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Thin cosmic strmgs are known to bnc rise to remarl\ahle gravrtatronal ell'ects They do
not aﬂ'ect immediately the local bcomctry of a spac c-time mamfold but change 1nstead

its global properties. Placing the origin of the polar coordmate system on the strlng axis,

one reveals a deﬁcrt 21r(1 —a) of the polar anglc v (1] Thus, near the strmg world sheet

) the space looks hke the drrect produét C; x & \\here C is the comcal space wrth the

; correspondmg ranging of the angle 0< ¢ < < 27ra S

Thls pecuharrty results in the mtcrestmg quantum ell'ects which have been studred for -

both srmple cones 2] and around cosmrc stnngs [3] Spaces w;th analogous features appear

o also i in ‘the other 1mportant physrcal apphcatlons ‘The well- known’ example is the orblfolds

= occurrmg in the string compactrﬁcatlons [4] A sumlar set of spaces, called comfolds has '

. been proposed to generahze the lnstorus mcludcd m Luchdcan functlonal mtcgrals in

quantum gravrty [5] Frrlally, much attcunon has bwn pald 1ecently to comcal defects in

connectron w:th thcrmodynarmcs in thc pxesr-nco of black hole [6] {l] and cosmologrca.l '

v [8] horrzons where the comcal angle ais assocxated wrth the mverse temperature of a.

e
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One should also pomt out a numbcr of mathematlcal results For mstance, the general“ ‘
.~ theory of the Laplace and heat kernel operators on such a kmd of cones has been developed '

o ln {9] and an expllc1t form of the Dertt Schwrnger coeﬂlclents has been found out in

‘ some cases [10] As well many works were devoted to the functlonal determlnants and

,zeta-functron on the drfl'erent types of orbrfolds (11].

, On the other hand a consrstent descrlptron of the beometrrcal quantltles and mvarlant B
: functrona.ls of the metnc on the conrcal dcfects seems to: be absent To elucrdate thxs plob- o
.lem, let us remmd that a cone is everywhcxe ﬂat space (hl\e the plane) except the tip where' S
'lts curvature R is s1ngular. Obvxously, calculatlons by mcans of the standard formulas:-f
o of the Rlemanman geometry cannot 1evcal this’ delta-hke smgularlty, and other methods e
must be used to get a correct result One of these bascd on topologlca.l arguments was; B
suggested many years ago by Sokolov and Starobmsky [12] for two—dlmensronal cones an,d o

: used recently in hlgher drmensxons in [IJ] Howcver, an approach hke that does not seem :
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to be quite satisfactory. It only concerns computation of the scalar curvature, saying noth-
ing about components of the Riemann tensor, and faces difficulties under generalization
to arbitrary invariant functionals. ‘

In this paper, we consider a more natural recipe how to handle singularities with a
particular topology Ca x  and use it in the relevant examples. The corresponding mani-
folds will be denoted by M,. This‘method is ta replace the singular space by a sequence
of regular manifolds. All the integral invariants are then well-defined, and final results are -
obtained when the regularization is taken off. Some aspects of such a regularization have
already been discussed in the literature (see, for instance, [5], [14], [15]) and we represent
its further 'development.’ "Thus, we'show that although arbitrary curvaturé polynomials
in such a procedure turn out to be divergent and depend on regularization, some specific ’
integral quantities can be finite and have the strict mathematical meaning. We make use
of this fact to derive a number of new results of both mathematical and physical interest.

The paper is organized as follows. The regularization method is described in section
2. Its features are discussed in detail for two-dimensional cones where.the"regularizat‘iori" \
ambiguity and the structure of the integral of R? and Polyakov-Liouville"afctiOn are inves-
tigated.” Then, the tedmique and results are extended for the higher difmensional cases.
We evaluate the components of the Riemann tensor on M, and glve\:ettarnples of the’
functionals being quadratic in the curvature. » N ‘ ' o

A number of consequences and applications is presented in the second part of the
paper, in section 3, which starts with the discussion of the generalized variational prin-
ciple on a class of spaces i‘ncludlng M,. Then, vve analyze the‘hi.gher’ order curvature
polynomlals that can be defined on M,. An 1mportant example is the Euler character- ’
istics a.nd letzebruch srgnature of M, for Whl(:h ‘the exphclt 1ntegral representatron is
found. Also the Lovelock grav1ty turns out to be strlctly deﬁned on the mamfolds with
comcal smgularltles and we give the correspondmg generahzatron of the Lovelock actron '
and equations. F mally, using our techmque, we calculate the black hole enttopy in the
higher derivative gravity and in quantum 2—drmensxonal models. This is based on a dxrect ‘
statistical-mechanical derivation of the entropy in the'Gibbons-Hawking approach gener-

alized to the singular manifolds and gives the same results as in the other methods. Some

technical moments are clarified in Appendix A.
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Xr" : R s . .
2 . The method
A. Two-dimensional cones

A.1. Integral curvature

The method.is worth illustrating when M, is a two-dimensional space with topology. .

of the cone C,. Then its metric reads ..

ds® = € (dp? + p*de?) = e’dst, | . (2.1)

where \d-?zc is the line element.on Ca, ¢ runs from 0 to 2ra, and the conformal factor o is .

assumed to_’hav‘e‘ the followtng expansion in the vicinity of p = 0:

In general, oy and o, can be functions of the angle ¢ and a possible constant term in (2.2)>

can be absorbed by redeﬁnltxon of p.

