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I. INTRODUCTION 

One of the challenging problems in heavy-ion collisions is to under­
stand the behavior of hadrons in hot and dense nuclear matter. In par­
ticular, one focuses on the rho dynamics. This is intimately related to 
t !IC' fundamental question of how the p meson properties ,are modified 
due to the approach to a chiral symmetry restoration phase transition 
at large temperature and density. An intriguing question is whether it is 
possible to extract this effect from relativistic heavy-ion collision data. In 
answering the second questton one can explore the dilepton production 
in 7r+7r- annihilation [l], because the pion electromagnetic form factor 
is almost completely dominated by the p meson below an invariant mass 
of about 1 GcV [2], which strengthen the well known and widely used 
vector dominance model [3]. 
, The answer to the first question is ambitious, especially in the region 

below the chiral phase transition. Above the critical temperature, which 
probably coincides with the deconfinement temperature,' the p meson 
should disappear from the hadronic spectrum of excitations as predicted 
by both the chiral mean field models [1] and lattice calculations [4]. The 
p properties below the chiral phase transition depend on the •physical 
picture of the "matter" constituents and their interactions with the rho 
meson [5]. Those models based on quark degrees of freedom,· such as 
QCD sum rules [6], effective Lagrangians cif the Nambu-Jona-Lasinio 
type [7], predict quite small in-medium modifications of the rho proper­
-ties up to the critical temperature. Otherwise, the models based on the 
conventional hadronic degrees of freedom show a strong effect [8-10]. For 
example, taking into account the coupling of the p meson to two pions 
as· well as the strong mixing of pions and delta-nucleon-hole states in 
nuclear matter, as in Ref. [10], shows a dramatic density dependence of 
the rho meson width. 

For a deeper understanding of the role of the conventional hadronic 
interactions to the p property modification at extreme conditions, which 
should be considered as background for more exotic interactions, it seems 
to be important to study the simplest system - a dense and hot pion gas 
with small baryon density, which is often expected to be produced in the 
centralregion in relativistic heavy-ion collisions. Gale and Kapusta [11] 
analyze the temperature modification of the p self energy in the one-loop 
order ( order g;) at vanishing pion chemical potential. They find a modest 



increase of the p width and mass with temperature. This result means 
that if a high energy experiment shows substantial modification of the 
dilepton spectrum with an invariant mass in the p region, it may be some 
indication of a more exotic interaction, which is beyond the conventional 
1r-p interaction mechanism. 

The model of Gale and Kapusta is extended in some sense by 
Koch [12] who considers the pion system in a chemical non-equilibrium 
state, described by a positive chemical potential µ1r:. The chemical po­
tential is associated with the total pion density of the pion gas, and it 
is supposed that µ1r: has the same value for all charge states. Previ­
ously, this idea has been put forward by Kataja and Rtiuskanen [13] for 
an explanation of the observed enhancement of pions at low transverse 
momentum in relativistic heavy ion co1lisions [14] as a consequence of 
the Bose-Einstein statistics. In Ref. [12] it is found that the incorpo­
ration of the pion chemical potential µ1r: gives a strong enhancement of 
the muon pair yield in the low invariant mass region, provided the lepton 
pairs are produced predominantly via pion annihilation/This might serve 
as,explanation of the so-called dilepton excess [15] observed in present 
CERN-SPS heavy-ion experiments [16]. 

In principal, there is an additional degree of freedom in the conven­
tional p--irdynamics, namely a possible non-zero total electric or isospin 
charge of the pionic system. There is no restriction for the production of 
a pionic fireball with a finite, negative charge in the first deep-inelastic 
stage in a relativistic heavy-ion collision. Moreover, some experimental 
data [17] and theoretical speculations [18] point towards such a possibil" 
ity. This may be a consequence of the proton-neutron asymmetry of the 
colliding heavy ions, and the asymmetry increases with increasing of.the 
atomic weight of the colliding ions. The electric.charge of a pionic system 
is controlled by the "charge" chemicaL potential µQ which should not ,be 
cqnfused with the chemical potential used by Koch µ1r: = µ~, which is a 
measure of the chemical equilibrium breaking. Generally, the chemical 
potentials for positive and negative pious are µ1r:± = µ~ ±.µQ. 

