


I. INTRODUCTION

One of the challenging problems in heavy-ion collisions is to under-
stand the behavior of hadrons in hot and dense nuclear matter. In par-
ticular, one focuses on the rho dynamics. This is intimately related to
the fundamental question-of how the p meson properties-are modified
due to the approach to a chiral symmetry restoration. phase transition
at: large temperature and density. An intriguing question is whether.it is
possible to extract this effect from relativistic heavy-ion collision-data. In
answering the second question one can explore the dilepton production
in 7*7~ annihilation [1], because the pion electromagnetic form factor
is almost completely dominated by the p meson below an invariant-mass
of about 1 GeV [2], which strengthen the well known and w1de1y used
vector dominance model [3]. :

The answer to:the first question is ambitious, espec1ally in the region
below the chiral phase transition. Above the critical temperature, which
probably coincides with the deconfinement temperature,'the p meson
should disappear from the hadronic spectrum of excitations as predicted
by both the chiral mean field models [1] and lattice calculations [4]. The
p properties below the chiral phase transition depend on the :physical
picture of the "matter” constituents and their interactions with the rho
meson [5]. Those models based on quark degrees of freedom, such as
QCD sum rules [6], effective Lagrangians of the Nambu-Jona-Lasinio
type [7]; predict quite small in-medium modifications of the rho proper-
ties up to the critical temperature: Otherwise, the models based ‘on the
conventional hadronic degrees of freedom show a strong effect [8-10]. For
example, taking into account the coupling of the p meson to two pions
as'well as the strong mixing of pions and:delta-nucleon-hole states in
nuclear matter, as in Ref. [10], shows a dramatic density’ dependence of
the rho meson width. o - : s

- For'a deeper understanding of the role of the conventional hadronlc
interactions to the p property modification at extreme conditions, which
should be considered as background for more exotic interactions, it seems
to bé important to study the simplest system - a dense and hot pion gas
with small baryon den51ty, which is often expected to be produced in the
central region in relativistic heavy-ion collisions. Gale and Kapusta [11]
analyze the temperature modification of the p self energy in the one-loop
order (order g2) at vanishing pion chemical potential. They find ‘a modest
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increase of the p width and mass with temperature. This result means | °

that if a high energy experiment shows substantial modification of the
dilepton spectrum with an invariant mass in the p region, it may be some
indication of a more exotic interaction, which is beyond the conventional
7-p interaction mechanism.

‘The model of Gale and Kapusta is extended in some sense by
Koch [12] who considers the pion system in a chemical non-equilibrium
state, described by a positive chemical potential y,. The chemical po-
tential is associated with the total pion density of the pion. gas; and it
is supposed that g, has the same value for all charge states. Previ-
ously, this idea has been put forward by Kataja and Ruuskanen [13] for
an explanation of the observed enhancement of pious at low transverse
momentum in relativistic heavy ion collisions [14] as a consequence of
the Bose-Einstein statistics. In Ref. [12] it is found that the incorpo-
ration of the pion chemical potential p, gives a strong enhancement of
the muon pair yield in the low invariant mass region, provided the lepton
pairs are produced predominantly via pion annihilation.’ This might-serve
- as,explanation of the so-called dilepton excess [15] observed in- present
CERN-SPS heavy-ion experiments [16]. - ST

In.‘principal, there is an additional degree of freedom in the conven-
tional p-7 dynamics, namely a possible non-zero total electric or isospin
charge of the pionic system. There is no restriction for the production of
a pionic fireball with a finite, negative charge in the first deep-inelastic
stage in a relativistic heavy-ion collision. Moreover, some experimental
data [17] and theoretical speculations [18] point towards such a possibil-
ity. This may be a consequence of the proton-neutron asymmetry of-the
colliding heavy ions,and the asymmetry increases with increasing of.the
atomic weight of the colliding ions. The electric charge of a pionic system
is controlled by the ”charge” chemical. potential g which should not be
confused with the chemical potential used by Koch -y, = p2, which is a
measure of the chemical equilibrium breaking. Generally, the chemical
potentials for positive and negative pions are p,+ = p2 % pg. -

Here we explore this additional degree of freedom.: Our work may
be viewed as extension of the results of Gale and Kapusta —citeGK1,
and Koch [12] on the p meson self energy at finite temperature to finite
values of the chemical potential pg. We evaluate the p meson self energy
by using as starting point the conventional 7-p effective Lagrangian and
the functional integral representation for the partition function, which

is familiar for the relativistic quantum field theory at finite temperature
and charge chemical potential, and evaluate in the medium the p mass
and width. From the methodical point of view our paper is closely related
to Ref. [11] but differs from Ref. [12], where the chemical potential p, is
incorporated by hand in the final expressions via the Bose distributions.

