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ТЫ; theoretical interest in the reaction 77 —> тг07г° dates back to the seventies 
when predictions for the electromagnetic polari/.abilities of the charged as well an 
I lie neutral pioii wore obtained in the framework of current-algebra technique» [1] 
and cliiral quantum field theory [2]. These polarizabiliticja. are a signature of the 
underlying structure of particles, similar to the electromagnetic root-mean-sqiiare 
nidi 1 is, and a large number of different predictions for these parameters has been 
obtained in various models (for an overview see, e.g., Refs. [!$]). The possibility of 
investigating the 77 —» ff°7r° amplitude via the c+c~~aiinihilation process as well as 
the pliotoprocliiction in the Coulomb field of a nucleus was addressed in Refs. [4]. 

In the meantime, 77 —• 7Г°7Г° cross section data from threshold up to the p-
rcsonance region wore provided by the Crystal Ball Collaboration [5]. On the theo
retical side the framework of Chiral Perturbation Theory (ChPT) [G, 7] provides an 
ideal tool to systematically study low-energy amplitudes involving Goldstone bosons 
and their interactions with external fields, such as the electromagnetic field. In llcfs. 
[8] the amplitude for 77 —* 7г07г° was calculated to 0(pl) in ChPT, and the result 
was found to be given entirely in terms of one-loop diagrams involving vertices of 
0(p'1). In other words, there are no tree-level diagrams at 0(p2) and 0(p4) and 
thus the one-loop diagrams are finite. However, the one-loop calculation in ChPT 
disagrees with the data even near threshold. The inclusion of a Born contribution at 
0(pr'), obtained either from quark loops or from vector-meson dominance, results in 
too small a contribution to yield agreement with experiment [9]. On the other hand, 
the application of dispersive methods leads to a considerable improvement since they 
lake account of important unitarity corrections corresponding to rescattering effects 
of higher order [10]. Л full two-loop calculation at 0(pe) within SU{2)xSU{2) ChPT 
was carried out in Rcf. [11]. The 0(pe) counterterm contributions were estimated 
with resonance saturation and the total result was found to be in good agreement 
up to an invariant mass */s of 700 MeV. Finally, 77 —> я-°7г° was also considered in 
the context of Generalized ChPT up to one-loop order corresponding to 0(p5) in 
this counting scheme [12]. 

In the framework of chiral 5£/(3) x S£/(3) symmetry the decay process 77 —• 7r°77 

is closely related to 77 —• 7Г0ТГ°. At 0(p4) in ChPT the prediction for the decay 
width [13] was found to be two orders of magnitude smaller than the measured value 
[14]. The pion loops are small due to approximate C?-parity invariance whereas the 
kaon loops are suppressed by the large kaon mass in the propagator. A consider
able enhancement was obtained with resonance saturation for some counterterms of 
higher orders in the momentum expansion. In Ref. [13] symmetry-breaking terms 
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proportional to the quark masses were not considered at 0(pn). Snob comitcrternm 
were, however, included in Refs. [15, 16]. In Ref, [15] they were estimated in the 
framework of an extended NJL model [17] whereas in Ucf, [16] the experimental 
decay width was used to fit one of the corresponding coefficients. Finally, a comple
mentary approach was used in Ref. [18] where the i) —* тг°77 decay was calculated in 
a phcnomcnological quark model using the quark-box diagram, Л good agreement 
wjth the experimental value for the decay width was obtained with a constituent 
quark mass of 300 McV. 

It is the purpose of this work to present the results of a consistent calculation of 
the processes 77 —• тг07г° and 77 —У TT°77 at 0(pe) in the momentum expansion. Ac
cording to Weinberg's power counting scheme [6] the calculation involves tree-level, 
one- and two-loop diagrams. The effective action up to 0(pc') in terms of collective 
meson degrees of freedom is obtained by bosonization [19] of the NJL model [20]. 
This effective action, in addition to the pseudoscalar mesons, still contains scalar, 
vector and axial-vector degrees of freedom. In order to determine the structure co
efficients of the effective chiral lagrangian at 0{рл) [7] and 0(p(i) [21] one has to 
integrate out the meson resonances. The method of superpropagator rcgularization 
[22] was used in order to fix the UV divergences which for the first time show up at 
0(p°). 

