


1. Introduction

Among the nonlinear bosonic algebra.s, there exist very special algebras which contain
the bosonic currents with noncanonzcal half-rnteger spins {1, 2, 3] contrary to other a.lgebras
possessing the currents with canomcal spins, The’ Polyakov Bershadsky, Wéz) , algebra 1, 2] is
the simplest nontr1v1al example of such algebras It is the bosonic analogue of the linear N=
2 superconformal algebra. (SCA) [4] and 'includes two bosonic currents with’ noncanomcal
spins 3/2 and two_bosonic currents with canonical spins 1, 2. . :

Recently [5], its N = 2 ‘supersymmetric extension has been constructed at the classical
level in the sense that one should take into account only single contractlons between the com-
posite currents. This algebra compr1ses, besides the currents of W{? o« {J,,, G¥,G~,T,}
and N = 2 superconformal o {J,, 5,8,T, } subalgebras with the same spms (1,3/2, 3/2 2),
respectlvely, also'additional four fermionic currents o< {5y, 51,8, Sz} with non:canonical in-
teger spins (1,1,2,2): the currents S, S are fermlonrc, their counterparts G, G~ are bosonic.
There is no intersection of these subalgebras at the embedding in this exténded algebra, where -
all the currents with integer spins can be obtained as the right hand side of operator product
expansions ( OPEs ) between those with half-integer spins. )

In this paper, we present the N = 2 supersymmetric extension of the W( ) algebra. at the

* quantum level, by taking.into account Jacobi identities to all orders-in contractrons between
the compos1te currents, and construct explicitly its ’hybrld’ field reahza.tlon on srx bosonic
and six fermionic fields.

2. The' quantum N =2 super-W( ) algebra

As subalgebras, N = "2 SCA i is linear, but. W( ) algebra is nonlmear At the quantum
level, N = 2 SCA is the same as the classical one, but W( ) algebra is dlfferent from the-
classical one because of nonlinearity. Bershadsky has found quantum WS algebra [2] in
the context of constrained Wess-Zumino-Witten model. In ordet to extend the classical
consideration [5] to the full quantum version, it is very natural to assume that the quantum
W( algebra [2] and N = 2 SCA form subalgebra.s in extended quantum N =2 super W( )
algebra.

As we could expect, the algebralc structure of quantum W( ) algebra. is the same as the
classical one except that ¢ dependent coefﬁcrents appearing in'the r1ght~hand side of OPEs
are different?. ( However, this is not the case for N = 2 super W3 2 algebra, as we will see
below. ) These two subalgebras take the form ’

Jw(zl)']w(z?) = ‘Eg ) W(Zl)Tw(Z‘Z) = "12—‘]‘”’ .
Ju(@)GH (@) = “EIG , Tu()GH () = £3GT + £ GV,
W(z) H v 1 !172—6c!c 4 ” * (1)
3 T (zl) w(z2) = (3+2c) . 2T +;Tw, R .

, VG+(z,)G (Zz)_—acT 167, +[ %war_ﬁ—zah.]w‘—‘w{u] ,

INormalizations of the ¢urrents are different from those of ref. 2.
2For example, see the OPE of G¥(2{)G~(z2).
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J(z2)(z) =25 5 J(2)Tl=) = 30,
J;(Zl):g(zz) = ﬁ;%s )
N=28CA:{ S(21)S(22) = ;-2c+ 3-2J, + L [T, + J]], (2)
Ty(21)5(22) = :%%5"' WS
‘ T()T(z) = g8+ For, + 110

where 3 213 = z; — z;. Let us also suppose that two U(1) charges of currents for the quantum
case ( with respect to the currents J, and J, ) are also the same as in the classical case.
Moreover, we assume that all the linear sub-algebras of the classical case do not change their

structure after ‘p'a.‘ssihg to the quantum case. Therefore, they have the following form [5):
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wl<l 2 —'—2123 ] w\<1)I2{<2) — 2126 2 1)01(22 —l,'z122 ,

o T | &
Si(z1)S(z) = 3G RN C)