" Due to asymptotrcs (2.2), the singularity comes out only from the comcal metric

dsc Hence, to understa.nd how to introduce the regularrzatlon of Ma, consider an em-

bedding of C, i in 3 dxmensmnal (pseudo)Euchdean space It can be given by equatlons ‘

z = apcos(d/a), y = ap sm(qb/a), z = /|1 — a?|p, that define the surface
bl zz—l ’( + 2) z20 . C(23)

o 5 .
LI Y s

Obv1ously, 1f @ 7& 1, there is a s1ngular1ty atz=0 where one cannot mtroduce the tangent

space and calculate the curvature in the usual way.

Ttis ea,sy to ”roll oﬂ” the cone t1p 1f gomg frorn Ca to a surface C w1th the equatlon z=

\/Il - az 1£( , a) where f (p,a) isa smooth functlon and a is a regularlzatlon pa.rameter‘

such that llm,,_.of = p. So far as for C the functron z has a minimum at p = 0, this
should also be valld for f in the case of the regulanzed surface Thus the only addmonal

condition on f (p,a) is 6,, f |,,_0 = 0 and the line elernent on C can be written as

ds} = ud,ﬂ FRAASE, u=at4(l- az)( £y O (24)

o=t ot L o L (2.2) '

ey

" where the function u has the following asymptotics

ulp:b =d? 3 ulp))a =1 . (2'5)

The simplest example of the regularization is that corresponding to the change of C, to a

hyperbolic space

—a? .
22— l_l_;zﬁ.'(;? +y?)=a® , 220 , (2.6)
24 202 .
pr+a‘a
dS?{ = mz—dpz + p2d¢2 . (2.7)

Instead of the singular manifold (2.1) one can use now the regularized space M, with
topology of C,. To proceed, it is convenient to represent the scalar curvature on it in the
form
‘ " R="¢"Rs—e 0o ' (2.8)
where R; and O are the curvature and Laplace operator defined with respect to metric
(2.4). Then, by taking into account the form of the regularized volume element du =
e +/updpdp and asymptotics (2.5), one can evaluate the integral curvature on Maq

Ma

oo 0O 27
R = 21ra/ dpu:,u_i — / e \/t_ipdpqu Qo =
0 o Jo

47r(1—a)—/ /m Japdpdd Dgo . ' (2.9)

The conical metric results in the first term in the r. h. s. in (2.9) which does not depend
on the regularization. The dependence on u appears only in the second "volume” term in
(2.9), but the latter turns out to be finite in the limit when regularization is taken off and
it coincides with integral curvature computed in the standard way on the smooth domain
Mo /T of M,. (Let us remind that ¥ denotes the singular set that is the point p = 0 in
the given case.) Thus, in the limit @ — 0 one has from (2.9)
lim | R=4r(l-a)+ / R . (2.10)
Ma—Ma J M, Ma/E
When in the region M,/% the curvature R equals to zero, equation (2.10) reproduces the
formula by Sokolov and Starobinsky [12]. This result does not depend on the concrete

behaviour of the regularization function «, which can be shown to be a consequence of the



Gauss-Bonnet theorem relating the integral curvature in two dimensions with the Euler
characteristics. A more deep discussion of this point will be given in section 3.
" So far as only singular point p = 0 can give rise to the first term in (2.10), one can

introduce a local representation for the curvature on M,

@R = 3(1—;—“—)5(,;) +R (2.11)

where 6(p) is the delta-function normalized as

/m5(p)pdp=l
cJo. L

In applications one also needs to handle with the higher order curvature polynomials or
non-local functionals on conical defects. However, as distinct from the integral curvature
(2.10), they include in general non-integrable singularities like 6*(p). Let us consider the

prop\grti‘es of such functionals on the simplest examples.

A.2. Integral of R?.

Without loss of generality, assume that metric (2.1) does not ”depehd on the angle

variable ¢. In this case, introducing a new radial coordinate z = £, one can on M, write

the curvature at the singular point as a decomposition

1 40 zu'
_ _ 2 2 _ 1 2
R=(1 a’orz )(—02 prove S + 0o, " + 0(e*)) (2.12)

where u' = %‘r—. Using this it can be shown that the following equality.

| / R2=/ R+ 2R(O)L(c) + X(aya) , " (2.13)
Mo IMafE

1 1 "
X(a, (1) = —ZR(O)IQ((!) + E;I;;((!) . . ) (2.14)
holds at small values of the regularization parameter. Here the relation —40y, = R(p =

0) = R(0) has been used and Ii(a) denote the integrals

oo ul 4 1__ 3
he) =tme [ el = U2

o2
* up 2, 1
La) = 27rcv/0 d:c:c(;ﬁ) u?z
- [P dr ul g 1 ’
I3(a) = 27ra£ = u—"’) uz . ) (2.15)
6

' The quantity I;(c) that enters into the finite part of the integral R? does not depend
on- choice of the regulariza/tion function u(p,e) and it is determined only by asymptotics
(2.5). However, I:(a) and I3(e) change under variations of u(p), including coordinate
transformations. Taking this into account there is no reason to consider such terms in
(2.13) separately and so they were gathered in a combination X (e, a). It follows from the
form of (2.13), (2.14) and (2.15) that X(«,a) should be an invariant function, singular
in the limit @ — 0. It is also important that at small conical deficits X (e, a) vanishes as
fast as (1 — a)? and only finite terms in (2.13) dominate. This can be proved in generla.l
with the help of equation (2.4) but it is better to demonstrate for particula.f regularization
(2.7)

a _16x(1 —a?)?(a® +3a +1)

o)==z T+
_ 8x(1 —®)* (8a® +9a +3)
Io(a) = s (2.16)

The above consideration teaches that (2.13) and other similar.invariant functionals
cannot have a strict mathematical meaning in the presence of conical singularities. Nev-
erfheless, the structllre of singular terms in.these integrals can be described and, as will
be shown, in some important cases all of them cancel each other or not contribute to the

considered quantities leaving there finite terms not depending on the regularization.