We start from the generating functional 

Z = jvbV&VVVA ехр[г'5(Ф,Ф*,1/,Л)], (1) 

corresponding to the following action for scalar (S), psoudoscalar, (P), vector (V ,̂) 
and axial-vector (Д,,) collective meson fields, 

5(Ф,ф',\/,Л) = У ^ Х [ _ - А Ч Г ( Ф Ч ) - -±-1г(\/Д/"-МИ") 

+log(det(*D)) (2) 

This action is obtained by first bosonizing the effective action of the NJL model 
and then integrating over the quark degrees of freedom. In Eq. (2) G\ and 6'г arc 
parameters which are fitted to empirical input (sec Eqs. (11) and (13) below for 
details), Ф = S + iP, and D refers to the Dirac operator 

Ш = [i(ij) + 4n) - (Ф + m0))Pn + Ш + 4L) - (Ф + шо)']/3/., (3) 

where m0 is the current quark mass matrix, РЦ/L — | ( 1 ±7я) arc chiral projectors and 
A% — VfiiAft. The electromagnetic interaction can be included by the replacement 



Уц ~< Ki + 'C<A,,Q, where Q is (lie quark charge matrix, Q - diag(2/3, - 1 / 3 . - 1 / 3 ) . 
We express Ф using a nonlinear realization of chiral symmetry, 

Ф = ПВП, 

whore 
П('г) = (:xP ~ШГФ-) 

( 72*° + To''* + TTi'l" 
ч>-

\ 

7Г 

y/2Fi 

- т г ^ + Тв^ + Та''0 

/v + 

(*») 

represents the psctidoscalar degrees of freedom, /'o is the bare л- decay constant. 
The 3 x 3 matrix Щ-т) contains the scalar fields and is expanded around its vacuum 
expectation value /*, 

ад = /* + «т(х). (5) 
The constituent quark mass ft is the solution of the gap equation. 

For the processes under consideration, up to unci including 0(/>")< only the even-
intriusic-parity sector of the chiral lagraugian is required [13]. This sector is obtained 
from the modulus of the logarithm of the quark determinant and can bo calculated us
ing the heat-kernel technique with proper-time regularization [23. 21]. This method 
has been used in Ref. [25] to obtain a prediction for the structure coefficients of the 
general effective lagrangian of 0(»'') and 0(pn), respectively [7. 21]. The result of 
Ref. [25] explicitly contains, apart from the psoudoscalar Goldstone bosons, scalar, 
vector and axial-vector resonances as dynamical degrees of freedom. However, in or
der to avoid double counting when calculating processes involving Coldstonc bosons 
and photons, one has to integrate out (reduce) these resonances in the generating 
functional of Eq. (1) and thus one effectively takes resonance-exchange contribu
tions into account. As a consequence of this procedure the structure coefficients of 
psctidoscalar low-energy interactions will be strongly modified [17. 26, 27]. 

[n order to perform the integration over the scalar, vector and axial-vector fields 
in Eq. (1) we made use of the fact that the modulus of the quark determinant in 
l'2q. (2) is invariant under local chiral transformations of the fields [27. 28]. This 
allows us, with a specific choice for the chiral transformation (unitary gauge), to 
eliminate the pseudoscalar fields from the Dirae operator, Kq. (3). At. the same 
time, introducing Ф' = Ф — n?o and renaming Ф' —+ Ф generates the mass term 
for the Dseudoscalars from the Gaussian part of Kq/ (2). Furthermore, interactions 

3 



between the pscudoscalar degrees of freedom and the transformed vector and axial-
vector fields arc generated in the Gaussian part. The masses of the scalar, vector and 
axial-vector mesons arc sufficiently large in comparison with the Goldstonc boson 
masses, and thus it is possible to integrate out the meson resonances using their 
respective equations of motion in the static limit. These equations result from a 
variation of the effective action of Eq. (2) hy neglecting terms of 0{p*) and higher 
in the logarithm of the quark determinant. The remaining part of the action then is 
quadratic in the resonances, in particular, there are no terms containing field strength 
tensors. 