It is natural to assume that all the remaining OPEs do not change their structure except
their structure constants which we should fix from the Jicobi identities. However, we have
explicitly checked that the Jacobi identities are not satisfied in this case. In order to get the
closed algebra for the quantum case we should add extra terms compared with classical one
! to the right-hand side of OPEs. So we take the most general ansatz consistent with the
symmetry under the permutation z; & z,, statistics, spins, and conservations of two U(1)
‘charges. As a result, we arrive at the following OPEs which satisfy the Jacobi identities for
the generic value of the central charge

1 16c 1 1 2(3 4 2¢) C s
T‘ Tw =4 7z ZTJ - Tw sJw
(zl) (Zz) Zi‘z 3(3 T 2C) + Z?z (3 n 2C) [ (_1 n 2c) + 8$151 + 8J,J.
48 , , 1 1 . . = 6
+meJw +2J, — GJW] + lem [45152 +45,5] — 4855, — zJ,Jw

= 2 .
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c

1
I+ B oy g 3J5] :

1 2 =
+ = — + _
TG (a1) = -y 7 [2515 2J,G* - @ ] ;
11 11, 1 3 ,
Tu(z1)51(22) = —'2?2-551 t.2 [52 A R 51] )

3Hereafter we do not write down the regular OPEs. All currents appearing in the right-hand sides of the
OPEs are evaluated at point 2;. Multiple composite currents are always regularized from the right to the
left, unless otherwise stated. Also we have omitted the OPEs which can be obtained through the following
automorphism : Ju,s = —Jy 5, Gt = 2GF, 5~ 85,5 5,51~ 5, § — —5,5; — ~53, 52 = 5.
4We will explain later that these extra terms disappear in the ¢]assical limit.
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The full structure of our algebra can be summarized as (1), (2),(3), (4). Several comments
are in order here. We now discuss ‘the relationship between a classical algebra [5] and
our quantized version. As.we expected, the c-dependent structure constants become more
involved rational functions of ¢. Also one can see that there exist eztra terms in the right
hand side of (4) which do not appear in the classical version. The classical limit is given by
the usual relation between the Poisson bracket and the commutator while ¢ — oo [6]. But
we also need to take into account nonlinear terms because of nonlinearity of our algebra.
The straightforward way to recover the classical limit is as follows. .If we consider any
composite current term given by the product of n fields in the right-hand side of OPEs
at the classical level, then its denominator should be proportional to the (n — 1)th power
of ¢. So when we effect the ¢ — oo limit inany composite current, product of n-fields,
in quantum algebra, only the term that has the above:mentioned property survives in the
classical limit. For example, look at the OPE of T, (z,)T (22) in"(4) and consider only the
terms [2T,/(3 + 2¢) — 2Tw/(=1 + 2¢)]/2%, in the right-hand side‘of it. It has "wrong” c-
dependence and therefore disappears in the classical limit. Let us rémark that a]l new terms
compared to the classical case have the ”wrong” c:dependence and -after applymg these
procedures to our OPEs (4), we recover the classical expressions [3].

All the eight currents with spins less than two are primary with Tespect to, the followmg
Virasoro stress-tensor T with zero central charge :

1

=135 [(—1+20)Ts + (3 + 2¢)T, + 85,51 — 8J7 + 247, J, —24.]2 +2J’—6J,’U] (5)

which also reduces to the classical one [5] when ¢ — co: Ty and T, are the quasi primary
fields with the central terms equal to 3¢ and (7 — 6c)c/ 3+ 2¢), respectwely However S,
and S are not ( quasi ) primary, they are prlmary in the followmg ba.ses

Sz—'Sz-l' S;, gz—"s_z—%gi"‘, .
(6)

It can be checked that in the quantum case also there is no basis in our algebra such that
all the currents are primary with respect to any spm two - current: satrsfymg the. Virasoro
algebra.