Our paper is organized as follows. In Sec. 2 we evaluate the p meson
sclf energy in one-loop order at finite temperature and chemical potential
p- This section presents the very details of the analytical calculations.
In Sec. 3 we analyze the dependence of the p meson pole posmon both on
o and ¢ and discuss the possibility of their. experlmental manifestation.
The summary can be found in section 4.

II. THE p PROPAGATOR

- Our starting point is the effective Lagrangian £ which describes a
system of charged pions and neutral vector p mesons
1 v 1 2 ,
£= (D" Dt~ gmiod" — Loup™ + 3m? (2.1)
where ¢ is the complex charged. pion field, p stands for the vector field
with the strength p,, = 8.p, —0,p,, and D, = 0, —1g,p, is the covariant
derivative; p,v are Lorentz indices. The Hamiltonian of the system is
related to the Lagrangian of Eq. (2. 1) in the usual way -

oL . , :

H = 8(80 )8050 L - . v v (2.2)
with ¢ = (¢, ¢%, p) The reference for what follows, at finite temperature
T #0 and p,+ = 0, is the paper of Gale and Kapusta [11].

~Let us cons1der the case when the system admits some conserved
electrlc or isospin charge. In the first step we consider the case p=0
and concentrate on the incorporation of pg. We then discuss the role of
both pg and p? in Sec.3. ; R

The incorporation of the chemical potential pq leadsto a transforma-
tion of the Hamiltonian which we use for the calculation of the partition
function ' ' : :

H — H — pgJo, ' (2.3)



where Jp is the time component of Noether’s current

L =id@De-g0en.  (4)
The p mésoh propagator in a medium is related to the self energ.y | |
(D‘I)W = (Dg‘)w + 11, | | ; (2.5)
where Dj" is the free propagator
In Euclidean space, the rho meson self energy may be obtain with help

of the partition function, having a functional integral representation of
the form [19)

/Dﬂ¢/ ’Dcpexp {/ dr/ dx z7r¢ 'H+pQJ0)}
periodic.

where again ¢ = (d), ¢, p), and T, = OL/0(00p) are the respective con-
jugate momenta. The integration over m, gives

Z= / Dp1>¢1>¢* S0t Sine (2.6)
periodic

where Sy = Sor + So, describes non-interaction part of the t_otél effective
action, and Si,: corresponds to the interaction part, 1,e.,

/ dr/dx (51060 = 5072 = o) 1@ 17~ ugiy) |

/dr/dx = L S~ (0

mt—/ dT/dX gpﬂ |¢|2+gp(puj“+#opo|¢l2)) o (27)

where Bp = Dp - det(s) (det &5 = det (2262)) and ju = i/2(4"9u6 —
$8,6°), 100 = O-, po = ipa; etc. So, includes the gauge fixing term. We
_use the Landau gauge with o — 0.

Expanding Eq.(2.6) in power series in S;,; and takmg the logarlthm
of both sides, we get in the second order of g,

InZ =1n2Zy+ InZ;,,

In Z;, ~

I, o .
59; (< /dexp2'¢|2 >+ < (/drdx(puj,, + ppolo)?)? >0)T (2.8)

where
Zo = /D«pc;}'; <R>y= Z5! /D-;. Re™. (2.9)

The calculation of In Z;,; may be performed by ut.ilizilig the methods of
Ref. [19] and textbook recipes [20]. After some tedious algebraic exer-
cises, and taking into account relation between the polanzdhon operator

. dlld the parhtlon function

- 5171_,,,” :
ll W = y bl 2.
| = D (210)
we get thé.‘following expression for I,
" (ug,p) = I~I“V(/1Q,p) + /LZ,AII“"(/z,Q.p), (2.11)

wher(‘

Pk 5w AR — B(k)?
11" (g, p) —q,, Z/ 27 ) ACE L+ A(Ar)‘2+13(k)2)