The invariant amplitude M ~ ic^CjT^ of the process 7(71)7(72) —» а{р\)КРг) 
can be expressed in terms of two functions Л and В as 

т ; ; - а 4 = . ^ , " ) ( | ^ - 7 2 / . 9 i , ) 

+ B(s,v)[2st\llA»-(f2-(ml-m2
af)f/lw 

+2({v + m2
b - ml)<]2lA„ ~ {v + m\ - m£)A, l7 l l,)], (G) 

where 5 = {q\ -f <?2)
2, v = 2p\ -{q2 —//i), and Д,, = (pt - p2)lt. The amplitude 

for the process a(pi) -* Ь(р2)*f{q\ )f(q2) c a " be obtained from Eq. (G) using crossing 
symmetry, namely, by performing the replacement </,• —> -<•/, and p\ —* -px. However, 
for the decay channel r)(k) —+ v°(p)y(q\)y(q2)i it turns out to be more convenient to 
use the parameterization 

^ - . «V») = A(x1,x2)[glll/(qr^)~qi,q2ll) 

-hB(xi,x2) rn^xxx-icjpv + • ' 2
2 fc^A-v - xiq2liku - z2fc,,</i J , (7) 

where i,- = (k • qfifrn^. 
The prediction for the amplitudes of Eqs. (6) and (7) will involve the structure 

coefficients Li of the Gasser-Leutwyler lagrangian in one-loop diagrams at 0(pc>) as 
well as new coefficients (/,- from Born diagrams at 0(pb). It is straightforward to 
obtain the effective lagrangian at 0(pe) contributing to the processes under consid
eration from the most general representation of Rcf. [21], ' 

£e = 4 k i ^ V " V [arUodpUte1) + d2F,u,F»4v {daU0d"UbQ2) 

' + < & V " 4 r ( x W o + Ui)Q2) + <UV4v{Q2)ir (X{U0 + Ufo) 

U5fUQf»Hr(Q2)tT(dQUod0Ut)-\-d6Flt„f^(Q2)lr(daUodQU$ 

'Note that there are difTerent conventions for the definition of the coefficients rf,-. 
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+</7*>Л"Чг (paU0UbQ) tr (dpUoU^Q) 
+dsFll„F>tvtr(daUQUlQ)tr(daUoUt)Q)]. (8) 

In Eq. (8), TtiV = дцАу — дуЛц is the ordinary electromagnetic field strength tensor, 

U0 = е х р ( г - ~ ) , 

Vo = d,ag ^ + - ^ + - ^ - ^ + -^ + ^ o , - у ^ e + ^ o j , 

and x = diag(x„,x2> X?) = —2mo <<??> FQ2 ' s the mass matrix, where <qq> is the 
quark condensate. Previous calculations considered the counterterms of Eq. (8) with 
various degrees of approximation. In Rcf. [13] only single-trace terms in the chiral 
limit were taken into account. In Refs. [11, 15] the chiral symmetry breaking term 
proportional to d3 was included and Ref. [16] also took d^ into account. The double-
trace terms proportional to rf4 - dg typically do not appear in effective lagrangians 
derived from the bosonization of NJL type quark models. 

In the NJL model only the structure constants d\, d2, dz contribute to the Born 
amplitudes of the processes 77 —» 7Г°7г° and 77 —> 7r°77 at 0(p6), respectively, 

A""" = |f[4*' + !*<*-2m->+*<4* i + *2>] -

and 

+ 6 ( т^ - %) [{dl + 4 ^ К ( * 1 + **) ~ ***< + * W g . + Xl)] 

-\(xl-Xd)Ol[(di+4d2)ml(xl+x2) 

-i(d2m2 ,-4(4X
2

u + xl + 4xi))]}, 
BB(pB) - -ф*№^+&-^№- (10) 

In Eqs. (10) Ce = cosO — \/2sin0, where в = —19° is the 77—77' mixing angle, 

7/8 = 7?cos0 + 7?'sin0, 7/0 = — 7jsin6 + rfcosO, 
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and furthermore wc have introduced 

' ( cos0- v/2sintf)2 • {s\nO + уДсояОУ 
m*.— ml 77z r — ml 

Note that the 77 decay amplitudes of Eqs. (10) also include contributions of the pole 
diagrams with 7r°—rj and 7r°—rj' transitions. 