Here we explore this additional degree of freedom. Our work may 
be viewed as extension of the results of Gale and Kapusta -citeGKl, 
and Koch [12] on the p meson self energy at finite temperature to finite 
values of the chemical potential µQ. We evaluate the p meson self energy 
by using as starting point the conventional 1r-p effective Lagrangian and 
the functional integral representation for the partition function, which 
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is familiar for the relativistic quantum field theory at finite temperature 
and charge chemical potential, and evaluate in the medium the p mass 
a11d width. From the methodical point of view our paper is closely related' 
to Ref. [ 11] but cliffers from Ref. [12], where the chemical potential µ1r: is 
incorporated by hand in the final expressions via the Bose distributions. 

Our paper is organized as follows. In Sec. 2 we evaluate the p meson 
self energy in one-loop order at finite temperature and chemical potential 
/Lq. This section presents the very details of the analytical calculations. 
In Sec. ;3 we analyze the dependence of the p meson pole position both on 
/lq andµ~ and discuss the possibility of their experime~talmanifestation. 
The summary can be found in section 4. 

II. THE p PROPAGATOR 

Our starting point is the effective Lagrangian £ which describes a 
system of charged pions and neutral vector p mesons 

r 1 (Dv ,J,.)* D ,J,. 1 2 ,i,,1,.* 1 µv + l . 2 2 
J.., = 2 , 'f' v'f' - 2m1r:'f''f' - 4PµvP 2mPp ' (2.1) 

where ¢ is the complex charged pion field, p stands for the vector field 
with the strengtij Pµv = 8µpv -8vpµ, and Dv = all -igppv is the covariant 
derivative; µ, v .ire Lorentz indices. The Hamiltonian of the system: is 
related \o the Lagrangian of Eq.(2.1) in the usual way 

H- .ac 
- 8( 8o<p /or.p - £ (2.2) 

with <p = ( ¢, </J*, p ). The reference for what follows,•.at finite temperature 
T #- 0 and µ1r:±. = 0, is the paper of Gale and Kapu~ta [11]. 

. Let us consider the case when the system admits some conserved 
electric or isospin charge. In the first step we, co~~ider the case µ~ = 0 
and concentrate on the incorporation of µQ. We then discuss the role of 
both µQ and µ~ in Sec3. 

The incorporation of the chemical potentia1µQ leads to a transforma­
tion of the Hamiltonian which we use for the calculation of the partition 
function 

1i ----t 1i - µQJo, (2.3) 
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where J0 is the time component of Noether's current 

J,, = i~( c/>* D,,cp - ¢(D,,¢)*). (2.4) 

The p meson propagator in a medium is related to the self energy 

n-1 = Dal + IIµ", ( )
µv . ( )µv (2.5) 

where Dt;" is the free propagator. 
In Euclidean space, the rho meson self energy may be obtain with help 

of the partition function, having a functional integral representation of 

the form [19] 

Z = Jv1rcp f .. Vcpexp { f/3 dr f dx(i1rcp ~<p - H + µqJo)}, 
}periodic lo lv T . 

where again <p = ( ¢, cp*, p ), and 7r cp = 8£/ 8( 80 cp) are the respective con-
jugate momenta. The integration over 1r cp gives · 

Z =1 1Jp1J<f>1Jcp* eSo+Sint, 

periodic · 

(2.6) 

where So = So-rr + Sop describes non-interaction part of the total effective 
action, and Sint corresponds to the interaction part, i,e., 

So-rr= 1/3 dr 1 dx(~1ac1>1 2 -~(m;-µq)l<Pl
2 -µQio), 

S - f /3 d f d ( . 1 µv 1 z z 1 . (D µ)2). 
Op - Jo r Jv x - 4PµvP + 2,mPp - 2a µP . ' 

Sint. = 1/3 dr 1 dx(tg;llc/>1 2 + 9p(pµ]µ + µqpol</>1 2
)) (2.7) 

where Vp = Vp • det(84 ) (det84 = det ( 0!;:ii)) and]µ= i/2(¢*8µ¢ -

¢8µ</>*), i80 = 8-r, p0 = ip4 , etc. Sop includes the gauge fixing term. We 
use the Landau gauge with a --+ 0. 

