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The idea of constructing the so-called floating or variational series in quantum theories 
was suggested and applied to the anharmonic oscillator case in Ref. [1]. Within this 
approach, a certain variational principle is combined with a possibility of calculating 
corrections to the main contribution that gives a possibility to answer the question about 
the validity of the principal contribution and the region of applicability of the results 
obtained. At present, this idea finds many applications in developing various approaches, 
which somehow make it possible to go beyond perturbation theory. Among them, there 

. are the Gaussian effective potential method [2-4], the optimized linear a-expansion [5,6], 
and the variational perturbation theory [7-9]. 

In this paper, we will apply the method of variational perturbation theory for con­
structing a non-perturbative QCD expansion based on a new small expansion parameter. 
Within this method, a quantity can be approximated by a series, which is different from 
the perturbative expansion and which can be used to go beyond the weak-coupling regime 
and allows one to deal with considerably lower energies than in the case of perturbation 
theory. We will consider a massive renormalization scheme, in which the quark masses are 
renormalized so that the value of mq is the position of the pole in the quark propagator: 
S; 1(p = mq) = 0. In the case of perturbation theory, the renormalization prescription of 
such type was considered in Ref. [10] ( in this connection, see also Refs. [11-13] ). In the 
framework of this scheme, the effective coupling constant depends on the quark masses 
that provides a natural way to include into consideration the threshold effects without any 
additional matching procedure. The non-perturbative expansion in the case of massless 
MS-like renormalization scheme was considered in Refs. [14,15], and some applications 
of this method were given in Refs. [16,17]. Within this approach, a quantity under con­
sideration is represented in the form of a power series with a new expansion parameter a 
associated with the initial coupling constant,\ = g2 /(4rr) 2 = a,/(41r) by the following 
equation 

1 a 2 

,\ = -----
C (1 - a)3' 

(1) 

It is clear that for all values of the coupling constant ,\ ~ 0 the expansion parameter 
a obeys the inequality O < a ~ 1. The positive parameter C plays the role of a 
variational parameter, which is associated with the use of the variational or floating series. 
The original quantity, which is approximated by this expansion, does not depend on the 
auxiliary parameters C, however any finite approximation depends on it on account of the 
truncation of the series. Here we will fix this parameter using some further information, 
which comes from the potential approach to meson spectroscopy. 

In the first order of our approximation, the renormalization constant Z>..(µ', µ), which 
describes the modification of the coupling constant .\(µ) when we change the scale pa­
rameter from µ to µ', has the following form 

Here 

and 



where the function 1(µ 2 /m2
) is the well known one-loop integral 

1(:2

2 ) == 6 l dxx(l - x)ln [1 + ::x(l - x)] (5) 

The non-relativistic static quark-antiquark potential used in quark models is associated 
with the running coupling constant .X(Q2

) as follows 

V(r) ~ j dQ exp(iQ •r) .X~
2

), (6) 

If in the infrared region at small Q2 the running coupling constant behaves as 

.x(Q2). ~ (Q2r", (7) 

it immediately follows that at long distances the quark interaction potential has the 
following asymptotic behaviour 

V(r) ~ r 2
"-

1
• (8) 

In the literature, for the description of the phenomenology of meson spectroscopy one uses 
various types of a confinement potential. In particular, from Eqs. (7) and (8) we can obtain 
the linear potential by setting K- == 1, the oscillator potential by taking K- == 3/2, and 
the potential close to logarithmic one for K- ~ 1/2. We will consider all these possibilities 
admitted in meson spectroscopy. Thus, in this context, the parameter C turns out to be 
with some uncertainty factor about 3. 

The value of K- is associated with the asymptotic behaviour of the renormalization 
group {,-function at large .X: 

j,(.X) 1 2 d.X(µ2) 
--.x-==-).µ dµl~K,. (9) 

From Eq.(2), for the {,-function one finds 

/3(.X) [ 2 (m})] - -.A- == .Aeff(a) 11 - 3 ~ Fi µi' , (10) 

where F1(m2
/ µ2

) = µ 2 /m 2 l'(µ,2fm 2
). 

The renormalization scale dependence of the running expansion parameter a == a(µ 2
) 

is defined by the following equation 

C [U(a) - U(ao)] = 11 ln µ: - ~ L [1 (<) -l (µa:)], 
µ0 3 

1 
m 1 m 1 

(11) 

where µo is some normalization point, a0 = a(µl), and the function U(a) has the following 
form 

1 3 3 45 
U(a) = 2 - - -12lna + -ln(l-a) + -

4 
ln(1+3a). 

a a 4 
(12) 

In the limitµ-+ 0, the function F1 -+ 0, a-+ 1, and -j,(.X)/ .A-+ K-asympt = 44/Casympt· 

However, in an appropriate region of the momentum, we.will choose the value of C slightly 

2 

less than the value of Casympt• Fig. 1 shows func1tion (10) for three values of the parameter 
C as a function of 1/Q, in order to have some analogy with distances. For C == 27, the 
value of the function - j, / .X ~ 3/2 at appropriate large .X and the shape of the quark­
antiquark interaction at long distances is close to the oscillator potential; for C == 39, 
-J,/.X ~ 1 and the potential is close to linear potential; and for C == 78, -j,/.X ~ 1/2 
and the corresponding potentjal is close to logarithmic potential. The curves in Fig. 1 
are derived at the following values of the pole quark masses: mu = md = 0.33 GeV, 
m, = 0.50 GeV, me= 1.5 GeV, mb = 4.7 GeV, and m 1 = 174 GeV. Here we use the 
arguments of Ref. '[18,19] that the pole quark· masses are much the same as the constituent 
quark masses. 
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Fig. 1. The function -j,(.X)/ .X versus 1 /Q for C =27, 39, and 78. 