A.3. Polyakov-Liouville action

This is an example of the non-local functional playing an important role -in two-
dimensional quantur’n gravity since it is result of integrating the conformal anomaly. It
looks as follows [16] o
| W = / Ry (2.17).

where 1 is a solution of the equation:
Op=R . " (2.18)

Consider (2.17) on the regularized space M, and make use of (2.8). Then (2.18) solves

as follows

¢=—U+¢C‘ 1‘



. P! '
¢5=—‘2logp+C/ E;—dp+E (2.19)

where 1 is a solution of equation (2.18) for the smoothed cone € with the curvature
Rs = u}/(pu?), C and E are constants. It should be noted that only for C = 2 this can

be written in everywhere regular form

¢-—E/p"%—ad’+E | 2.20
C_a o pl P ( )

and, moreover, the function s coincides in the limit @ — 0 with the corresponding
solution on the conical space C,

(l-o

Yo — e =2 logp+ E . (2.21)

where the possible singular term ~ Ilna absorbed in redefinition of c‘onsta.nt E. The
function ¥ is important for analysis of quantum effects on gravitational background and
enters into the formulas for the energy density of the Hawking radiation and black hole
entropy [7].

The non-local action (2.17) on regularized two-dimensional manifold Mg can be writ-

ten in a more suitable form

WPL[M,_;] = ‘/C:(Rédjé - 2URC' + O'DL:U) . . ’ (222)

Obviéusly, the second and third terms in the r. h. s. of (2.22) give a regular contributions
when' regularization is taken off. Té,king into account equation (2.11), one gets when
é’a - C,

/C_aRé -  47x(1 — a)o(0) (2.23)

where o(0) can be zero, if the asymptotics (2.2) is assumed. Besides, the limit
/_UDC'O' — /UDCO‘ = WprMo/Z) (2.24)
é. c '

can be identified with the contribution to the Polyakov-Liouville action from the regular

points of M,. The rémaining term in (2.22) for E =0 has a nonlocal form

® oyl Pul2 g,

As one can see, X(a,a) is regular in the limit @ — 0 (for the regularization (2.6) depen-
dence on ¢.1 is absent) but depends on the form of the regularization function u. From
equation (2.4) other important property follows that when a — 1 the function X (o, a)
vanishes as (1 — a)?.

Finally, one obtains the action (2.17) on M, in the form
Wpr[Ma] = Wpr[Mo/Z] + 87(1 — a)(E) + X(a) (2.26)

where ¢ = —o is a solution of equation (2.18) when a = 1, ¥ is'a singular point and
X(a) = X(a,a = 0). Thus the non-local action Wpy, turns out to be finite (in the limit
a — 0) but regularization dependent.

We will return to equation (2.26) in section 3.
B. Higher-dimensional case

The technique can be extended now to higher dimensions. Let us consider a two-
dimensional cone C, embedded in the Riemann d-dimensional manifold M, so that near

the singularity (p = 0) the metric is represented as

d-2
ds? = e”(dp? + pdd? + D (7:5(0) + hi;(0)p?)d0d6 + ..) = e d&” (2.27)

=1

where ... means terms of higher power in p? and ¢ runs from 0 to 2xa. For convenience
we prefer to use the same parametrization as in two dimensions but, as distinct from
this case, the singular set now is a (d — 2)-dimensional surface £ with coordinates {0°}
and metric ;;(0). Near it M, looks as a direct product Co x . One can also c'onsider
M, having a number of singular sets ¥;, each with the corresponding conical angle ;.
Hereafter the metric will be assumed not to depend on ¢ at least in the small region of
z.

The metric (2.27) can be regularized with a parameter a as in two dimensions by

changing the g,, component in the conical part

d-2
ds? = ¢ (u(p, a)dp® + p*d¢* + Z(v,-,-w) + hi;(0)p?)do d0? + ...) . (2.28)

ij=1

The curvature tensors for a manifold M, with metric (2.28) and evaluation of the geo-

metrical quantities in the limit a - 0 are similar to that we considered in two dimensions.

9



Leaving the details for Appendix A, it should be mentioned that only the two-dimensional
conical part of (2.28) gives rise to the singular contributions.
We begin with formulas for components of the Riemann tensor that can be represented

near L as

@pm = R* 5+ 27(1 — @) ((n"ne)(n*ng) — (n*ng)(n"na)) 6z

@pge = R* 4 27(1 — a)(n"n, )z

@R =R+47(1 — a)bs » (2.29)

where 6g is the delta-function: fM fés = fE fin* = nf‘c‘lx‘; are two orthonormal vectors
orthogonal to &, (n,n,) = 213:1 nf‘n,’f and the quantities R* 5, R“ and R are computed

in the regular points M,/X by the standard method.

A consequence of (2.29) is the following important formula for the integral curvature

of M,

:

/a (°>R=47r(1—‘a)Ag+/ ‘R / (2.30)

Ma/S

where Ag = [ is the area of I. Equation'(2‘30) already appeared in a number of recent
publications for particular cases [6] and it was virtually implied in results of [13}. If Mo
has a number of singular surfaces ¥; with different conical deficits 2r(1 — ;) then the

ﬁrst term in (2.30) should be changed by the sum over all Z;.

