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Introduction 

The calculation of the quark determinant. modulus can be reduced to the calculation 

of the Schwinger proper-time integral [1 ]: 

J
~ dr 

log(detA)~ -Tri<(r), 
1/112 T 

(I) 

where K('r) = e-A,. is the so-called "heat kernel" for operator A= fitfi, with fi = 
-y.UD.u being Dirac differential operator in the presence of the external background 

fields. The coefficients h1c of the expansion of the interaction part of the heat kernel 

in powers of the proper time T are known as the heat-kernel coefficients. They 

determine the low-energy expansion of the effedive one-loop action (2]. Therefore, 

the calculation of these coefficients is an alternative method to the direct calculation 

of Feynman diagrams (3], thus having a fundamental character. 

This paper is an extension of our previous paper [4J. We discuss the implemen

tation of the classical DeWitt algorithm {5J to calculate the higher-order heat-kernel 

coefficients by means of computer algebra. After presenting the results obtained 

with this method we briefly compare them with those of other groups using different 

techniques. This method is demonstrated to obtain also the nonlocal corrections 

taking into account the finite sizes of mesons, that leads to the modification of the 

heat-kernel equation. We also discuss technical questions connected with the work 

with large expressions in Lisp-based computer algebra systems such as Reduce. Our 

techniques allow us to push the calculations of the heat-kernel coefficients to higher 

orders. 

1 General outline of the heat-kernel techniques 

The logarithm of the determinant of a positive definite operator A is defined in 

proper-time regularization with the integral relation Eq. (1). The trace Tr is to be 

understood as a space-time integration and a "normal" trace over Dirac, color and 
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flavor indices. The operator A is an elliptic one in usual cases: 

where d.,.= al, +I'.,., operator rl, describes vector gauge fields, a(x) is a local oper

ator without free derivatives. The explicit form of these operators depends on the 

particular rnodd. The effective parameter fL fixes the regularization in the region of 

low momenta. 

The heat. kernel /<( T) = c-AT satisfies the equation 

with the boundary condition 

a 
-K(r) + AK(r) = 0 ar 

K(r=O)=l. 

The asymptotic behavior of A at short distances is defined by the "free" part 

Using the ansatz 

K = K 0 /f 

it is convenient to separate from the heat-kernel its ''free" part K 0 , 

'I '))I I { 2 (x-y)'} < xiKo y >=< xlexp(-(iJ"iJ" + p r y >= (4n)' exp -p T + ~ , 

which satisfies equation 

with the boundary condition 

Ko(r = 0) = 1. 

The "interaction'' part H of the heat kernel satisfies the equation 

H(x,y = x;r = 0) =I, (2) 

with z.,. = x.,. - Yw The differential operator d~ acts on x only. Using now an 

expansion for H(T) in powers ofT 

00 

H(x,y;r)= Lh,(x,y)·r' 
k::=O 
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a recursive relation is obtained from Eq. (2): 

(3) 

with the boundary condition 

( 1) 

After the integration over r in Eq. (1) the following expression for the quark 

determinant is obtained 

~ I ~~ lp4 l'(k-2p2/A 2 ) 
logldcbDI=--Iog(detDID)=---(-I.: ;, Tch, 

2 2 4~)' k p 

Where f( Q'
1 
X) = f-coo dt e-tta-l is the incomplete gamma function and hk :::: h~c(X, y = X). 

2 Recursive algorithm 

In order to construct a recursive algorithm let us usc the basic property of the 

heat-kernel coefficients providing the recursive relation (3) between hn(x,y) and 

hn_ 1(:t,y). The boundary condition (1) for h0 (x,y) is determined from Eq. (:l) with 

n = 0 and h_ 1(x,y) = 0. The task is to find the coincidence limit h" = h .. (x,y)jz=o· 
We- cannot set z = 0 in Eq. (3) directly, since when acting by differential oper

ator dcr on this equation we get a nonvanishing contribution: d,:..(z~<d1'hn)L=o ;:;:c 

9al'. d~'hnlz=O = dn:hnjz=U" 
One can see that tbe usage of Eq. (3) for the calculation of hn will produce terms 

like dcrdti ... hn(x, y)jz=u· In order to get the recursive relation for tbem we apply !.he 

product of rn differential operators dcrd/3 ... dw on Eq. (3) and take limit z = 0: 

where (n + m) > 0 and 

For Pcr{3 .w we have the recursive relation 

(6) 
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with the boundary condition P = 0, where R{J ... w;o. = [d{3 ... dw, do.]· Performing a 

comrnut.ation of the differential operator d" successively through the others d13 , ... , 

dw, one can move it to the left side. Then tbe two products with m differential 

O!Jerators cancel each other, and only terms with (m- 2) differential operators are 

ldt over. Finally we will get. t.he recursive relation 

(7) 

with the boundary condition R;o. = 0. Thus, one has to use the recursive relation 