Expanding Eq.(2.6) in power series in Sint and taking the logarithm 
of both sides, we get in the second order of 9p · 
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In Z = In Zu + 111 Zint, 

111 Zint '.::::'. 

}g; ( < J drdxp2j<bj 2 >o + < (j drdx(p,,j,, + /1Pol¢1 2 )2 >o), 

whPrc 

Z - f 1)•~('S. < j> > - z-1 J 1)·~ j> <.S0 o-. 't"o, 1. o= o 1·' 1.: • 

(2.8) 

(2.9) 

Th<' calculation of 111 Zi,, 1 may be performed by utilizing the met hods of 
Hef. [19] and textbook recipes [20]. After some tedious algebraic exer­
cises, and taking into account. relation between the polarization operator 
11,w and the partition function 

· blnZ;nt 
ll,w = -2 t51Y'v , 

0 

we get. thc1. following expression for IIµv 

Il 1"'(JJQ,P) = iI1w(Jl-Q,P) + /lttifl 1"'(pq.p), 

where 

I d:1k /51"' ( · A(k)2 
- 13(1-.:) 2

) 

iI'w(JLQ,P) = g~T(L • (21r)3 A(I.:) 1 + A(/.:)2 + /J(l-.·)2 
k4 

--~ ---'--,...,........,--,--,-----;--F(pq. I.·. p) . 1 .! d3 k ('2k - p)1'(21.: - p)" ) 
1 ~ (21r)3 A(l.:){1(k - p) 

lillµ"(µQ, p) = g;.T (15~{5~ L J (;:~:! A(k)A~k - p)F(/IQ, 1-.:,p) 
k1 · 

J d:1k 

+2I: (21r)3 
k4 

(t5~(2k - p)1' + 8~(2k - PY)(A(k - p)B(k) + A(l.:)13(1-.: - p))) 
µQ(A(I.: - p)2 + 13(k - p)2)(A(k)2 + JJ(l-.:)2) . 

(2.10) 

( 2.11) 

(2. 1-2) 

(2.13) 

In the above, the fourth component of the moment.um four-vectors is the 
Matsubara frequency, i.e., k,1 or p,1 = 21r'/'xi11tcgcr. The functions A(q) 
and /3( q) depend on the chemical potential as 

2 2 2 2_ 2 2 2 _, 
A(q) = q,1 + q + mrr - J'q = q + mrr - /tq, IJ(q) = -2Jlqq 1• 
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The function F(µQ, k,p) is a combination of A and 13 

_ A2(A·) - B 2 (k) A2 (p - k) - B 2 (p - k) 
F(µQ, k, p) = 1 + A2(k) + B 2 (k) + A2(p - k) + IP(p - k) 

( A2(p - k) - B 2(p - k)) ( A2(k) - B 2 (k)) 
+----'---------'--'-------'-

( A2 (p - k) + B 2_(P - k)) ( A2 (k) + B 2(k)) 

· A(k)A(p - k)B(k)B(p - k) 

+ (A 2 (p - k) + B 2 (p - k)) ( A2 (k) + B 2 (k)). 
(2.14) 

The last term in Eq.(2.11) comes from µQJo in Eq.(2.:3), which in one­
loop (i.e., order g;) approximation generates the non-covariant interac­
tion proportional to 11b. 

In the limit of µQ = 0, we have A(q) = q2 + m;, B(q) = 
0, F(/lQ, k,p) = ,1, and Eq.(2.11) reduces to the self energy of Ref. [11], 
obtained within the finite-temperature Feynman rules a~ 

J d
3 k 8µ" 

rIµ"(p)µQ=O = 2g;T I: (21r)3 k2 + m; 
~ I/ 

J d
3k (2k - Pt(2k - p) 

-g;T L (21r)3 (k2 + m;)((k-:- p)2 + m;) · 
k4 

(2.15) 

i 

In this paper we restrict ourselves to the simplest case where the 
vector field is taken in the it's rest frame with p = 0. This relatively 
simple case gives the physical picture and the order of magnitude of the 
medium corrections. If we find that the effect is considerable, then the 
corresponding generalizations may be performed straightforwardly. 