As arbitrary functionals on M, are concerned, we give, as an example, the integrals of
quadratic combinations in R,,»,. The chosen regularization leads to the following results

(for details see Appendix A):

/°R2=/G/ER2+(211 (?d_?;lg)/(R—RE)+87r(1—a)/ERz+

"~ 1)12/ Qc+Y(@)4s : (2.31)

1. (d, (3d—4)
S 2 ZI — .
a7 /AAG/ER”” (d—l)( ST Iz) /E(R Rg) +

T (11+%12) [as+zv@ss (2.32)

10
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/ Ruvaﬁ_ /M P Rzuaﬁ+( __1) (2]1 ’gb) L(R~RE)+

I ) (411 - %b) /EQE + Y{(a)As | (2.33)

(d—1
where Y(a) is a quantity divergent in the limit ¢ — 0 and

d
Qs = ERW‘,n;‘ ¢n2nf — Rynin}

For d = 2 expression (2.31) coincides with that derived in the previous section. As in two
dirﬁensions, integrals (2.31)—(2.33) contain both divergent (¥ («)) and dependent on the
regularization (I5(a)) terms and can be brought into the same form as (2.13) by gathering
these terms together. In this case the remaining part of (2.31)- (2.33) will be a sum of
the initegrals over the smooth domain of M, and regularization-independent additions
in the form of surface integrals depending on either internal or exter}za] geometry of X.
Obviously, one can proceed in this way and obtain similar expressions for.functionals

being higher order curvature polynomials on M,. These examples follow below.

3 Applications

A. Generalized variational principle

As the first straightforward apphcatlon of equation (2.30), we consider the varlatlona.l

principle generalized on a class of manifolds admitting comca.l smgulantles It can be
i

used, for instance, in the description of grawtatlonal effects caused by cosmic strmgs

The gravxtatxonal action including a cosmic string with the tenswn 4 and 2 dlmensmna.l

worldsheet ¥ reads

1
- . . 3.1
W T R+/L/ W, +,u/ (3.1)

Without loss of generality we assume that mamfolds on Wthh (3.1) is defined do not have
the boundarles Consider thls functlonal on the spaces M with conical smgularltles

distributed over & a.nd represent it, according to (2.30), as follows:
(1-a) ‘
WiM] = Wolto/s]+ (-E22 4 62
4=G =

11



The form of (3.2) can be used now to find its variations on the given class of singular
spaces, but without fixing the actual value of the deficit angle at the conical singularity.
Thus, it is easy to see that, apart from the standard Einstein equations following from
the first regular term in the r. h, s. of (3.2), the independent change of the metric on ¥

results in the additional condition
l—-a=4rGpu (3.3)

being the well-known relation between the striné tension g and the conical angle deficit
[1]. Condition (3.3) is analogous to the "surface Einstein equations” in the presence of
matter shells [17] that can also be obtained from variations of the gravitational functional
[14]." As is seen, in the absence of strings (3.3) is satisfied only at the vanishing deficit
angle, a = 1. Therefore, even in the generalized variational principle the extrema of the
Einstein action in vacuum are realized on the smooth manifolds. The same conclusion
was previously derived in {14] for a minisuperspace model. On the other hand, spaces

with a number of different conical defects cannot be extrema of the vacuum functional.
B. Topological characteristics of M,

Let us turn to definition of the Euler numbers x and the Hirtzebruch signature 7
on manifolds with conical singularities. We are interested in these quantities so far as
they are expr’esséd throqgh the integrals on powers of the Riemann tensor to which the
regularization technique introd;lced above can be naturally applied. To be more specific,
consider such a characteristic, say y, on M, as a limit of this quantity taken on the

cohverging sequence M,
XMal= lim x[Md=x . (3.4)
Ma—=Ma ’

By definition, the right hand side of (3.4) is only determined by the topology of the
smooth spaces and does nol; depend on the regularization parameter. Therefore, topoiog-
ical cha.ra.cteristics like x’ of a singular manifold M, sifnply coincide with those of M,
and sﬁould be well-defined integral invariants. Qur aim now is to find a concrete integral

representation of x and 7 for M,,.

12
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B1. Euler numbers

To begin with, let us investigate the simplest example when M, is a closed four-
dimensional space with one singular surface E. For its regularized analog M, the Euler

number reads

1 .

X =533 /M (R —4R2, 4 R2,,;) . (3.5)

Using (2.31)-(2.33) and going from M, to Ma one cbtains from.(3.5) a finite expression
1

XMl = 5y /M SRR B+ (-] L (0)

where all the terms depending on the regularization are mutually cancelled. Formula (3.6)
gives the desired representation for x[M,] in which the first term in the r. 1. s. is the
contribution to the integral from ‘the regular points, and x[X] = + [; Re is the Euler
number of the surface I.

