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1 Introduction 
The simplest way to construct the clamtical Lagrangian of the SQM in D dimcrmionfl is 
to consider superficlds Ф'(г»»/в)| i = l,2,...D in the supcrspacc r,v° a = 1,2,...N with 
ono bosonic and N graHHmann coordinates. The first component of the superficlds arc 
the usual bosonic coordinates X' , the next опоя ф,а arc grassmann coordinates, So, the 
classical Lagrangian of the Supcrsymmctric Quantum Mechanics (SQM) describes the 
evolution of bosonic and additional grassrnann degrees of freedom, which after quantiza­
tion become generators of the Clifford algebra. This fact naturally leads to the matrix 
realization of the Ilatniltoiiiau and Supercharges of SQM [I]. 

The dimensionality of such realization depends on the number of grassmann variables 
and in the case of scalar superficlds Ф' it is 2 ' ^ ' , So, it rapidly growths for extended 
supersymmetry and, for example, takes the value d = 64 for D = 3, N = 4 case. 
The way out of this difficulty is to use more complicated representations of extended 
supcrsymmctry [2) • [6]. The main idea The simplest of them is the chiral siiperfield, 
which contains one complex bosonic and у complex grassmann fields. The Lagrangian 
for such superfield naturally describes the two - dimensional SQM, The main idea of the 
reduction of the number of grassmann degrees of freedom for other values of D is to use 
Buperfields Ф' which transform nontrivially under the isomorphism algebra of the extended 
supersymmctry algebra 

{Q°,Qb}=i8°^. (1.1) 

If N = 4 the isomorphism algebra is 50(4) = 50(3) X 50(3) and index i can de­
scribe three-dimensional vector representation of one of the 50(3) algebras which plays 
simultaneously the role of space rotations algebra. The dimensionality of the matrix 
representation is d = 4. The Hamiltonian and Supercharges for such description of three-
dimensional N = 4 SQM were obtained in [6]. In the present paper wc describe the 
two-dimensional N = 4 SQM with the help of the chiral superfield. Along with two dy­
namic bosonic coordinates such superfield contains four dynamic grassmann coordinates 
and dimensionality of the matrix representation for Hamiltonian and Supercharges is four 
again. 

In the third and forth sections we analyze Bose and Fermi sectors of the two-dimensio­
nal and three-dimensional SQM in such minimal superfield approach. Despite of the 
complicated structure of the gravitation-like interaction with additional nontrivial poten­
tial energy, the resulting stationary equations after some unitary transformation become 
the usual stationary Shrodinger equations, demonstrating the coupling constant - energy 
transmutation in some cases. 

2 Two - dimensional SQM 
In this section we construct the two - dimensional TV = 4 SQM in the frames of the 
superfield approach. The N = 4 supersymmetry algebra can be written in terms of two 
complex supercharges Qa, a = 1,2 and hamiltonian Я 

{Qa.Q6} = to [ям = [я,о°1 = о, 7Г = Ql (2.1) 
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It» automorphism group is SO(-i) = SU(2) x SU(2) and Q„ transforms as a sp'mor of оно 
of the SU{2) groups. 

The chiral supcrficld ' 

Ф(т,М) = Z{T) + 0л
Ха(т) + ~ М ( т ) + 00F(r) - j000«x" - ~0OOOZ(T) (2.2) 

in the supcrspacc with one bosonic coordinate т and two complex fcrmionic coordinate» 
0° behaves as a scalar under the supersymmetry transformations 

60" = e", tf„ = tn, *r = i(£°5fl + Za0
a) (2.3) 

and satisfies the chirality conditions 1Гф = 0, where 

"'-Ж-Н с"» 
are the supcrsymmetric covariant derivatives. 

The most general action for the supcrficld Ф 

S=l- f Нт<Ш20У{Ф, Ф) + [ (1т(Р0П(Ф) -1- f (1тс1Ш(Ф). (2.5) 

contains one real function У(Ф, Ф) and one chiral function Л(Ф). After the integration 
over 0 and Ъ wc find the component Lagrangian, in which fields F and F arc auxiliary 
and they can be dropped with the help of their equations of motion. 