We calculate the self energy of Eqs.( 2.12), ( 2.13) by making use of 
the standard technique [20,21 ], i.e., the discrete summation is replaced 
by the contour integral as 

"° 1 !mo 1 
T " J(ko = ik4 ) = -. dko-[f(ko) + f(-ko)] 

L,; 21ri 2 
n=-~ . 

-100 

i00+< 

1 J 1 + 21ri dko[f(ko)+J(-ko)]e/Jko_l' (2.16) 

-ioo+< 
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with (3 = 1/T. The first term in Eq. (2.16) does not depend on tem­
perature T, while the second one does. In our case, however, the first 
term may depend on µQ. This means that it cannot be interpreted as 
exact vacuum part. Nevertheless, for convenience we call it as a "vac­
uum" part, assuming a poss~ble µQ dependence, while the second part 
we denote as a "rnatter" part. 

Consider the first term in Eq. (2.1?): 

µv_ J d3k 8µ" A2(k) - B 2(k) 
11 = TL (21r)3 A(k) ( 1 + A2(k) +"B2(k)). 

k• 

= 8µ"(/1,vac + f1,mat), (2.17) 

where Ii,vac and Ii,mat correspond to the first and second terms of 
Eq. (2.16) respectively. The analysis of 11,vac shows that it does not 
depend only" on the temperature but also on the chemical potential as 
well; so it really may be interpreted as the vacuum part. 

The matter part of / 1 is of physical interest. The application of the 
contour closing integration method gives the following expression 

-J d3k 4 f -k5 + w2 - µb /Jko -1 

Ii.mat- (21r)321ri dko(kJ-w2 +µb)2- 4kJµb(e -1), (2.18) 

which via straightforward calculation results in 

J d
3k 1 

l1,mat = 2 (21r)3 2w N(w), (2.19) 

where _w = k2 + m;. 
N(w) = (e/J(w-µQ) - 1)-1 + (e/J(w+µQ) -1)-1 (2.20) 

is the pion Bose distribution for particles and antiparticles. One can see 
that all the dependence on µQ in / 1 is absorbed into the Bose factor. 

We denote the second term in Eq.(2.12) as -g;If"(p). In the frame 
where p = 0, all the non-diagonal terms with µ # v vanish, and both 
the matter and the vacuum time component with µ = v = 0 depend on 
µQ, Let us consider first the spatial components I? 

. . J d3
k · · " 1 .F( k ) 

I?(p4) = (21r)3k'k1. TL,; A(k- p/2)A(k + p/2) µ, ,p' 
k4 
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where' for simplicity we use the variable transformation k -+ k + p/2, 
assuming that p4/2 is the Matsubara frequency. Using Eq.(2.16) we get 
the medium contribution of / 2 in the form 

li ( ) J d3k k; ki I (k ) 2,mat P4 = (27r )3 · • 2 2,mat , P~ ; 

, ', f dko l /3ko -1 
hmat(k,po)=, 27riA+A_(e -1) 

A2+B2 A2+B2 
(i + At - B1 + A~ - B; 

+ + - -
(At+ Bi)(A~ + B~:) + 4A+A.-:B+B- ). 

+ •. (At - B!)(A:. - B:) . '. 
(2.21) 

where A± = .(ko ± ip4/2)2 
- w2 + µb, B± = 2µQ(ko ± ip4/2). A close 

inspection of :the, integrand shows that only the poles of the bracketed 
term give: a· contribution into the contour integral. The final result in 
Minkowski space is 

· 3 2 2 
.. 4 ii J d k 1 w - m1r N(w). 