Equation (3.6) can be generalized to higher even dimensions d =.“2p. Wﬁhout loss‘of
generality, we confine ourselves to the compact spa.ces‘ without boundaries. In ‘this case,

the Euler number of a 2p-dimensional smooth manifold M is given by the integral [18]

X = cp/ L251/9dz (3.7
where £, is the following quantity -

ev1vee VZp—ll”szuluz R#?p-lunp ) (3 8)

Lp = €uip.. i2p—1ii2p Yop—1t2p

and the constant ¢, is
_ 1
% = ST (39)
Now let manifold in (3.7) be a smooth approximation Mg of a 7p—d1men51onal space
M, with a smgular 2(p— 1) dimensional surface 5. Then the Riemann tensor of M, can

be represented as the sum

R‘“’ aff T R(reg) aff + R(con) of - (310)

of a term remaining regular when the regularization i is taken off and a telm R(co") of
provided by the conical singularity. The latter has only one non-trivial component (see

(A.3)):

I
Rd,p 1 uz
(con) ¢p = a2 27u?

(3.11)
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where = = f and it is assumed that M, in the vicinity of ¥ is covered by coordinates
{¢,p, 6} with metric (2.28). Inserting (3.10) into (3.8) one gets a polynomial with respect
to R(mn) op- However, due to antisymmetricity of the e-tensor only the first order of this

quantity survives and

Ly = L} + 4Pegpiy..igy o€ -2 REE | ROZ . R (3.12)

nip 12p—-322p-2

where indices 4; and jx run from 1 to 2p — 2. This means that no singularities appear in
(3.12) in the limit a — 0 apart from an integrable §-function resulting in a surface addition
on Z. To evaluate it, choose the normal vectors n* to £ so that n! = {n;,(], ...,0} and

n? = {0,n ..,O}. Then the e-tensor reads

) p’
. . — 1 2 . .
Cpirizpmy = MyMpCiriz,_y)

where €, _;,,_,, is the rank 2(p — 1) Levi-Civita tensor on L. Due to the orthonormality

of the vectors n*, the product of e-tensors in (3.12) becomes ;.he product of their 2(p—1)-

dimensional analogs '
_ fépi..v..ig,,_; ¢bohps €iy.nigpn €272

Besides, so far as the extrmsxc curvatures of t,he surface ¥ vanish due to the isometry, the

Gauss- Codacci equations [19] enable one to ldentlfy R"‘};‘jm on I with the components of

the Riemann tensor of this surface. Thus, in the limit @ — 0 one obtains the integral

x[Ma] = cp/ i L, + 8npe,(1 - Q)Aﬁ(p-l) (3.13)

where the first term in . h. s. is e\}allxlated in the regular points of M, and £L(,-) takes
“the form (3.8) defined with respect to the metric on E. Finally, comparing this with (3.7)
and using identity ckp_l) = 8prc, one gets the’desired formula for the Euler number (3.7).
We will write this for the general case when M, has several singular surfaces I; with the
conical deficits 27(1 — a;)

xiMd=e, [ £+ 30 -5 (3.14)

As was expected the whole expression does not depend on the regularization and repro-

duces (3.6) as a particular case. This formula is also valid for a two-dimensional space -

14
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when the Euler number is proportional to the integral curvature and the singular surfaces
are the point sets. In this case (3.14) is a consequence of (2.10) if one takes into account
that x =1 for a point. -

It is worth mentioning as well that (3.14) reminds a formula for the iEuler characteristic
of polygons where each vertex gives a contribution in x determined by the corresponding
angular defect {20]. .

The case is of special interest when M, possesses a continuous isometry rotation
group in the polar coordinate ¢ (Eq. (2.27)) and all the singular surfaces in-(3.14) have
equal angles o; = a. Then, if = 1, the space is everywhere smooth. Otherwise, when
a # 1, M, can be obtained by the following chain o‘f continuous topology preserving
deformations: Mgy — Ma:L — /\;(c, — M,. Therefore, one can identify the Euler )
numbers x[Mq] = Xx[Ma=i], Which results, due to (3.14), in the interesting formula
réducing the number y of a manifold M, to that of the fixed points set of its abelian

isometry

x[Mazi] = ZX[E (3.15)

where we made use of the fact that for the given case the volume term in (3 14) equals
ax[M a=1)- Equatlon (3. 15) can be illustrated for the deformed hyperspheres 54 [8] with
the comcal deﬁc1ts of the polar angle. Thus, the singular set of S2 con51sts of its "north”
and "south” poles. Each of these points has x = 1 and one gets from (3.15): x[5%] =
1+ 1 =2. On the other hand, the singular' surface of S¢ (d > 3) is §4-2 and from (3.15)
the known identity x[SY] = x[$%¢~?] follows. Note that eqﬁation (3.15) is.vva.lid only for
spaces with continuous isometry in ¢ and it is violated for arbitrary kind QrBifolds with

conical singularities. . , .

B2. Hirtzebruch signature

We confine the analysis to the four-dimensional case that is of the most importance
in applications. The Hirtzebruch signature 7 on the smooth spaces without boundaries is

represented by the integral 18]

P s [ Rueslt o it (3:16)
M , o ’

1
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Consider this integral on the regularized space M, and use equation (3.10) to extract
the term giving a singular contribution to the curvature tensor when regularization is
removed. Due to the Levi-Civita tensor, the only additional surface term that can appear

in (3.16) is defined by the quantity

L 11
RosisRisn ssc?®

where R,4; are regular components of the Riemann tensor taken on the singular surface
¥ and ij indices are referred to its coordinates. However, taking into account the behavior
(2.27) of the metric near ¥ one can show that R,4;; = 0 and the surface terms are absent.
Therefore, the Hirtzebrech signature on M, has the same form as that on the smooth

manifolds; it is. given by the integral over the regular region

: 1 ‘
T[Ma] = ,/M /E‘RuuaﬂRuV,yafaﬂ’ya\/_addit . . (317)

9672

One can’also obtain 7[M,] in higher dimensions and show vthat, similar to (3.17), it is

represented by the integral over region M, /¥ without extra surface terms.