Finally, the component Lagrangian takes form: 

2 &W 1 QWdW...-r-г UU 
+ty*fei ' w "дП?™"1* ' W (2,6) 

where wc have introduced 

WM.*gg,uw.!*p;^x. (,7) 
The quantization procedure takes into account the dependence of the Lagrangian on 

the conformally flat metric ffjjtz'z* = W{z,t)zz [6] and leads to the following quantum 
Hamiltonian and Supercharges: 

W W2K dz dz Д 2 **' _ ]_ ' 
4 . 3 dWOW d2W.A T , . 2 , д fU\ д fU\-n , UU 

W{mjz-W ~ a^i)(2" *+)* + g;(w)^ + m \w) ++ + W 
Qa = W + i^)-?==, (2.9) 

Й, = - ^ ( ^ Г + г ^ а ) , (2.10) 

'Our conventions for spinors are as follows: 5„ = (0a)*,0a ~ 9beba,9a = eai9b,9~ = cai^t,0a = 
tcba,T = -(0ay, (90) = 0a0a = -20l02,(00) =ЪаТ = (CO)*. 
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where 

J-r + W™wA^ = *-WlS-№-b' <2Л1) 

and V = -»'^i V = - i ^ - CJraMWinnn variables fo and V'n satisfy the following commu­
tation relations 

{ФаЛъ) = \*Ъ « , / '=1 ,2 . (2.12) 

and can bo considered as a creation and annihilation operators. The genera! quantum 
state can be written as the vector in the corresponding Fock space 

|Ф(г, z)) = ф1(г,?)\0) + х*(г,г)фаЩ + Ф2Ь,г)ФфлЩ, (2.13) 

where (0) is the vacuum of the Fock space: ф"\0) = 0, The Hamiltonian // is hermitian 
and herrniticity properties of supercharges Qa = Q+ arc fulfilled with respect to the scalar 
product 

(Ф),Ф2) = У^^( г , г ) (Ф,(г , г ) |Ф 2 ( г ,5 ) ) . (2.14) 

The only case when the scalar product (3.17) coincides with the usual scalar product is 
W(z,z) = const, 

The normalizable solutions of the stationary Schrodiuger equation 

/7|Ф) = Я|Ф) (2.15) 

describe the physical states. In Bosc sector this equation is non diagonal and leads to two 
connected equations for wavefunctions фА{г,!) 

{w _ w^ Qz m '+ w^2\v dz m dzor + 2W'* (г,г) + 

j = ( p £ ) *'(*.*) = W * ^ ) (2.1С) 

{ WVV W^ Dz dzV)+ W*(2W dz dz dzdz] + 21V ]Ф (V + 

§-г(^)фЧгГг)=т*Г*) (2.17) 

It means that true physical states in the case of nonvanishing chiral terms in the action 
(2.5) are superpositions of the bosonic states with different fcrmionic number (0 and 2). 
After the unitary transformation 

II = W-yf*i'lWV2, фл = \У~"2фл (2.18) 

the system (2.16)-(2.17) takes more simple form 

{ 2 ^ + ^^,(гД) + с К ^ ) ^ г ' 3 ) = К+Ч*Я (2Л9) 

{2^+ш}^1) + т{^)^г^ = к?№ сад 
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There is no need to solve this system. The simplest way to find the solution of this system 
is to find the solution of the system in the sector with fennionic number 1 and to apply 
one of the supercharges Qa to it. As a consequence of the supersymtnetry algebra (2.1) 
it will be the solution in the bosonic sector. 

In the Fermi sector the Ilamiltoriian II is diagonal and equations for the spinors 
Ха(2,г) arc very simple: 

^(VV + ^)xa(z,z)=KX
a{*r*). (2.21) 

These equations are just the stationary zero energy Shrodinger equations 

(2VV + U(z,z))X
a(z,z) = 0 (2.22) 

with the potential 

The whole potential 0 is combined from two functions U(z) and W{z,z~). Some particular 
choices of this functions arc interesting. The simplest of them W(z,~z) = 1 leads to the 
standard Shrodinger equation with the potential 

0{zrz)=U{Z^{zJ) (2.2-1) 

and the energy E. The opposite situation takes place when U(z) = a = const and W(z,l) 
is arbitrary. The energy E in the corresponding Shrodingcr equation 

(2VV - EW(z,z))xa(*,z) = -l-aaX"(z,z) (2.25) 

plays the role of the coupling constant. In turn, the coupling constant a , namely its 
function £ = — j a a , plays the role of the energy. This situation demonstrates the effect 
of coupling constant - energy transmutation. As we will sec later, only this situation takes 
place in three dimensions. 

In the general situation of arbitrary U(z) and W(z,z) the energy E plays the role of 
the coupling coustant and the physical spectrum is determined by the existence of the 
normaiizablc solutions of the equation (2.23) at the definite values En of the parameter 
E. 