Following Ref. [20], let us consider the smeared quantity 

1 . 
R~(s) = 2i [II(s + i~}- Il(s - i~)]. ( 13) 

If~ is sufficiently large, this quantity ( 13) permits one to avoid the problem of threshold 
singularities coming from the higher order diagrams. By using the dispersion relation for 
the hadronic vacuum polarization Il(q2

), one finds 

~ 1
00 ll(s') 

R~(s) = - ds' ( , - ~)2 + ~2 ' 
Jr u .s • 

( 14) 
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where R( s) is the ratio of e+ e- annihilation into hadrons. The smeared quantity RA ( s} 
allows one to compare the experimental data with the theoretical predictions obtained in 
the framework of QCD [21,22,16]. Here, for the same aims, we will consider the function 

WA(q2) = d RA(q
2

) = _ _.!_ [ D(q
2 + ill.) _ D(q

2 
- ill.}] 

d q2 2 i q2 + ill. q2 - ill. 

where for the D(q2}-function we obtain 

D(q2) 
d 

-q2-II(q2) 
dq2 

~ L Q} [ Fi ( :i:2 ) + 4Aerr(q2} F2 ( :i:2)] 

f 

(15} 

(16} 

For the function F2 we will use the result obtained on the basis of the Schwinger approx­
imation of the imaginary part of the vacuum polarization function: 

( 
m

2 
) 41r 4 m 2 11 

v
2 

(3 - v
2

) F2 - = - - dv . 2 J(v) 
-q2 3 -q2 0 [4m2 /(-q2) + 1 _ v2) 

(17} 

with 
7r 3 + V (7r 3 ) J(v) = - - -- - - - . 

2v 4 2 41r 
(18} 

The effective coupling constant Aeff in Eq.(16) is defined by Eq.(3) with the running 
expansion parameter a(-q2 ), which can be find as a solution of Eq. (11). 

We should note that in contrast to perturbation theory, where at q2 = -A~co the 
running coupling constant has an infrared singularity, which contradict the dispersion 
relation for the fl-function, the effective coupling constant Aeff is a finite function in the 
infrared region with freezing behaviour at small Q2

• ( The discussion of the behaviour and 
analytic properties of the effective coupling constant in the massless case was considered 
in Ref. [17]. ) 

In Fig. 2, we plotted this effective coupling constant o:, = 41r Aeff at small Q for three 
values of the parameter C. As the normalization point µ0 in Eq.(11) we used the r lepton 
mass µ0 = M,. = 1.777 GeV with o:,(M,,) = 0.36. After this, all our parameters are fixed, 
and we do not fit any parameters by using the e+e- experimental data. Thus, the effective 
coupling constant o:, is frozen, and, at very small Q, o:, ~1.8, 1.2, and 0.6 for C =27, 
39, and 78, respectively. The idea that the QCD coupling constant can be frozen at low 
energies has been discussed within many approaches ( see the discussion in Refs. [21,22] ). 
The following fit-invariant integral characteristic 

f1 dQ o:,(Q
2

) ~ 0.2 GeV 
lo 1r 

(19) 

is the experimental result associated with a freezing of the coupling constant [21). For 
integral (19), we obtain 0.22, 0.19, and 0.14 for C = 27, 39, and 78, respectively. Thus, 
the value of (19) is rather associated with the linear shape of the potential, and we will 
use the corresponding value of C = 39 in the following consideration. 
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Fig. 2. The function o:, = 41r Aeff versus Q for C =27, 39, and 78 . 
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Fig. 3. The function WA versus Q = vs for LI. =l, 2, and 4 GeV2

• 

. 1.0 

Fig. 3 shows the function WA(s) from Eq.(15} for LI. =l, 2, and 4 GeV2
• Two peaks 

in this figure are associated with the regions of the p--meson resonance and of the char­
monium. In Fig. 4, we compare the function WA(s} for LI. = 2 GeV2 (solid line) and the 
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smeared experimental data (dashed line) from Ref. [21]. It should be emphasized that our 
curve obtained in the first non-trivial order of Aeff are close to the theoretical predictions 
obtained in Ref. [21] on the basis of optimization of the third-order QCD perturbative 
corrections to R.+.- ( e.g., see dot-dashed curve in Fig. 4). 
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Fig. 4: The function WA versus Q = vs for A= 2 GeV2
• The solid curve is obtained 

from Eq. (15}, the dashed one from the smeared experimental data ( taken from Ref. [21]) 
and the dot-dashed one from applying the optimization procedure to the third-order 
calculation of R.+.- ( Ref. [21] ). 

As we can see from Fig. 4, the value of A = 2 GeV2 is not sufficiently large to 
smooth the region of charm resonances; by increasing the value of A up to 4 GeV

2 
the 

experimental curve is drawn near the theoretical prediction shown in Fig. 3. 
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