Zk —p)*(2k —
-Z / ]A((A )) Flug-k.p)). (2.12)

All™ (ug, p) —-qp7 5"5“2/ 2V Ak _[)]:(/IQ,A,p)

+Z/d’k |

(85(2k — p)* + 65(2k — p)")(A(k — p) B(k) + A(k) B(k - P))) t
ha(A(k — ) + Bk — pP)A(K + B(R))

In the above, the fourth component of the momentinm four-vectors is the

Matsubara frequency, i.c., ks or ps = 27T xinteger. The functions A(q)

and 3(q) depend on the chemical potential as

A=+ +mi—py = +mi—pud, Blq) = —2qq.
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The function F(gq, k, p) is a combination of A and B
A%(k) = B*(k) | A(p—k) - B*(p— k)
A(k) + BE(k) T A%(p— k) + B2(p — k)
(42— k) = B*(p = b)) (A2(k) = BA())
+
(20— k) + B2(p - b)) (42(K) + B2(k)
A(k)A(p = k) B(k) B(p — k)
+ .
(420 — k) + B2(p - b)) (42(k) + B2(k))

Flpg,k,p) =1+

(2.14)

The last term in Eq.(2.11) comes from pgJo in Eq.(2.3), which in one-
loop (i.e., order gg) approximation generates the non-covariant interac-
tion proportional to ué. :

In the limit of pg = 0, we have A(q) = ¢* + m%, B(q) =
"0, Flpg,k,p) =4, and Eq.(2.11) reduces to the self encrgy of Rel. [11],
obtained within the finite-temperature Feynman rules as

Pk o
1*(p) Pug=0 = 2ngZ/ 27)3 k2 + m?
| Ph (k—pl(2%k—p)
“”TZ/ ST

In this paper we restrict ourselves to the simplest case where the
vector field is taken in the it’s rest frame with p = 0. This relatively
simple case gives the physical picture and the order of magnitude of the
medium corrections. If we find that the effect is considerable, then the
corresponding generalizations may be performed straightforwardly.

We calculate the self energy of Iigs.( 2.12), ( 2.13) by making use of
the standard technique [20,21], i.e., the discrete summation is replaced

by the contour integral as

1Y Stk = k) = 5 [ dbaglf (ko) + f(—ko)

inote
1 1
+ 5= / dko[f(ko) + f(—ko)l gio—7,  (2.16)
—tco+¢€ .

with 8 = 1/T. The first term in Eq. (2.16) does not depend on tem-
perature T, while the second one does. In our case, however, the ﬁi‘st
term may depend on pg. This means that it cannot be interpreted as
exact vacuum part. Nevertheless, for convenience we call it as a ”vac-
uum” part, assuming a possible pg dependence, while the second part -
we denote as a "matter” part.

Consider the first term in Eq. (2.12):
&3k 6“" A*(k) — B*(k)
ull T g .
= Z/ SR +‘B2(k)) |
= 6“U(Il,vac + Il,mat)y » (217)

where I 4 and I} ma: correspond to the first and second terms of
Eq. (2.16) respectively. The analysis of I .. shows that it does not
depend only on the temperature but also on the chemical potential as
well; so it really may be interpreted as the vacuum part. .

The matter part of I is of physical interest. The application of the
contour closing integration method gives the following expression

I mat = dk, : Bk _ 1)-1 (9.
b ,t~ / (271')3 271'1 f O(kg —w? 4+ ,uQ) 4k0/‘Q(e 1) , (2 18)

which via straightforward calculation results in

| Pk 1 I
Iy s = 2 / V) (2.19)
where w = k* + m2. ,
N(w) = (/7 — 1)1 4 (flotwad 1yt (2.20)

is the pion Bose distribution for particles and antiparticles. One can see
that all the dependence on pg in I, is absorbed into the Bose factor.

We denote the second term in Eq.(2.12) as —g2I;”(p). In the frame
where p = 0, all the non-diagonal terms with g # v vanish, and both
the matter and the vacuum time component with 4 = v = 0 depend on
po- Let us consider first the spatial components I’

i B d’k i 1 :
12(”4)‘/( Y A e e




where for:simplicity we use the variable transformation k — k + p/2
assuming that ps/2 is the Matsubara frequency. Using Eq. (2 16) we get
the medlum contrlbutlon of I;'in the form

. Pk .
IZ{mat(p‘i) = / (‘27{')3k k- 212,mut(k7p4');

dk 1 /
Iz mar(k: Po) f 2 ﬁko - 1)_1 ‘ '

27['1 A+
_(1+A2+B2 A* + B? *
A2 —B: ' A2 -B?

