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The idea of constructing the so-called floating or variational series in quantum theories
~ was suggested and applied to the anharmonic oscillator case in Ref. [1]. Within this
approach, a certain variational principle is combined with a possibility of calculating
corrections to the main contribution that gives a possibility to answer the question about
the validity of the principal contribution and the region of applicability of the results
obtained. At present, this idea finds many applications in developing various approaches,
which somehow make it possible to go beyond perturbation theory. Among them, there
_are the Gaussian effective potential method [2-4], the optimized linear §-expansion {5,6],
and the variational perturbation theory [7-9].

In this paper, we will apply the method of variational perturbation theory for con-
structing a non-perturbative QCD expansion based on a new small expansion parameter.
Within this method, a quantity can be approximated by a series, which is different from
the perturbative expansion and which can be used to go beyond the weak-coupling regime
and allows one to deal with considerably lower energies than in the case of perturbation
theory. We will consider a massive renormalization scheme, in which the quark masses are
renormalized so that the value of m, is the position of the pole in the quark propagator:
5;1(p = m,) = 0. In the case of perturbation theory, the renormalization prescription of
such type was considered in Ref. [10] ( in this connection, see also Refs. [11-13] ). In the
framework of this scheme, the effective coupling constant depends on the quark masses
that provides a natural way to include into consideration the threshold effects without any
additional matching procedure. The non-perturbative expansion in the case of massless
MS-like renormalization scheme was considered in Refs. [14,15], and some applications
of this method were given in Refs. [16,17]. Within this approach, a quantity under con-
sideration is represented in the form of a power series with a new expansion parameter a
associated with the initial coupling constant A = ¢2?/(47)? = q,/(4r) by the following
equation
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It is clear that for all values of the coupling constant A > 0 the expansion parameter
a obeys the inequality 0 < a < 1. The positive parameter C plays the role of a
variational parameter, which is associated with the use of the variational or floating series.
The original quantity, which is approximated by this expansion, does not depend on the
auxiliary parameters C, however any finite approximation depends on it on account of the
truncation of the series. Here we will fix this parameter using some further mformatlon,
which comes from the potential approach to meson spectroscopy.

In the first order of our approximation, the renormalization constant Zx(u', ), which
describes the modification of the coupling constant A(z) when we change the scale pa-
rameter from p to g’, has the following form

Zam) = 1+ dar [J(?) - T3] @
Here 1
et = 5a2(1+3a), (3)
and

J(®) = I = 11 ln“—': -3 [ (i‘—) - 1(%)] , (4)
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where the function I{(¢?/m?) is the well known one-loop integral
2 1 2
I(;;):G/o. d:c:c(l—:c)ln[l—i—;l—z-z(l—:c) . (5)

The non-relativistic static quark-antiquark potential used in quark models is associated
with the running coupling constant A(Q?) as follows

M@Y)

Q*

If in the infrared region at small Q? the running coupling constant behaves as
MQP)y ~ (@), (M

it immediately follows that at long distances the quark interaction potential has the
following asymptotic behaviour

V(r) ~ /dQ exp(iQ-r)—— (6)

V(r) ~ r2=1, (8)

In the literature, for the description of the phenomenology of meson spectroscopy one uses
various types of a confinement potential. In particular, from Eqgs. (7) and (8) we can obtain
the linear potential by setting £ = 1, the oscillator potential by taking £ = 3/2, and
the potential close to logarithmic one for £ ~ 1/2. We will consider all these possibilities
admitted in meson spectroscopy. Thus, in this context, the parameter C turns out to be
with some uncertamty factor about 3.

The value of x'is associated with the asymptotic behaviour of the renormallzatlon
group B-function at large A:

—ﬂ—():-\l L pdMe )zn. (9)

T

From Eq.(2), for the S-function one finds

B 2 m?2
_ E(T) = Aea(a) [11 -3 2}: F (721)] , (10)

where Fy(m?/p?) = p?/m? I'(ji*/m?).
The renormalization scale dependence of the running expansion parameter a = a(u?)
is defined by the following equation

C [U(a) — U(ao)] = llln———Z[ ( )—I(”—"Z)] (11)
Ho my

where pio is some normalization point, ag = a(,ug), and the function U(a) has the following

form | 3 : 45
U(a) = —a—z—;—l?lna+ 1n(1—a)+Tln(1+3a). (12)
In the limit 4 — 0, the function F; — 0, @ — 1, and —B(A)/A = Kasymmpr = 44/ Casympt-

However, in an appropriate region of the momentum, we will choose the value of C slightly
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less than the value of Casymp:. Fig. 1 shows function (10) for three values of the parameter
C as a function of 1/@Q, in order to have some analogy with distances. For C = 27, the
value of the function — 3/A ~ 3/2 at appropriate large A and the shape of the quark-
antiquark interaction at long distances is close to the oscillator potential; for C = 39,
—B/A = 1 and the potential is close to linear potential; and for C = 78, — /A ~ 1/2
and the corresponding potential is close to logzrithmic potential. The curves in Fig. 1
are derived at the following values of the pole quark masses: m, = my = 0.33 GeV,
m, = 0.50 GeV, m, = 1.5 GeV, m, = 4.7 GeV, and m; = 174 GeV. Here we use the
arguments of Ref. [18,19] that the pole quark masses are much the same as the constituent
quark masses.
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Fig. 1. The function —B(A)/ versus 1/Q for C =27, 39, and T78.