% We now turn to the determination of the structure coefficients within the frame
work of the NJL model. It is a well-known fact that the elimination of the resonance 
degrees of freedom gives rise to a substantial modification of the structure constants. 
At 0{pl) such a reduction leads to a redefinition of the decay constant FQ and the 
mass matrix X- To be specific, the identification of the decay constant before and 
after reduction is given by 

2 _ Nc(i2y 2_ 2NcjJ?y . 

respectively, and similarly 2 for \ 

* - M i - £ . • " " * ) - - S I - <12> 
where у = Г(0,/х2/Л2), fi is the average constituent quark mass, Л is the intrinsic 
cutoff parameter, and 

ZA -1+щ)^^' Kit)-щ (13) 

The incomplete gamma function is defined as Г(п,.т) = ^ Й е ' 1 / " ' 1 . In Eq. (13) 
we have introduced 

148тг2' 9v= \т~(2у " I ) , K ) 2 = ™ 2 ( l + 7), 7 = 48тг2 

The parameter Z\ of Eq. (13) corresponds to the 7r — A\ mixing factor and has the 
phenomenological value 

m\ 1 - 7 
where we used the following empirical input, mp = 770 MeV, m,i, = 1260 MeV, and 
9v = Aw* = 6.3. On the other hand, with the special choice Z\ = 1/2, Eqs. (13) 
and (11) reproduce the well-known Kawarabayashi-Suzuki relation, m2 = 2<72

/F,2. 
2Using the gap equation it can be shown that both expressions for x in Eqs, (12) are equivalent 

for/i2 /A2«l. 
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Л full calculation of the ж and К decay constants at 0(рл) allows to fix the 
parameters у and x — - / ' ^o / (2 <<7<7>) for given values of ZA and /i, by identifying the 
decay constants with their empirical values. In the following we will use ZA = 0.62 
and /i = 265 McV, from which we obtain у = 2.4 and .r = 0.10. These values 
correspond to F0 = 90 McV and <Щ>х>й= -220 McV. 

At 0(рл) the reduction of the resonances [27] leads to the following modification 
of the structure coefficients of the lagrangian introduced by Gasscr and Leutwyler 

/i = 
1 

24 
/2 = 2/ , 

, = -i 
L = 0 

h = x(y - 1) 

. /o = 0 

k=={\-x)xy-h 
'°=з 

/10 - - g 

/red _, l 

'• " 2 4 
ircd o/rei 

'2 — - M 
irerf _ 1 
'3 " ~ 6 

^ + 2 ( ^ 1 - l)(\y(ZA - 1) - 2;l)] = 1.08Л ; 
i, 

^ + 3 ( ^ - \)(\v(ZA - 1) - # ) ] = 1.54/з; 

/Г' = (у -1 ) -^ ;=0 .Г ,0 / 5 ; 

/^==0; 

/Г* = 0; 

r e
e r f « ^ = 1.07/e; 

r9e -SS!K^"5y(^."n) = 1-12/B5 

l?0
d = -\(zA-V(ZA- \)) = l.$Gll0. (Ы) 

In order to obtain tbe expressions for the reduced coefficients of Eq. (14). the static 
equations of motion of the scalar, vector and axial-vector resonances have been 
applied. In such an approach scalar resonances can only modify /s and /ц. Note that 
the above results arc in agreement with those obtained in Hef. [ 17] except for I"'1, and 
/ged (sec Sect 5.5 of Rcf. [17]). The disagreement originates in a different procedure 
of integrating out the scalar resonances. We will come back to this point below when 
discussing higher-order corrections to the static equations of motion. 