(A2 + B%)(A%2 + B*) +4ALA_B,B_\ DON

ey vy G
where Ax = (ko' & ips/2)? — w? + pdy, By = 2uq(ko £ ips/2). A close
.inspection of the-integrand shows that only the poles of the bracketed
term:give:a contribution into the contour integral. The final result in
* Minkowski space is

ij 4 [ d%k 1 (,‘Jz—m'2 . ‘ ’ : '
mat(Po) = ~§5’/( =~ = —N(w). (2.22)

27r)3 wdw? — pi — i

Here and elsewhere we analytically continue the Matsubara frequency p4
to ips — po +:i€;, where € — 0%. The matter part of Eq.(2.13) reads

Mae(1p) = 25‘1/(311;3:7{1—%-&—(;—{:—&—}N(w) | (2.23)

w? — pj

‘A {direct  calculation of the time component of Eq.(2.12) gives a value
pr_oportion”abto;pé , :

o0 — » ;:/ ((2131;3 1 (1 + N(w)) |
/ ((21?; 1(1 @T-ﬂ%:?))(l”(w))- (2.24)

This term is'equal, but with opposite sign, to the non- covarlant term of

Eq:(2.13)

Pkl
N L = —16vE — (w) ). 2.25
AL (ppig) = 16464/(QW):;w/lwz_l)g_i((l+,\( ). (2:25)

So, we-find that the total 114 (p = 0) in Eq.(2.11) is equal zero, which

confirms the current conservation or, the transversality of 11#¥ with re-
1 2l
spect to the external momentum. We see also that ny = 7 ,. The

transversality of the vacuum part at pg = 0 is demonstrated in several
works, sce c.g., the textbook [22].
In \Imko\\ Sl\l space the self energy 11*Y may b( expressed in the form

e =1r 1”“’ + (‘P’“’. : o (2.26)
where (7 and [ are the so-(:a,llcd 'lo_ugltudmal" and "transverse” masses,
and PP* and P# are the longitudinal and transverse projection tensors:

I 7 2l gHuc pro,
PR = PP = PP =0, P =87 = p'p[pt,
P = ppt [pt — g =Pt B (2.27)
In the limit of p — 0. we get
10 =% =11 =0

A L ,
B e Ul (R o) R CEY
At p =0the tensor structiire of 119 is trivial: 119~ 8. This is satisfied
only if in q.(2.28) I = (. The final expression for the p propagator
reads : : : o

D =

Iw P“]’ /P . (‘) ‘)())
pg - Hlf’ - I (p)un,r - Inmt(p)»" ,

l;tll

where [y ma!(P) = (1/‘;)(71111 vac,mat*
The self energy Flq. is divergent. We evaluate it l)x using dimensional -

regularization and renormalize with the counterterms Cing and (5 for
divergent and finite parts of [, respectively. ij cancels the divergent
part of [, while Cj is found from the natural condition for the p
propagator pole in vacuum at_the physical point pa = m} ’

pE— m2 — I?'i,ar(;)o)lp 2 amz —11,Yps (2.30)

where m, and 7, is the p mass and width in the vacuumn. quuallon (2.30)
gives (/Xpll(,ll expressions for C'y using the known formulac for Re Foqe and
Im Fyue



2

; _ 9 4/2
Re [‘vac(pO) - 187 Ta—2 (Po(l —4m ,./ v .
| —. 1/2 '
'{l 14 ( 1m,,/Po 1/2} + 8mﬁ), (2.31)
. | 2 ‘
[m Fuac(po) = 48 2[)0(1 - 4mr/p0) (PO - 27717\'), . (232)
3f2 .
Cp= -2 2(Mp(l am? Jm?)*

- am Y e -
{m (0~ /my) +8m M). S (2.33)

1—-(1- 4m‘/mz)”2 mf, ‘

In an arbitrary p01nt pe = M, the quantity F(M) = Re[*.,ac(M) +Cy is
finite.
Now we can write the renormalized p propagator in matter’ -