Notice that the structure c0nstants in the above algebra become d1vergent 1f c= 0,1 /2
or —3/2

3. 'Hybrid’ field realization .

Our analysis at the quantum level in thls section is ba.su:ally the same as the one pre-
sented in [5]. N = 2 quantum super-W( algebra can be realized by. the whole multiplets
of basic fields contammg six bosonic fields - {UI,UZ,VI,Vg,f {} and siX fermionic ones -
{/\1,/\1,/\2,/\2,1/1 1/1} with the spins (1 1,1,1,1 2 2) respectively and with the J,- and J,-
charges equal to the charges of correspondmg currents. The basic ﬁelds form the followmg
superalgebra '

' Foy e 1 1 NT o 11!
CEe)(zm) =, Pla)blz) = ——, M(z)h(z) = =+ —W,
212 212 . 1 212

212

" 1 1 o 1 - 1
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Ul(zl)/\l(ZZ) = ;1—2"\17 'Ul(Zl)/\l(Zz) = *Z—nf\l,. !

1
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1 < - . ‘ o
Ualeph(en) = =0k Uale(ea) = 20, Ualahalm) = =200, ©

U a(a) = s |
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Taking -the most general ansatz for the currents in terms of the deﬁnmg basic fields
and ‘demanding the consistency with the OPEs (1),(2),(3), (4) we can obtain the follow-
ing realization of our algebra. We only write down the expressions for the basic currents
5,5,Gt G because the remaining elght currents can be obtamed from the OPEs of basic

ones. N ‘ o . ;
— 6c 1+42) 5
21/2€€¢ f/\z + ( 7T )‘/111) 21/2‘/21/)+21/2U11/)+21/2U21/) + LW_II)I;
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The above results (8) are defined up to possible automorphisms of both.the N = 2 quantum
Wéz) algebra and the basic algebras (7). It has been checked that we have correct classical
limit [5] in this *hybrid’ field realization through the following automorphism:

~ - - 1 - — =
£= (0%, &= ﬁf b= sz, b= (29"

A= (2c)‘/’X1, M e Xa, Ay = (20)1/2X; - (9)

-G =

It is instructive to examine the structure of the stress- tensor T (5) in this realization. It is
bilinear in basic fields,

- < 1., 1 - 1 1
A A= XA — é‘ffl + 51/)1/), + Evlvl + EVZVZ - WUy + hh — UV,

1+2 3—2
( -z c)‘/ll_*_( 4 c)‘/zlj]’

1 3 1 1T
566 - 0D+ (10)
and also reduces to its classical version as ¢ — oo.

4. Conclusion

To summarize, we have constructed the quantum N = 2 super—W;,(z) algebra by using
the Jacobi identities for which eztre composite currents in the right-hand side of OPEs,
that were not present in the classical consideration, are cruc1a.l We have also presented
its ’hybrid’ field realization.” The quantum N = 2 super-W3 has the same structure as
the classical one: it is a closure of quantum N = 2 SCA and Ws(z) algebra. Thus, the
constructed N = 2 super algebra contains Wég) as a genuine subalgebra in contrast to the
known N =2 superextenswn of W a.lgebra. wh1ch ylelds Ws only in the 11m1t of vamshmg
fermionic currents. . :

Despite the presence of N =2 SCA as suba,lg)ebra and the equal numbers of bosonic and
fermionic currents in N =2 quantum super-W,~ algebra, the spin contents of currents and
OPEs make it impossible to combine ed hoc the currents into' N =-2 supermultiplets (the
currents of N. = 2 SCA appear in the right-hand side of OPEs between other currents). It
would be very interesting to study manifestly N = 2 supersymmetric formulation of this

6

algebra which allows us to combme the currents into N.= 2 supermultlplets The main
idea of such reformulation is to look for another N = 2 SCA in the full N = 2 super-W{?
algebra. In the forthcoming papers [7, 8] we will present the corresponding N = 2 superﬁeld
formulations of N =2 Wé ) algebra both at the classrca.l and quantum levels.
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