(5) starting from m. = 0 to calculate hn(x,y)lz=o· After each iteration it is necessary 

·to commute all differential operators arising from d~-<d" or P01 (3 .. w to the right side up 

to hk(x, y) introducing commutators of t.he type 

(8) 

nand m change under these iterations in the following way; either (n-----+ n- lL or 

(m-----+ m- 2), or (n-----+ n- 1; m-----+ m + 2). It is easy to show that after 2n iterations 

only h0 (x,y) remains without differential operators. At the end one gets the desired 

rt'sult by setting t.lw limit z:::: 0 where ho(x,y)!z.:O = l. 

Following the strategy outlined above, the calculation of the heat-kernel coeffi

cients is straightforward hut. cumbersome. The lengthy calculations can be performed 

only with computer support.. The calculation of the heat-coefficients is a recursive 

process which catl be done by computer algebra very conveniently using the recursivf' 

relations (5-7) until :mbstitutions ca.nnot be made any further. 

3 Heat-kernel coefficients 

The expressions for the beat-kernel coefficients contain a large number of terms which 

can be related to each other with the following transformations: cyclic properties of 

trace, commutator identities (S), removing physically redundant. total derivatives, 

renaming of the dummy indices and Jacobi identities for symbols Ka 1 .. ,. 

It is necessary to reduce the expressions to some minimal basis of linearly inde

pendent terms for the final presentation of the results and their comparison with the 

results of other papers. As so011 as we know, it is still not. possible for nontrivial cases 

to bring all expressions to a canonical form using some identities. Th(' solution of this 

problem is very important. since sonwt.imcs it. is easier 1o p<'rform il. calculation in a 
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noncanonical basis than to bring it to a canonical form or test its equivalence with the 
similar expression in another presentation. For example, we had to perform by hand 
the reduction of the effective chiral lagrangians of the order p6 in the momentum 
expansion to a minimal basis [6], after most of the initial "trivial" simplifications 
had been done automatically with computer algebra. 

So far we do not know an efficient general algorithm which allows to transform the 
total heat-kernel coefficients into some unique minimal basis. For Uw reduction of tlw 
heat-kernel coefficients to the minimal basis let us usc what is always possible to do 
-test whc:;ther two expressions are equivalent or not. Here it is sufficient to express 
all SIJ. ... and r 1-"' .. according to their definitions in terms of operators a and d1,. The 
comparison of such expressions is easier since the only equivalent transformations 
here are cyclic permutations and renaming of dummy· indices. If we can test. the 

equivalence of any expressions with some unknown coefficients, then we can expand 
any expression in the minimal basis solving the system of linear cquaJ,ions for the 
coefficients of this expansion. The minimal basis itself can also be r:onstructcd by 
rejecting the linearly dependent terms and indoding the linearly independent ones. 
These operations were fully automated by means of the computer algebra and they 
have allowed us to obtain the heat-kernel coefficients h1 , .. hs in the minimal-basis 
form: 

Ito= 1, 
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Here Hermi1 ian conjugation h.c. i~ definf'd hy 

Our cxprc~sion~ for the bE'at-kernel coefficients h4.5 proved to bf' (~quiva]Put with 1 he 

results of Refs. [7, 8]. On the other haud, we have found deviations from Rd. [2] in 

the part containing terms with 6 and 8 indices: 

The~e deviations arise from the terms of the expression from Ref. [2] 

where {A I HI C} :=ABC~+ CBI\. The corresponding terms of our expression are 

( ~ " I'' 16 r I' r J +G'- "" )lll + J()S \!'"'~"' vp 1-'i' • 

We have pcrfornwd the followiJJg checks of our results. Finot of all, we have used 

the idcJ1titics a( Tr hn)j()a '-~ -hn_ 1 [2]. Secondly, sub~titut.ing the explicit form of 

operators a and 1'1, in Hw Nambu Jona-Lasinio (NJL) model [9] and cva.luating trace 

over Dirac gamrn<t-llldtriccs we derived the effective chiral p4
- <tnd p6 -lagrangi<tns 

d(~scrihing th(' low-ellcrgy prou~sses with nw~on~ and photons [G]. In particula.r, we 

n'produce the struct.ure coefficient~ L; of the p4 -lagraugians obtained in Ref. [10]. We 

also rc~produce th(' effective Etikr-Heisenlwrg lagraJJgian [11] describing the pbot.cm

photon scattering for particle~ of both spin 0 and spin 1/'2 [12]. 
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lt1 the ca'le I'11 = 0 we can also present the next orders of the "minimal" parts of 
the heat-kernel coefficients: 