9" — p*p*/ph
Pg - mz - (F(P0)+ Re Fm‘a’t(pp)) - Z(]m Fvac(pO) + Im,'Fmat(pO),

D" =

For completeness we also display thevmatter, part of self energy

4 w2__m2_

&Pk 1y
2 (1l —-—2——"" N
"Re/ (27)3 w (1 3 4w? — M? — ie) (@),

DBEN(M/2)O(M —2m,).  (2.34)

ReFra(M) =g

2
[ P M) = —g—‘;rMZ(l —im

The mass m and the width v, in matter can be found similarly to the
vacuum case us1ng condltlon

Po - m - (F(PO) - Re Fmat(PO)) - l(Im Fvac(PO) +Im Fmai(p0)|po—>m;2
- —Zmp’)lp) . T i : A ) (2 35) )

which leads to final equations for the pole pesition:

my? =m?+ F(m?) + Re Fpa(m}?), (2.36)

p

= o A P I B} (280

p
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III. RESULTS

In Figs. 1 - 4 we display results of numerical calculations of the shift
of the p pole position in a pion gas medium with respect to the vacuum.
In Iigs. 1 and 2 we show the pq dependence of Am, = m} — m, and
Avy =9, — % respectlvely, at fixed values of the temperature T =
50,100, 150 and 200 MeV. One observes a strong increase of Am, and
A~, with increasing chemical potential at large values of the temperature,
in particular near the condensation instability where o — ™my. At values
of pg < 70 - 90 MeV this increase is rather moderate, but at very large
values of pg ~ 130 MeV and temperatures 7' ~ 200MeV the shifts of
Am, and Avy, may be as much as ~ 140 and ~ 100 MeV, respectively.
AsI rule, the pg dependence gives approximately a factor 2 in the total
increase of Am, and A~, as compared with the pg = 0 case. This is
confirmed in Fig. 3 where we show the temperature dependence of Am,
at fixed values of pg = -0, 60, and 130 MeV., ' :

One should notice that as a rule, the temperature dependence is
stronger than the dependence on'the chemical potential (except near to
the condensation instability). This has been observed also in a qu1te
different context [23]. The origin of this observation is that the chemical
potential enters logarithmical, while the temperaturé as a power [23].

Eq.(2.37) allows to take into account quahtatlvely the total pion
chemical potentials pr+ = pe + po, where p? is the same as used in
Ref. [12] when pg is equal zero. The chemical potentlals Knt are as-
sociated with the total ¥ density, while pg is measure of the 7% and
7~ asymmetry. lf we neglect the weak y. dependence of m »(ix) in the
intermediate region of the chemical potential, then we find that all the
dependence of 7} on the chemical potential can be 1ncluded in the Bose
distribution functlon N(w). That is,

N(ptryw )—(y Plomng=u) _ 1)=1 4 (Plotuo=nt) _ 1)1 (3.1)

determines the dependence of the width on the both chemical potentials.

To quantify this assertion, in Fig. 4 we display the temperature de-
pendence of v} at fixed values of pg, p2, namely pgo=40, p2=90 and
po=90, p2=40 MeV, respectively. One can see, indeed, that dependence
of Avy, on p0 results in a shift which is of the same order of magnitude
as the shift which comes from the g dependence.

It is worth estimating the typical mean value of the charge: chemlcal
potentlal to be expected in intermediate energy heavy-ion c0111s1ons For
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this aim we use the method of Ref. [18] and assume that the pions in
a fireball are the product of the baryon and isobar interactions during
the ion-ion collision, 1.c., they keep the information about the isotopic
asymmetry in the initial state. lrom the chemical equilibrium in the
whole system one can find relations for the chemical potentials p, =
uB + Ho, Un = UB, et = po, Er— = —pg, where up is
the barvon chemical potential. Using the ratio of the electric charge Q)
to the barvonic number B, Q/B = (N, + Ng+ — N.-)/(N, + N,), and
Boltzinann distribution for the particles, one can find an equation for
the charge chemical potentials as function of B, (), temperature and the
relative pion multiplicity a = N,- /(N, + N,)

Q z

— ~

B z+41

+a(z? - 1), | (3.2)

y‘ - '3 > . .
with z = e?#9, We find an approximate solution of tlic above equation
in the form ‘