We will now discuss those structure constants cl; at 0(// !) which do not vanish in 
the NJL model. Before reduction we obtain 

Nc F$ 1 
</, = -

16TT2 it2 24 
= -9 .13x 1 0 - \ 

4 = 
Я F2 1 

N F7 1 
16л-2//2 48 

x= 1.83 x 10 - 5 . (15) 
1 6 Л-2 /i2 12 

The first two constants coincide with the results of Hef. [9]. The reduction of meson 
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resonances in the framework of applying the static equations of motion generates the 
following modifications 

^ = W ^ = ''«xlO-». (16) 

In this context we note that the modification of the first two structure coefficients 
results from the application of the equation of motion to vector and axial-vector 
resonances. This change amounts to a multiplication of the original coefficients d\ 
and d% of Eq. (15) by a factor Z\. The situation for </3 is qualitatively different. In 
this case the application of the equation of motion to the scalar resonances modifies 
this coefficient. Let us compare our results for 6\ы with those of Ref. [15]. We 
agree for the coefficients d\ed and <#jed but difTcr with respect to dr

2
ci. In order 

to understand this discrepancy we note that two different techniques were used to 
eliminate the resonances. In the treatment of scalar resonances the method of Kef. 
[15] involves operators with derivatives which axe beyond the scope of our treatment 
using the static equation of motion. A comparison with Eqs. (23), (32) and (38) of 
Ref. [15] shows that such operators are the origin for the difference in dT

2
eii. However, 

there is another interesting observation. Even though our final expression for d™d is 
the same as Eq. (40) of Ref. [15] our result originates entirely from the reduction of 
scalar resonances whereas in Rcf. [15] it is the sum of a scalar resonance contribution 
(see Eq. (39)) and a quark-loop contribution (see Eq. (23)) for which we have no 
analogue. 

Finally, we have also investigated in our approach those results of Rcf. [15] which 
correspond to the inclusion of operators containing derivatives when integrating out 
the scalar resonance. To this end, after a unitary gauge transformation of the modu
lus of the quark determinant, one has to keep also higher-order terms in the effective 
action of Eq. (2) which are linear in the scalar field a{x) and which contain the 
coupling to vector, axial-vector fields and field strength tensors. Such higher-order 
terms lead to a modification of the static equation of motion for the scalar resonances 
and thus give an additional contribution to the structure coefficients lr

3
ed and d"d, 

Kd^ = l(JLzliz* = _ о . Ш з , (17) 

^к.0.) = ЪЩ1У^1#А = 1.02 x 1СГ5 , (18) 
l07T2 ft2 '18 I/ 
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Table 1. Modification of the coefficients аг, «2 and b of Eq. (19) due to the reduction 
of meson resonances. Af — Nс(ЬжFojf.i)2 = 54.6, Z\ = 0.62 

CoefT. 

01 

a j 

6 

Without 

reduction 

Щ{Пх-1)М=12Л 

&ЛГ=15.2 

tfe-V =: 2.53 

V„- and Ajt-fieUbi 

in stntic npprox. 

-$Z\X=-IBS 
А^л-=вл 

^ 2 ^ = 0 . 9 7 

Reduction of 

Static approx. 

# ^ = 12.5 

0 

0 

resonances 

o-ficld 

Higher-order correct. 

- § f ^ ( l - i ) ^ = - 9 . 0 

# * i ( l - * ) * « " • • » • 
0 

Sum 

-12.1 

10.3 

0.97 

vvhicli agree with Eq. (155) of Ref. [17] and Eq. (38) of Ref. [15], respectively. The 
total result for the coefficients lT

3
ed and dr

2*d after reduction of the vector, axial-vector 
and scalar degrees of freedom then are the sum of the contributions of Eqs. (14) and 
(17) and (16) and (18), respectively. It is worth noting that the considered higher-
order terms also modify the static equation of motion of axial-vector resonances. 
However, this modification does not lead to any new contributions for either the 
structure coefficients L; or cf,-. 

For the purpose of comparing our numerical results for 77 —»7г°7г° with those of 
Refs. [11, 15], it is convenient to introduce the following parameterization [11] of the 
Born contribution at 0(pe) for the amplitudes A and В of Eq. (6), 

(19) 
(167r2F0

2)2 ' " ° (16TT2F0
2)2 ' 

The coefficients a\, a2 and 6 are related to d\, d2 and ^3 by 

ai=(47T)^32(d3-d2), a2 = {^f~2(d, + 8</2), Ь = - ( 4 г ) 4 у ^ . 