· I?mat(~o) = -;t' (27r)3 w 4w2 - P5 - if (2.22) 

:Here and elsewhere we analytically continue the Matsubara frequency p4 

to ip4 -+ p0 +it:, where t:-+ o+. The matter part of Eq.(2.13) reads 

, - ii , 2 ii d l 4 w - m1r 3k { 2 2 } 
ITmat(µ,•p) ~. gp8 J (27r )3 ~ 1 - 3 . 4w2 - P5 - jE N(w ). (2.23) 

,A 1direct calculation of the time component of Eq.(2.12) gives a value 
proportional ,to,µ,b 

- 00 ' J 
;a·· 3k 1 

II -j (27r)3 ~(1 + N(w))-

ij, d
3
k 1 ( 4µb ) ( ) f . (2 )3 - 1 - 4. 2 2 . ) . 1 + N(w) . .: 7r w w - Po - u · 

(2.24) 

This term is equal, but with opposite sign, to the non-covariant term of 
Eq;(2.13) 
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J d
3k I I 

~ll'IV(p, /IQ)= -,lc'i~c5'.; -(') )"l - 2 2 , (1 + .\"(, .. :)). _7r · w 1lw - Po - n 
( ') •)-) ___ Q 

So, we-find that the tot al 1I1;at.(P ;,, 0) in Eq.(2.11) is equal zero, which 
confirms the current conservation or, the trausversality of 1I 1

w with re­
spect to the external momentum. \Ve see also that II'.~at = fI~at· The 
tra11sv<·rsality of the vacuum part at /LQ = 0 is dernoustratcd iu several 
works, sec e.g., the textbook [22]. · 

In Minkowski space the self eucrgy IIµ" may be expressed in the form 

II''"= FPJ,'" + GP;:". (2.26) 

where G and F arc the so-ca.lied '"longitudinal'" and '"transverse'" masses. 
and PJ'." and Pf" .a'.c the longitudinal and transverse projection tensors: 

I.JOO~ JJOi _ JJiO _ Q JJij _ i:ij i. ii 2 
T - T - T - · T - 11 - p fl p , 

Pr"= p11 71" /p2 - g11
" -P;". 

In the limit of p -+ 0 we get 
lloo = Iloi = II;o = () 

.. .. . . ( I I I ) 
II'J = c5'1 G + p'p1 

( 2 + 2 )F - --;;G lp-0· 
p p p 

(•) ·r) -·-' 

(2.28) 

At. p = 0 the te,isor structtirc of llij is trivial: fiii ~ c5i.i_ This is satisfied' 
only if in Eq.(2.28) F = G. The final expression for the p propagator 

reads 

(7/W - p''11"/p2 
IY'" = · 

2 2 l '( ) /' ( ·), Po - 'Ill p - ' /I vac - 'm,it P ; 
(2.29) 

where /•~ac,mat(P) = -( I /:J)g,wfl~~c,mat· 
The self energy J,~,ac is divergent.. We evaluate it by using dimensional 

regularization and renormalize with the count.ertcrms (\ 111 and Ci for 
divergent and finite parts of 1'~,ac, respectively. C;nj c:anccls the din'rgent 
part of J,~ac, while Ci is found from the natural ccrndition for the p 

propagator pole in vacuum at the physical point JJ6 ~. 111~ 

2 2 1., ( ) I . Po -111,P - 'vac Po p2-+m2 -t -irnp1p, 
, 0 p 

(2.:30) 

where ·mp and IP is the p mass and width in the vanmm. Equation (2.:30) 
gives explicit. expressions for el using the known formulae for Uc F,,,,,. and 
I rn f,~,,;c: 
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2 ' 

R F ( ) 9p ( 2( 2;'·2)3/2 e 'vac Po = 
48

7r2 Po 1 - 4m,,. lo 

·{tn 1 + (1 - 4m;/p5)1/2} + 8m2) 
1 - (1 - 4m;/p5)1/2 " ' 

(2.31) 

2 ' 

( 9p 2( 2; 2)3/2 (, Im Fvac Po)= -
48

:ir2p0 1 - 4m,,. Po 0 Po - 2mrr), (2.32) 

2 

C = _-'!..L(M 2 (1 - 4m2 /m2
)

312 

f 4811"2 p ,,. p 

ln ·· ·· · " P +~m~--
{ 

r I+ (1 - 4m2 /m.2 )
1/'2} ., M 2 

1 - (1 - 4rn;/m~)lf'2 ,,. mi)· (2.3:3) 

In an ,:i.rbitrary poi,nt p0 = M, the quantity F(M) = Ref~ac(M) + C1 is 
finite. 

