, see [24]).
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Maybe this "number in search of a theory” [25] at last finds it in
electro-magnetic duality and its breaking?

We feel that it is time to finish. Russian folklore says that ”one
simpleton can ask so mflch questions that hundred sages fail to an-
swer”. The only consolation for us is the hope that questions raised
in this essay do not fall into such a category.

The work of one of the authors (N.V.M.) was supported in part
by the U.S. Grant NSF DMS 9418780.
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