Our results for a,- and b are summarized in Table 1. Clearly, the reduction of the 
resonances leads to a large modification of the coefficients. However, one has to keep 
in mind that the effective action after the reduction describes the interaction of only 
pseudoscalars and photons. Thus the modified coefficients should not be treated 
as additional corrections to the nonreduced coefficients of Eq. (15). A summation 
of quark-loop contributions and resonance-exchange contributions to the structure 
coefficients as in Table 1 of Ref. [15], in our opinion, leads to double counting. 

Before comparing our values of the 0(p6) structure coefficients with those of Ref. 
[li] we provide a prescription for relating results in different renormalization schemes. 
In our approach UV divergences, resulting from meson loops at 0(p6), were separated 
using the superpropagator regularization method [22] which is particularly well-
suited for the treatment of loops in nonlinear chiral theories. The result is equivalent 
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to the dimensional regularizaf.ion technique used in Rcf. [11], the difference being 
that the scale parameter fi is no longer arbitrary but fixed by the inherent scale of 
the chiral theory, namely, /i = Аж F0. In order to compare the two methods the UV 
divergences have to be replaced by a finite term using the substitution 

(C-l/e) —• CSP = 2C+1+1- A(logr-2(2*+2)) + /?7Г = - 1 + 4 С + /37Г 
г=0 

where G = 0.577 is Eider's constant, e = (4 — /2)/2, and ft is an arbitrary constant 
resulting from the Sommerfeld-Watson integral representation of the supcrpropaga-
tor. The splitting of the decay constants Fv and FK is used at 0(p4) to fix Csp « 3.0. 
For our numerical comparison with the two-loop calculation of Rcf. [11] we made 
use of the parameters Li and d,- corresponding to Tables 1 and 2 of Ref. [11]. In 
particular, from the numerical values of the parameters a\, a-i and b of Table 2 of 
Ref. [11] 

afo 5 = -39.0, a ? G 5 = 12.5, bBGS = 3.0. 

one obtains 

dfs = -10.8 x 10 -5 , rffG5 = 4.29 x 10~5, < / f G 5 =-0 .10 x 1 0 - 5 . (20) 

Our predictions at 0(p4) and 0(p6) for the 77 —» 7Г°7Г° cross section near threshold 
are shown in Fig. 1. The calculation at 0(p6) contains Born, one-loop and two-
loop diagrams. In our two-loop calculation only diagrams which arc factorizablc 
and which can be calculated analytically were taken into account. Two-loop box 
diagrams and acnode graphs cannot be calculated analytically but the numerical 
estimates of Ref. [11] indicate that their contributions are small. As was already 
discussed in Ref. [15], the predictions of the NJL model for the coefficients d\ci 

ana df are about a factor one half smaller in comparison with the vector-meson-
dominance model (VMD) (see, Refs. [9, 15]). The coefficients d\ and d2 in the VMD 
model can be obtained from Eq. (16) by the replacement 

«4 ?4 _ 6 {Wirhvft\2 

£j A » £J 6/ia^y . 2 JA A ivc\ mv 

with mv = rnp, and where the coupling constant hy = 3.7 x 10 -2 is extracted from 

the decays V —»7Г7. This has to be compared with the prediction of the NJL model, 
hyJL = 2.5 x 10 -2 for Z\ =0.62. We have taken account of this uncertainty by 
showing the results for both Z\ =0.62 and Z\ = 0.91. The results of our calculations 
with the parameters of Ref. [11] are also shown in Fig. 1. Numerically they are in 
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УУ'->Т?Я? 

300 400 500 600 700 
mw (MeV) 

Fig. 1 . Cross section for 77 —» 7г°7г° as a function of the invariant mass 11' = w„o„n for 
W < 0,7 GcV and |cosfl*| < 0.8 where 0* is the angle between the beam axis and one 
of the тг° in the 77 centcr-of-mass system (c.in.s). The data are from the Crystal Hall 
experiment [5]. The dotted line represents the one-loop calculation at 0(p4). The dashed 
line corresponds to the calculation at 0{p6) without reduction of the resonance degrees 
of freedom. The dash-dotted lines corresponding to two different values of the parameter 
Z^ arc a measure for the uncertainty in the reduction of the meson' resonances. This 
uncertainty is due to the difference between, the N.IL prediction and the empirical value 
for the coupling constant hy. The solid line corresponds to the values of the coefficients 
Л, and <h used in Rcf. [11]. 
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ТнЫс 2, Contribution of Vflfimifl diagrams to tho // <=> zr'V/ Aacny width, 