Now we can write the renormalized p propagator in matter' 

Dµv - gµv - pµpv /p5 

- P6 - m.~ - (F(po) + Re Fmat(Po)) - i(Jm Fvac(Po) + Im Fmat(Po)' 

For completeness we also display the mattei: part of self energy 

J d
3k l (. 4 w 2 

- m 2 
) 

ReFmat(M)=g~Re (2:ir)3~ l-34w2-Af2=-if N(w), 

2 

Im Fmat(M) = _J!..E..._M2 (1 - 4m;)312N(M/2)0(M - 2~1r)-
481r 

(2.34) 

The mass m; and the width ~1; in matter can be found similarly to the 
vacuum case using condition 

2. 2 - ' ' • . ., 
Po - mp - (F(po) - ReFmat(Po)) - i(JmFvac(Po) + ImFmat(Po)lp~-►m;2 

---+ -i m;,;, (2.35) 

which leads to final equations for the pole position: 

m;2 = m~ + F(m;2
) + Re Fmat(m;2

), 

,; = ~* { Im Fvac(m;
2

) + Im F:,,ai(m;
2
)}. 

p ' ' 
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(2.36) 

(2.37) 

.:l 
I 

·., 

1) 
·) 

III. RESULTS 

In Figs. l - 4 we display results of numerical calculations of the shift 
of the p pole position in a pion gas medium with respect to the vacuum. 
In Figs. 1 and 2_ we show the µQ dependence of tlmP = m; - mp and 
fl,P = ,; - IP respectively, at fixed values of the temperature T = 
50, 100, 150 and 200 MeV. One observes a strong increase of tlmp and 
!:).,IP with increasing chemical potential at large values of the temperature, 
in particular near the ~ondensation instability where µQ ~ m,r. At values 
of µQ :::; 70 - 90 Me V this increase is rather moderate, but at very large 
values of µQ ~ 130 MeV and temperatures T ~ 200MeV the shifts of 
tlmp and !:)..IP may be ~s much as ~ 140 and ~ 100 MeV, respectively. 
Asf rule, the µQ dependence gives approximately a factor 2 in the total 
increase of !:)..mp and fl"IP as compared with the µQ = 0 case. This is 
confirmed in Fig. 3 where we show the temperature dependence of tlmP 
at fixed values of µQ = 0, 60, and 130 MeV. 

One should notice that, as a rule, the temperatur~ dependence is 
stronger than the dependence on' the chemical potential ( except near to 
the condensation instability). This has oeen observed als~ in a quite 
different context [23]. The origin of this observation is that the chemical 
potential enters logarithmical, while the temperature as a power [23]. 

Eq.(2.37) allows to take into account qualitatively the total pion 
chemical potentials µ,r± .. = µ~ ± µQ, where µ~ is the ~<!-~e as used in 
Ref. [12] when µQ is equal zero. The chemical potentia'ls µ1r± are as­
sociated with the total :ir± density, while µQ is measur~ of the :ir+ and 
:ir- asymmetry. If we neglect the weak µ,r dependence of m;(µ1r) in the 
intermediate region of the chemical potential, then we find that all the 
dependence of,; on the ~hemical potential can be inclu'.ded in the Bose 
distribution function N(w). That is, 

N(µrr,w) = (e{J(w-µq-µ~) - 1)-1 + (e{J(w+µq-µ~) - i)-l (3.1) 

determines the dependence of the width on the both chemical potentials. 
To quantify this assertion, in Fig. 4 we display the temperature de­

pendence of ,; at fixed values of µQ, µ~, namely µQ=40, µ~=90 and 
µQ=90, µ~=40 MeV, respectively. One can see, indeed, that dependence 
of t!i.lP on µ~ results in a shift which is of the same order of magnitude 
as the shift which comes from the /1,cj' dependence. 