3 Hamiltonian and supercharges in D = 3 

The following expressions for Hamiltonian and supercharges for three - dimensional SQM 
have been obtained in [6]: 

h - 1 1 # IdiW(X) 1 a2 3dfW{x) 1 5 ( G W ( S ) ) 2 

~ 2W{x) '" 4 W*{x) 2 W(x) 8 ^ 2 ( i ) 32 W3(x) 
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Qa = 

+{*«* " 2' VWW " VWW) + (зл) 

(*<)£ (P.' - '"(0Ж - | )f t In VK(*)) + i«5»] - A = , (3.2) 

(3.3) e« = -A=[(^-)j(p,-+.-(^c-5)ftiniv(*))-ie^ 
where i, &,/ are three-dimensional vector indices and a,b = 1,2 - spinor indices as in the 
two - dimensional case. Again the operators фь and фа are creation and annihilation 
operators and the general quantum state can be written as the x-depending vector in the 
corresponding Fock space 

|Ф(»} = ^О)|0) + xe(*)?.|0) + Ф\х)ф$л\0), (3,4) 

In 3 dimensions the Hamiltonian H and operators 

Pi = -id,- ~ jidiW(x) (3.5) 

are Hermitian and Qa = Q„ with respect to the scalar product 

(Фх.Фя) = J <Рх\У*1\х){Фх{х)\Ф2(х)), (3.6) 

which contains the measure W3I2 in contrast to 2 - dimensional case. 
All of the operators (2.1)-(2.3) are completely determined in terms of the function 

W(x) (connected with the superpotential V(x): W(x) = 5ДУ(х)) and one additional 
parameter a, which also characterizes the parity violation. The sum of the angular mo­
mentum and spin operators 

Ji = €iklxm + фа{<п)ь
афь (3.7) 

is conserved operator, describing the total momentum of the system. The eigenvalues of 
the operator (3.7) are integer for bosonic states with wavefunctions фА{х), А = 1,2, and 
half-integer for fermionic states with grassmann spinor wavefunctions xa(x)-

The normalizable solutions of the stationary Schrodinger equation 

#|Ф) = Е\Ф) (3.8) 

describe the physical states. In Bose sector this equation is diagonal and leads to two 
identical equations 

НвфА(х) = ЁфА(х) (3.9) 
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with2 

//в = -\д'*ЬаЧ*)№ + ^ ~ ̂ Л, (ЗЛО) 
where 

дф) = W(x)S{j (3.11) 
is the metric tensor and 

n^JdiOjWjx) 3 ( c W ( * ) ) * \ 

- the scalar curvature of the corresponding three dimensional space. Note the equality of 
the coefficient at Л to that, calculated in [7]. In the Fermi sector the Hamiltonian / / is 
non diagonal and the equation for the spinor x"(x) 1S M follows; 

\-29 idig^)9,dj+2W-8\-W^r~4 №(x) )}XW-
(3.13) 

The first of nondiagonal terms in this equation is proportional to the spin-orbit coupling 
and the second one leads to the parity violation. 

Both the bosonic and fermionic equations can be written in more simple form with 
the help of transformation 

Я = W-±(x)HWi(x), фА(х) = \У-Цх)фл{х), ха(х) = W-b{x)xa{*)- (3.14) 

The transformed equations are: 

{-Id? - Е\У(х)} фА(х) = -\а2фА(х), (3.15) 

{-ld}-EW{x)+±Wi$W-i}xa(x)- (3.16) 

-l-{hikldk\nW(x)dl^adi\nW(x)}(ai)lxb(x) = -\a*xa(x). 

The bosonic ones are just the stationary Shrodinger equations with the potential U(x) — 
—EW{x). The energy E plays the role of the coupling constant and the coupling constant 
а , namely its function £ = - 5 a 2 , plays the role of the energy. It means, that the effect of 
coupling constant - energy metamorphosis takes place in three-dimensional SQM as well. 

In spite of the fact that the bosonic Schrodinger equation (3.15) is written in the flat 
three dimensional space, the scalar product for wavefunctions фл(х) contains the function 
W{x): 

(фА,фв) = 6АВ f (РхШ{х)фА-{х)фв{х). (3.17) 

This relation is the consequence of the relations (З.б)-(3.14). 
2to avoid misunderstandings we denote the derivative which acts on everything to the right by means 

of 8i 
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4 Example 
As an illustration we consider in three dimensions the case \V(x) = -ft r = \/if. The 
scalar product is 

(*i,&)*/Л£Я(*М*)- (4-1) 
Taking the standard form for the wave-function 

6(х)=1-^иы(г)У1т(0,Ф), (4.2) 

wo find the equation for u„i(r): 

with normalization condition 

/

dr 
~u'n,,,(r)Uni(r) = 5„..,6,.,. (4.4) 

The normalizahle solutions of the equation (4.3) are 

«„«И = Cn, г' с - " , Г-\(1 + 1 - n,2/ + 2; 2or) (4.5) 

with constant C„/. The energy spectrum is given by the following relation 

E„i = ~(n+l+ I) (4.6) 

The solutions of the corresponding equation in the Fermi-scctor for W(x) = j 

f L , BK 3 1 ] . , , , , „, 
{-2d?--+s7>\^*H (4.T) 

can be obtained from the solutions of bosonic equation with the help of supersymmctry 
transformations. The energy spectrum of fcrmionic equation (4.7) is also given by the 
formula (4.6). 
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