T :

where the coefficients a, b, and ¢ depend on the ratio ¢}/ B. For U+U and
Pb+ Pb collisions they are: a ~ 0.455 and 0.420, b~ 2.18 and 2.17, and
c ~ 4.44 and 5.04, respectively. For a typical multiplicity in the range
of a ~ 0.07 - 0.1 we find the ratio —ug/T in the range of 0.32 - 0.28
and 0.25 - 0.29 for U+U and Pb+ Pb collisions respectively. This means
that for a temperature T' ~ 200 MeV the absolute valué of the negative
charge chemical potential may be as large as |ug| ~ 60 MeV. The sign
of pg should be seen in the relative yields of the 7+, 7° 7~ meson
as is predicted in Ref. [18] (there named 7w~ enhancement), but it is’
not essential for the p meson pole because of the symmetry of equations
(2.36), (2.37) to this sign. Larger values of |ug| may be expected in
charged-pion fluctuations. ‘

I'or these estimated values of pg our calculation predicts a rather
modest shift of the rho pole position. However, the value of pg ~ 0.3T
can modify the predicted strong enhancement of the muon pairs in the

low invariant mass region, 2m, < M+ ,- < 600 MeV, for lepton pairs

which are produced via the annihilation of pions in the hot and dense
collision zone [12]. The physical reason of this is the following fact. The
expected enhancement is connected with the statistical ‘weight of the p
meson in matter ‘ ;

14

£X = a4 ba— ca?, (3.3)

: E, -y

f, = expl~ L), (3.4)

where the p meson chemical potential is thé SUM [y = fnt + flnm = 205

It clear that 4@ + |ug| < mx, and pg 0 < M — |zql- This means that
‘ 2lug!

the maximum enhancement would be reduced by the factor >~ ¢77,
which according to our estimation is ~ ¢%° =~ 1.82 and needs to be taken
into account in further estimations. | ‘

We should e}nphasize however, that the above estimates of T and
po apply to not too high bombarding energies. In this case our model
system is also affected by the baryons, which must be taken into account
in more complete investigations. Otherwise, at much higher bombard-
ing energies, say at CERN-SPS energy or above, a baryon-less mesonic
fireball might be formed, supposed the nuclear transparency is large (as
might be for not too heavy ions). Then in some sections of the rapidity
space, regions may be formed where the chemical potentials are large and
the in-medium modifications on m} and v, might become stronger than
estimated conservatively above. Quantitative estimates need much more
detailed studies, as also the relationship to a disoriented chiral conden-

sate.

IV. SUMMARY

In summary, we have calculated the p meson self energy in a pion
medium at finite temperature and charge chemical potential which is
responsible for the difference of 7+ and 7~ densities in matter. The
calculation is performed within the functional integral representation for
‘the partition function in order g2. We find that the p mass and the width
increase with the chemical potential. This increase may be about two
times larger as compared with the temperature shift at zero g at very
large values of ug ~ m, and may be realized in charge fluctuations of the
pion gas produced in the central region in relativistic heavy-ion collisions.
The predicted effect is small for the mean value of pg, which is expected
from the proton—}neutron asymmetry in intermediate energy heavy-ion
collisions. In this region of pq the found dependence is smaller than the
temperature effect of Gale and Kapusta. But one has to be careful in
calculating the dilepton production in a charge pion matter. The charge
chemical potential leads to the relative decrease of the dilepton rate in
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the low invariant mass region, which is essential for the interpretation of
the dilepton spectra in heavy ion collisions.
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FynaMOB T I/I Tmon A. I/I Ksmnq)ep B..
CBOPICTBa HenTpaanmx BeKToprlx MCSOHOB :
B 3ap51>1<em{on TTHOHHOM cpene

e Bbmucneﬂa BO BTOpOM nopsmxe no KOHCTaHTe CBS3M p ,Mesonnaﬂ coGCTBeH—
HO :JHepreTuqecxas (by}n(umx B nnonﬂon cpene ¢ omnq}mmn OT Hynst Temne- |
paTypon 1 38p51110BbIM nguqecxuM n0TeHuuan0M ,u o Bbmucneﬂml nposeneﬂbl :

chmm CTaTHC'mqecxou CyMMbI B! BHJlC q)ynxunor{anbﬂom nHTerpana OGHapy -

>KCHO BospaCTaHue sq)q)exmnnou MaCCbI u KOHCTaHTbl pacnana p- MesoHa c poc-

EZ" 95-

: of Theoreucal Physxcs J INR :
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