I 

It is worth estimating the typical mean value of the charge cherrpcal 
potential to be expected in intermediate energy heavy-ion collisions.' For 
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this aim we use the method of Ref. [18] and assume that the pious in 
a fireball arc the product of the baryon and isobar interactions during 
the ion-ion collisio•n, i.e., they keep the information about the isotopic 
asymmetry in the initial state. From the chemical equilibrium in the 
whole sy~tem one can find relations for the chemical potentials µp = 
µa + µQ, /ln = µ~, µrr+ = flQ, µrr- = -µQ, where /lR is 
the baryon chemical potential. Using the ratio of the electric charge Q 
to the baryonic number B, Q/B =(Np+ N."+ - N.rr-)/(Np + Nn), and 
Boltzmann distribution for the particles, one can find an equation for 
the charge chemical potentials as function of B, Q, temperature and the 
relative pion multiplicity O' = N.r /(NP+ Nn) 

Q z 2 

B c:= z + 1 + a( z - 1), (:3.2) 

with z = ei3µQ. We find an approximate solution of the above equation 
in the form 

' 2 
µQ =-a+ bcx- ca ' 
T 

(3.3) 

where the coefficients a, b, and c depend on the ratio Q / B. For U +U and 
Pb+Pb collisions they are: a c:= 0.455 and 0,420, b c:= 2.18 and 2.17, and 
c c:= 4.44 and 5.04, respectively. For a typical multiplicity in the range 
of a c:= 0.07 - 0.1 we find the ratio -µQ /T in the range of 0.32 - 0.28 
and 0.2,'5 - 0.29 for U +U and Pb+ Pb collisions respectively. This means 
that for a temperature T ~ 200 MeV the absolute value of the negative 
charge chemical potential may be as large as JµQ I ~ 60 MeV. The sign 
of µQ should be seen in the relative yields of the 7r+, 71" 0 , 71"- meson , 
as is predicted in Ref. [18] ( there named 71"- enhancement), but it is 
not essential for the p meson pole because of the symmJtry of equations 
(2.36), (2.37) to this sign. Larger values of JµQ I may be expected in 
charged-pion fluctuations. 

For these estimated values of µQ our calculation predicts a rather 
modest shift of the rho pole position. However, the value of µQ ~ 0.3 T 
can modify the predicted strong enhancement of the muon pairs in the 
low invariant mass region, 2mrr ::S Mµ+µ- :S 600 MeV, for lepton pairs 
which arc produced via the annihilation of pions in the hot and dense 
collision zone [12]. The physical reason of this is the following fact. The 
expected enhancement is connected with the statistical 'weight of the p 

meson in matter 
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f 
E 

P c:= exp( - P - µp) 
T ' 

(3.4) 

where the p meson chemical potential is the sum µp = µ"'+ + µ"'- = 2µ~. 
It clear thatµ~+ JµQJ ::S mrr, and µ~,max< m"' - JµQJ- This means that 

· 2lµQI 

the maximum enhancement would be reduced by the factor ~ e-T-, 
which according to our estimation is'":' e0

·
6 ~ 1.82 and needs to be taken 

into account in further estimations. 
We should e~phasize however, that the above estimates of T and 

µQ apply to not too high bombarding energies. In this case our model 
system is also affected by the baryons, which must be taken into account 
in more complete investigations. Otherwise, at much higher bombard­
ing energies, say at CERN-SPS energy or above, a baryon-less mesonic 
fireball might be formed, supposed the nuclear transparency is large ( as 
might be for not too heavy ions). Then in some sections of the rapidity 
space, regions may be formed where the chemical potentials are large and 
the in-medium modifications on m; and ,; might become stronger than 
estimated conservatively above. Quantitative estimates need much more 
detailed studies,· as also the relationship to a disoriented chiral conden-

sate. 