Following Ref. [20], let us consider the smcared quantity
1, p
Ra(s) = 5 [II(s + 1Ay — H{s — iA)]. (13)
If A is sufficiently large, this quantity (13) permits one to avoid the problem of threshold

singularities coming from the higher order diagrams. By using the dispersion relation for
the hadronic vacuum polarization 11(¢?), one finds

_A ;R
/ ds ek (14)
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where R(s) is the ratio of ete™ annihilation into hadrons. The smeared quantity Ra(s)
allows one to compare the experimental data with the theoretical predictions obtained in
the framework of QCD [21,22,16). Here, for the same aims, we will consider the function

dRa(¢®) _ 1 [D(q2 +iA)  D(¢* - iA)]

Wa(d®) = ———
alq) ¢ +iA g? — iA

= - — 1
dq? 21 (15)

where for the D(g?)-function we obtain

D(¢") = —q’d%n(q’) (16)

?; ; Q? [Fl (T—qu) + () Fa (:"_jz)] _

For the function F; we will use the result obtained on the basis of the Schwinger approx-
imation of the imaginary part of the vacuum polarization function:

m\ _Amam® ot 023 - oY) .
f (__qz) T3 -2 )y d [4m2/(—¢?) + 1 _vZ]zf() (17)

with
=g (5a) -

The effective coupling constant A.g in Eq.(16) is defined by Eq.(3) with the running
expansion parameter a(—q?), which can be find as a solution -of Eq. (11):

We should note that in contrast to- perturbation theory, where at ¢* = —A¢p, the
running coupling constant has an infrared singularity, which contradict the dispersion
relation for the D-function, the effective coupling constant Mg is a finite function in the
infrared region with freezing behaviour at small Q2. ( The discussion of the behaviour and
analytic properties of the effective coupling constant in the massless case was considered
in Ref. [17].) :

In Fig. 2, we plotted this effective coupling constant a, = 4w ).g at small Q) for three
values of the parameter C. As the normalization point o in Eq.(11) we used the 7 lepton
mass ptg = M, = 1.777 GeV with a,(M,) = 0.36. After this, all our parameters are fixed,
and we do not fit any parameters by using the e*e~ experimental data. Thus, the effective
coupling constant a, is frozen, and, at very small Q, a, ~1.8, 1.2, and 0.6 for C =27,
39, and 78, respectively. The idea that the QCD coupling constant can be frozen at low
energies has been discussed within many approaches ( see the discussion in Refs. [21,22] ).
The following fit-invariant integral characteristic

1 7y
/ i@ @) L 09 Gev (19)
0 T
is the experimental result associated with a freezing of the coupling constant [21]. For
integral (19), we obtain 0.22, 0.19, and 0.14 for C = 27, 39, and 78, respectively. Thus,
the value of (19) is rather associated with the linear shape of the potential, and we will
use the corresponding value of C' = 39 in the following consideration.
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Fig. 2. The function a, = 47\ versus Q for C =27, 39, and 78.
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Fig. 3. The function W, versus Q = /3 for A =1, 2, and 4 GeVZ.

Fig. 3 shows the function Wa(s) from Eq.(15) for A =1, 2, and 4 GeV?. Two peaks
in this figure are associated with the regions of the p-meson resonance and of the char-
monium. In Fig. 4, we compare the function Wa(s) for A =2 GeV? (solid line) and the
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smeared experimental data (dashed line) from Ref. [21]. It should be emphasized that our
curve obtained in the first non-trivial order of Aeq are close to the theoretical predictions
obtained in Ref. [21] on the basis of optimization of the third-order QCD perturbative
corrections to Re+.~ ( €.g., see dot-dashed curve in Fig. 4).
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Fig. 4. The function W, versus Q = +/s for A = 2 GeV?. The solid curve is obtained
from Eq. (15), the dashed one from the smeared experimental data ( taken from Ref. [211)
and the dot-dashed one from applying the optimization procedure to the third-order
calculation of R.+.- ( Ref. [21] ).

As we can see from Fig. 4, the value of A = 2 GeV? is not sufficiently large to
smooth the region of charm resonances; by increasing the value of A up to 4 GeV? the
experimental curve is drawn near the theoretical prediction shown in Fig. 3.
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