C. Lovelock gravity
'Now a natural question arises: can one indicate higher order curvature polynomials
not reduc1ble to topologlcal charactenstlcs but still having strict meanmg on the conical
smgularltles? The answer is positive. To begm with, let us note that the integral of
(R*—4R? +Rwaﬁ) is the topological invariant only in four dimensions where it is reduced
to a total derivative. Nevertheless, as one can show with the help of (2.31)-(2.33), thie
mtegra.l having extended to hlgher dimensions, will be strictly defined as before and can
be represented in the same form as its topological analog (3.6).
The given integral combination is a particular example of the so-called Lovelock gra\};
ity [21] and its property holds also for the general Lovelock gravitational action. This
functional is introduced on a d-dimensional Riemannian manifold as the following poly-

nomial

ka
Slvva -vap— 1 1
Wi = ZA [ gt R R, = S AW, (3.18)
=1

p=1
where 6{} is the totally antisymmetrized product of the Kronecker symbols and k; is

(d —2)/2 (or (d —1)/2) for even (odd) dimension d. In the 4-dimensional case there is

16

only one term W) =  f R in this functional and it is reduced to the Einstein action. It
was argued [22] that the gravitational action similar to (3.18) arises in the low-energy
expansion of string models. Moreover, due to antisymmetrization, no derivatives higher ‘
than second order appear in the equations in the Lovelock theory {21] and it turns out to
be free of ghosts when expanding about flat space [22]. .

‘ The fact that the Lovelock action is a finite and well-defined functional on manifolds
with conical singularities can be proved along the lines given for the Euler characteristics.
Indeed, each the integral W, in Wy, can be shown by using the properties of the Levi-
Civita tensor to be a dimensional extension of the corresponding Euler number x (3.7).
Thus, the analysie showing that W, is finite on M, and independent of the 1‘egularization
is completely the same as that givefl for y. The ir‘nporta‘nt things one should use for this

are the antisymmetricity property and a helpful relation

n

6[1/1...1/"] _ Z( )L+16vk6 v2.v1 -] . (319)

[B1eepn] — B1 % 2o pik e ettn]
k=1

After a simple algebra the Lovelock action on M, can be represented as the sum of the
volume and surface parts

kg—1

WL[M ] = WilMa/E] +27(1 = @) ) A1 Wp[E] O (3.20)

p=0
where the first term is the action computed at the regular points and the second one is a

Lovelock’s action given on the singular surface. It should be stressed that integrals W,[X]

are defined completely in terms of the Riemann tensor on X N
1 {i1..-82p) piréz - #2p—11; ;
Wiz = 5 / i g g (3.21)
and Wo = fE'

Formula (3.20) can be used to investigate the equations following from the extrema
of W(M,). The variations of this functional at fixed « result in the normal Lovelock

equations [21] and the surface ones

11132...12p—112p naet J2p—-1212p

kg1
r(l ~ a) (Z Ap“&””’ sz-lnpRmz ) Rl‘!pflt‘?}’_ + A16;-i) — ;15{ (3.22)
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where p is the density of a matter distributed over £. The latter equation generalizes’

relation (3.3) between string tension and polar angle deficit in the Einstein theory. Re-
- markably, in the higher dimensional case, an essential feature comes out: even if g = 0,
(3.22) may have non-trivial solutions different from these with a = 1. This means that
singular manifolds M, can be extrema in the pure Lovelock gravity. However, further

discussion of this point is outside the aim of this paper.
D. Calculus of black hole entropy

Manifolds with conicél singularities naturally appéar in the path integrél approach
to gravitational thermodynamics in the presence of the Killing horizons [6]-[8],[26]. Let
the space-time possess a globally defined time-like Killing vector &, and be static. Then
the free energy of a field system at temperature T' = $~! can be shown to coincide,>up
to multiplier 8, with an effective action functional W(3) given on an Euclidean section
My of the corresponding background manifold. The time coordinate 7 of this Euclidean
space has to be periodical with the period . In the case of the Killing horizon ¥, Mg
acquires conical singularities on this surface and can be described near it by the metric
(2.27) with a = % Here ' is the Hawking temperature at which conical singularities
vanish and at which the black-hole thermodynamics is consjdered. However, to get the

entropy S from the partition function Z(8) according to the standard definition

s=(- ﬂéﬁ +1) 1028, (323)

one should put § to'be slightly different from Bg. In terms of the effectwe act1on equatlon

(3.23) can be rewritten as

s= (a2 1) wmy | (3.24)
(e -) \

where for the background manifold the previous notation M, has been introduced and
a = BBy, Several examples how this formula can be used in the framework of the given

regularization approach follow below.
D1. Higher-derivative gravity

Consider the following gravitaticnal action being quadratic in the curvature tensor:

W = / Vidiz (——G—R +a, R + ;R R, + aaRMﬂRy,Ap) (3.25)
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The first term in (3.25) is the standard Einstein action, whereas the others are usually
motivated by necessity to get rid off the one-loop ultraviolet divergences.