IV. SUMMARY 

In summary, we have calculated the p meson self energy in a pion 
medium at finite temperature and charge chemical potential which is 
responsible for the difference of 7r+ and 71"- densities in matter. The 
calculation is performed within the functional integral representation for 
the partition function in order g;. We find that the p mass and the width 
increase with the chemical potential. This increase may be about two 
times larger as compared with the temperature shift at zero µQ at very 
large values of µQ ~ m"' and may be realized in charge fluctuations of the 
pion gas produced in the central region in relativistic heavy-ion collisions. 
The predicted effect is small for the mean value of µQ, which is expected 
from the proton~neutron asymmetry in intermediate energy heavy-ion 
collisions. In this region of µQ the found dependence is smaller than the 
temperature effect of Gale and Kapusta. But one has fo be careful in 
calculating the dilepton production in a charge pion matter. The charge 
chemical potential leads to the relative decrease of the dilepton rate in 
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the low invariant mass region, which is essential for the interpretation of 
the dilepton spectra in heavy ion collisions. 
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ry.iiaMoBTJL; TnTon A.H., K3Mmpep B. -_ _ . 
CBOHCTBa HettT°i>aJihHbIX BeKTOpHbIX Me30HOB_ . 
n 3apsr:>K;emwii: nnoHHoii: cpe,[J,e 

~ 

. . ..B1:,1q0cne~a BC) BTO{)OM nop~,[J,K:e ~o KOHc'-raHTe CB5I3Hp--~e30HHaSI co6crneH-
Ho.c.::niepreTHlleCKasi: cpyHKIJ;HSI B_mtOHHOll cpe,[J,e C OTJI~qffhlMH.OT HYJISI TeiJne-

. pa Ty po ii: n 3a psr,[J,oB_hIM XHMttq_ec'K11M noTeH_u;uanoM .UQ• Bhiquc11e~HSI npone,[J,eHhI 

._Ha ·orn~nc 3cpcpeKTHBH.or,-sf~~7 p n.arpaH_)KHaHa c jlcnoJib3onaHHeM· ripc,[J,c:ran:\ 
·JieHHSI CTaTltCTH'leCKOll cyMMbI n BH)l_e ·cpyHKIJ;HOHaJibHOI'O HHTerpami: 06ttapy:'· 
)KCHO B03pacniiue 3cpcpeKTHBHOll Ma.CCI:,I 11 KOHCTaHTbI pacna,[J,a p--Me:miiac poc:. 
TOM Te~riepaTyphl H XHMH~ICCKOro IlOTeHL(Hana: ·o,[J,HaKo:3TH. H3Mefremrn jcp;: 

. q>eKTHBHbIX •. napaMCTp.on. -~ · .. cpeAC . OKa3hIBaIOTC5I .· CJI~IllKOM. MaJihl-;.1H·; iITO 
npaKT.itqecKH HCKJIIO~aCT-B03MO)KHOCTb HX Ha6JIIO~eiuisr~B iiuiiemo~Hbl~ cn~K:.. 
Tpax i3 peJI51THBHCTCKHX CTOJIKHOBeHHSIX TSI)KeJihIX ll~IH)~-.\ :._ · . . 

. " . ~:_ - .. . .' ~. ,~~,~: -_~,.. -~"~ .· -

Pa6oTa BbIIlOJIHena n Jfa6opaTOpHH TeopeTHiiecioii: q>U3UKHHM: H.H.Boro-=, 
JII06ona 0115111 ... · ·,. ":'._ . . . . . . 

"G~iamov T:I.; Tit6v A:1., KampffrB;·· , -
Neutralp.Meson Properties in an Isospin-Asy_mnieti-ic Pion ¥edium 

/ Weevaltiatc the p =~eson self energy1fftnite tempe~ature. r ahd charged­
pio~· chemicai•iotentiai·µ·Q as well by ll:tiHzing_a CO?VCntionaln-p _effecHve 
Lagrarigian a~d.'. fonctionar integralrepresen ta tlon<of. the partition; function 

:in the one-pion)~op order (i.e., second ordeiinthepnncoupling constant). We· 
-fo1d•arii~cret1;se ofJ,oth. the p~meson·•.rijassat1d.the_ width· with increasing. 
_ temp~rature and _~~emica:t potential µ(/At large value of µQ tJ1is irkreasemay 
be about two times larger as compared with the pure temperature shift of Gale -

-~ndKapustaatva'~ishirigµQ._ ·:- ·. -~ .. _ .·.:::: " .. · 

_ ·"iThe ·investigation· has been ~~perfor~e~i" at 
:of Theoret(ca_lJ>hys_ics, JINR:. ' 