Amplitude» 

1-loop 

0(p<) 

7Г7Г- loops 

A'7T-loops 

Born 0(p°) 

1-loop 

0(Р°) 

2-loop 

0(p«) 

ff7T-loopS 

Л'ТГ-loops 

ffff-loops 

я-/(-loops 

Л'ТГ-loops 

Total 

Without 

reduction (cV) 

1.3-10-'' 

6.2 • 10"a 

0,22 

1.9 • 10-4 

4 .Ы(Г г 

3.2. Ю-4 

3.1 .ID"3 

1.4 • 10~s 

0.14 

With reduction (<*V) 

Z\ = 0,62 

1.3. 10-'» 

G.2. 10-3 

0,11 

0.9 'Ю - 6 

1.9- 10-3 

3,2- Иг"» 

3,1 • ID'3 

I,4.l0- r ' 

0,11 

Z\ в 0.01 

1.3-l0-:' 

6.2- 10-я 

0.45 

8.6-Ю-" 

2.7. 10-2 

3,2 • 10-4 

3,1 • 10-3 

1,4 • lO'5 

0,35 

a good agreement with Ref. [11]; even for m„n as large as 700 MeV the difference is 
only about 7%, 

For the decay width of rj —* 7Г°77 we obtain after the reduction 0,11 eV and 
0.35 eV corresponding to Z\ — 0.G2 and Z\ - 0.91, respectively. On the other 
hand, using the parameters of Eq, (20) one finds 0.18 eV. These results have to be 
compared with the experimental value (0.84 ±0.18) eV [14]. The contributions of 
different diagrams to the decay width arc shown in Table 2. These results clearly show 
the dominance of the Born contribution. It is a well-known fact that calculations 
of the decay width at 0(p°) tend to come out too small in comparison with the 
experimental value [13, 15, 16], This failure indicates that either higher-order terms 
are required or higher-order resonances have to be included or both. 

Finally, we have also tried to fit the coefficients d\, d2 and d3. However, due to 
a strong correlation between the coefficients d\ and d3 it was impossible to find a 
stable minimum from a fit to the 77 -+ 7г0тг° cross section and the r/ —• тг°77 decay 
width. The strong correlation is related to the fact that the mff, dependence of the 
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Fig. 2. Normalized differential decay probability for JJ -* тг°77 as a function of 
Z = 7п 7̂/тПц. The dotted line represents the phase space distribution. The dashed line cor
responds to the calculation at 0(p6) without reduction of the resonances. The dash-dotted 
lines display the uncertainty in the reduction of meson resonances for different values of 
the parameter Z\, The solid line corresponds to the values of the coefficients Li and df 

used in Rcf. [11]. 
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77 ~* тг07Г° сгоян section rcHtiltrH from the interference between the Horn amplitude 
on the one hand and оно- and two-loop amplitude» on the other hand, Tims the ex
perimental data are not sensitive enough to the various Bom contributions described 
by d{. On the other hand, the.Born contribution is dominating in the // -• д°77 
decay. In Fig. 2 wo show the normalized differential decay probability as a function 
of m^/mfr In this сане the differential distribution is very sensitive to the input 
parameters (/,, Thus data of the differential distribution would.be of great value for 
constraining these parameters. 

In conclusion, a self-consistent, quantitative description of 77 —• 7г0тг0 and r/ —» 
7T°77 data at 0(p°) is still problematic. Л good description of the 77 -» 7rV cross 
section has been achieved whereas a satisfactory, «piantitativc prediction of the decay 
width seems to be beyond th 1 reach of an ordinary calculation at 0(pn). 
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.1. Gasser, E. Л. Kuraev, II. Lcutwylcr, M. R. Pennington, V. N. Pervnshin, Л. 
Schaale and M. K. Volkov. One of the authors (Л. Л. Bcl'kov) would like to thank 
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