Obviously, a straightforward application of (3.24) to calculate the black hole entropy
in such a theory faces a difficulty so far as the higher order terms are ill-defined on the
conical singularities and first one should change M, by its regular analog [7]. Then the

formulas (2.31)-(2.33) give the following expressions valid for any dimension d:
R= a/ R+ 4x(1 - a)/ , (3.26)
Mo a=1 z . 7

/ R2=a/ R2+87r(1—a)/12+0((1—a)2) , (3.27)
Ma a=1 z

R*R,, =a / RMR,, +4n(l - a) / Ryntn? +0((1—a)?) @29
Ma a=1

/ R¥MR oy = a/ R¥R,», +87(1 — a)/ R ninin n? + O((1 — a)? ) ,

. (3.29)
where n! are two orthonormal vectors orthogonal to the horizon surface X. To get (3.26)-
(3.29) we made use of the fact that M, is static and of the‘ Gauss-Codacci identity on
)34

R = Ry + 2Runfn{ — Ryponininin]

in which the second fundamental forms are absent due to the symmetry. The first integrals
in (3.26)-(3.29) are defined on the smooth space at a = 1, they are proportional to & and
do not affect the entropy S. As for the terms O((1—a)?) in (3.27)-(3.29), they depend on
the regularization prescription and turn out to be singular in the limit M, — Ma, but
they do not contribute to S and the energy of the system at the Hawking temperature
(e = 1). Indeed, from (3.24) and (3.26)-(3.29) one obtains for S the following integral

over the horizon ¥
S = —Ag —/ (87ra1R + 4wag R, nin! + 8ras R, nf n;\n;’n;’) . (3.30)

Remarkably, this expression differs from the Bekenstein-Hawking entropy § = 7 As in the
Einstein gravity by the contributions depending both on internal and external geometry

of the horizon due to higher order curvature terms in (3.25). It is easy to see that the
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effect of internal geometry of ¥ is reduced to the integral curvature of this surface. In
four dimensions (d = 4) this, being a topological invariant, is an irrelevant addition to 5.

It is worth noting that éxactl)" the same expression can be derived by the Noether
charge method suggested by Wald [27]. A difference, between two approaches is that the
Wald’s method seems to be more general, but it is defined on the equations of motion,
whereas the above derivation of (3.30) can be also applied off-shell. A general proof of

their equivalence when taken on-shell has been given in [28].

D2. Lovelock gravity

The expression (3.30) can be generalized to the theory with the gravitational action
being an arbitrary polynomial in the Riemann tensor. A relevant example is again the
Lovelock gravity, where the static black-hole solutions do exist [23] and their thermody-

namics can be treated along lines of thermodynamics in the Einstein gravity [24]. The

entropy of a hole in this case can be inferred from the Lovelock action (3.20) associgted

with the free energy

’ P : kq—1
S = (a& - 1) WL(Ma)|a=l =27 E /\p+lWP(E) . B (3.31)

p=0

and it turns out to depend only on the internal geometry of X. Formula (3.31) has been
previously derived in the Hamiltonian approach in [25], whereas arguinents based on the
dimehsidnal continuation of the Euler characteristics have been used for its derivation in

[13).

D3. Two-dimensional quantum models

Two-dimensional models of quantum gravity represent a remarkable example when
the one-loop effective action W can be found explicitly. Thus, in the 2d dilaton gravity

W is the combination

W =W — %LWWPL . (3.32)
_ of the classical dilaton action
Wo = — / Pz JGIF(D)R + G()(VE)? + U(®)] (3.33)
20

and the Polyakov-Liouville functional (2.17) generated by the quantum effects, ¢ isa
constant associated with the central charge.
The contribution of classical action Wy (3.33) to the entropy can easily be found using
equation (3.23):
So = 47 F(®s) ' ‘ (3.34)

where ®}, is the value of the dilaton field & at -the horizon which in two dimensions is
a point z;. This expression coincides with that previously obtained in [30]. As for the
quantum correction to S, it can be derived using formula (2.26) that defines Wpy, on
conical singularities and the fact that X(a) =~ (1 — a)?. From (2.26) one immediately
finds

| Si= ) (3.35)

The total entropy for the effective action (3.32) reads
S=So+ 5 =4xF(d)) + %wh . . (3.36)

In conformal gauge one puts i, = o4. Again this result coincides with that previously
obtained by means of the Wald method [32]. We seen that the function ¥(z) is not
uﬁiquely defined; one may add any solution of the homogeneous equation w(z): Ow =0.
The concrete choice of w(z) means the specification of the quantuin state of the system and
it can be found from appropriate boundary conditions [32] Finally, it is worth noting that
the last term in (3.36) determines a correction which comes from the conformal anomaly
and for the dilaton holes it leads to a logarithmic dependence of the entropy on the mass

of the hole [7], [31].
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Appendix

Here we present some technical details omitted in section 2. Thus, to compute the
curvature on the regularized space M,, one can take into account that the metric (2.28)
is of the form g,, = €”§,, and then make use of the formulas for the curvature tensors of

two conformally related manifolds -
- -~ 1 o
#lg) = (Rl + 5a -0, )
Rlgl=e"* (R“u[ﬁ} + l((d —2)", + 6‘202)) ;

R lo) = ¢ (R¥5l5) + 0% | (A1)
where
o = —29,,0 4 V0,0 — égﬂ,(w)z . (A.2)
For metric §,, (2.28) we have in the vicinity of p = 0:
'

By = 2 + 06

oy = =L 52 +O)

L. a2 o) (A9)

where b = 7'/h;; and we introduced the variable z = £; Ry is the scalar curvature of
. Other components of the curvature tensors do not contain the terms divergent in the

limit a — 0. As for the tensor o, (A.2), near the point p = 0 its components read

(@®)

U
0, = —801 + 40, uI
crd’(l$ = —8ﬂ + O(a®)

’
1 lazul
Gaa —160'1(5—2:1:“I

)+ O(a®) . (A4)

It is easy to see that in the limit a — 0 only the two-dimensional conical part of the metric
* g, gives singular contributions to the curvature tensors whereas the terms in (A.3) result
in regular additions. Finally, taking into account the form of the volume element
1
dji = ae~%/?ui(1 + §a2z2h)\/~7zdzd¢dd~20

one obtains equations (2.29).
22

Consider now the integrals of quadratic curvature combinations on M,. :By using

(A.2), (A.3), (A.4) in the limit @ — 0 it can be shown that

M§R2=a/:waﬂR2+87r(l—-a)/Rg—(81:,;;;2)/h+
((d )T, — 16(d — ( —izz)) o+ = Lhas ,
s

3
—-I,—2I h- St
7% 1) +

(A.5)

2
R =a
Ma Ma_

1 .

. R

2 , 1 L
y Rzuaﬁ=a»/M R§,0ﬁ+—12/h+ Ci

((d 4).16<11—-12))/E<71+—13AE S (AN)

where Ay = [; \/7d*7%0 is the area of the smgular surface Z. By means of identities

(A.1) the integrals f; h and f; 0y can be written in a coordmate mvarla.nt form in terms

it

of the curvature tensors for the initial metric g,, (2.27):

/ / ( R,.,,.,,\n“n inf — lRu,,n ny )

d—1) / o) = / (Rg — R— dRypntninin? + 2Bnin¥) . "(A8)

Finally, when using (A.8), ex’pressioné (A.5), (A.6), (A.7) take the invariant form of

‘equations (2.31), (2.32), (2.33):
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(I)ypcaeull B., COJlOlequ C.H. E2-95-28 -

06 onucanuy puMaHosou reome'rplm B npucy'rc-nmu KOHM‘{CCKMX cmtrynstpuocreu

Ha MHom06pa3mx'M c Kouuuecxumu ned)exravm (am cuurynnpuocrnmu) TONONOrUK
C, xX passusaercs noc.nenoearenbubm nouxon K OMMCAHNIO umerpanbnbtx dyskumonanos,

mmapnaumbtx NpY KOOPAMHATHBIX npeoﬁpaaouaumtx Comacuo NpeasaraeMoMy NpeinucaHmio
M; paccuarpueatorcn KaK Npenesbt cxonnumxcst nocneuouarenbuocreu ragKMux vmomoﬁpa:my;

310 nossonser an}laTb cTporuit Maremamqecxuu CMbICHT pnuy unuapnamumx MHTErDAJIBHBIX
BEJIMUMH Ha M_u ucnonbaoearb ux B npmto»(eumtx B uacTHocTH, Hauneuo ABHOE NPEACTARNEHHE

Ui qucen 3unepa " cumarypm Xupueopyxa B [PUCYTCTBUH Konuqecxnx CUHryaspHocTeit. Kak
noxasbiBaercs, MHOI‘OMepHaSl rpasutaums  Jlosenoka Ha' M, Taxx(e X0poLo onpenenena u

"rpaumauuonuoe AeiCTBHE B ITOM TEOPHH BBIMUCIIIETCS. leymu psux HPHAOKERHUI CBsi3aH ¢ pacue-

TOM DHTPONIMHU ‘{eprlX AbID B rpauwrauuu c BblCUJMMM ﬂpOMSBO}IHblMH nB KBaHTOBbIX ABYMEPHBIX

_mozensx. OH ocHosaH Ha ee Henocpencruemtom CTaTUCTHKO-MEXaHMUECKOM BbIBOJIE B noaxone
.I'mbbonca — Xoyxmu‘a, oﬁoﬁmeunom Ha CMHI‘leSlprle Muorooﬁpasml M., R4 naer TakHe xe

peaynbrarm, u'ro WB upymx Me'ronax L

By

Paﬁora ubmo.rmena B Jlaﬁoparopun Teopemuecxou dmsuxu UM. H H Boromoﬁoea omm

Tpenpuut Oﬁeuuneuuom‘uncrmyra‘ SIEPHBIX HCCNEROBAHMIA. Hy6Ha, 1995

Fursaev D.V., Solodukhin S.N. .o oo T " B2-95-28

p On the Descnptxon of the Rlemanntan Geometry in the Presence of Contcal Defects

A consistent approach to the descnptton of mtegral coordtnate tnvanant functionals of the metric

/on mamfolds M, with conical defects (or smgularmes) of the topology C % E is developed Accordtng

tothe proposed prescnptton M, are considered as limits of the convergmg sequences of smooth spaces.

- This enables one 1o give a strict mathematical meaning toa number of invariant integral quantities on

M and make use of them in apphcattons In parttcular anexplicit representatton forthe Euler numbers

“and Hirtzebruch signature in ‘the presence of conical singularities is found. Also, htgher dimensional

Lovelock gravtty on M, is shown to be well-defined and the gravntatlonal actton in this theory is

evaluated Other series of apphcattons is related to computatton of black hole entropy in the higher
derivative gravity.and in quantum.2-dimensional models.: This is based on its direct statistical-

; mechamcal _derivation in the Gibbons- -Hawking approach, generaltzed to the stngular maml‘olds
M, 5 and gtves the same results as in the other methods S S

. .:I‘he inveStigation has been performed'at the Bogoliuboy Laboratory of Theoretical Physics, JINR.