The expressions for the heat-kernel coefficients up to Tr h;;''n have been also 

presented in Ref. [13], and up to Tr h;;un in Ref. [14]. The minimal coefficients h~in 

can be easily transformed into a unique minimal basis [14]: it is necessary to move all 

identical indices in each symbol, e.g. S~'v1, ___ , to the rest symbols in every term because 

any addition of some total derivative to the lagrangian does not alter its physical 

content. This way we have checked our expressions for the minimal coefficients to 

coincide with other papers. 
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4 Nonlocal corrections for the effective lagrangian 

The usage of the recursive relations allows us to extend the local NJL model [9] by 

taking into account the finite sizes of mesons [15] in a simple way. In this case the 

modulus squared of Dirac operator fi receives some additional contributions propor

tional to a small parameter a/A 2 characterizing th<~ si:w of the nonlocal corrections: 

fitj) = (38 2 + p2 + 2I'.i!" + r~ +a 

+ :, [b+ Qui!"+ (a+ c)82 + 2(r.a' + aar.a")a" l + o(~:), 

where fJ = 1 + 2aJi-2 /A 2 and a, b, c and QJJ are local operators (their explicit form 

can be found in Ref. [15]). 

The modified recursive equation for the heat-kernel coefficients hn (for simplicity 

we study only the case without vector fields) rea(h, 

" 2 

4
A2 z chn+l(x,y) 

+{ n + z.i!" + :, [2(a + c)(l + ~z.i!")- 2p 2z.iJ" + ~z.(i!"a + 2Q")] }hn(x, y) 

+{a+ &2 + ,~2 [b+ (il,.+ 2Q")iJ'' +(a+ c)il2
) ]}hn_1 (x, y) = 0. 

Analogously to the algorithm described above, one can obtain the recursive relations 

for dad{3 ... hn(x,y)lz=O' where each iteration gives either (n--+ n- 1), or (m--+ 

m- 1 ), or (m --+ m- 2), or (n --+ n- 1; rn --+ m + 1 ), or (n --+ n- l; m --+ m + 2). It 

is easy to see that functional F = 3n + m reduces at least by 1 after each iteration. 

Therefore, the final result is obtained after :in iterations [15]. 

5 Implementation of calculation in computer al

gebra system Reduce 

We have used the Computer Algebra System (CAS) Reduce [16] extended hy our 

package for the calculations in chiral meson theories [17]. Reduce suits wdl for our 

purposes since it is a universal and open system which can be easily extended hy the 

users. It is widely used for our calculations of amplitudes of various meson processes 

and for the derivation and transformation of lagrangians from bosonization of the 

NJL model. It allows us to complete the general mathematical and algorithmic base 

of Reduce by the specific data types and operations for this field. In general it bas 
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provided a convenirnt. com put at. ion a! cHvironnwnt. for studying chiral mPSOJl theori('<;. 
A more d('tailcd description of our package can be found in Ref. [17]. 

For the calculations dcsr.ribed in this paper the following package features arc the 
most essential: 

• transformation by cyclic permutation of noncommutative operator products 
under the trac(' operation, e.g. Tr ( AJJC) =: Tr ( /J(' A); 

• 1~1}.:X out. put of large C'Xpressions (on thP basis of HLFI package from Reduce 
libracy [18]). 

For t.!H' work with the heat.· kernel ('(wfficicnts t.lw following operations with indices 
have been additionally iTJt.roduccd: 

• ordering indices in a symbol: 

• moving indices from the syndwls with too lll<lllY oft llC'Tll: 

• moving apart identical indices t.o different symbol:;: 

As it. was aln•ady nol.<'d, these procedtm's an• not sufficif'nt t.o l.raTJsfonn PXprcssions 
to some unique form. NPvert.hcl(~ss, !.twy perform tlw O\Trwlwlming part of the work 
to reduce the origiJJa! expressions. 

Universal Lisp-based CAS such as Hedwe caunot work with large PXJm'ssiom 
which do not fit into available computt'r JTH'mory. At. !.ht· same tinw t.lw intPrnJt·ditl!c 
t•xpressTOTIS can grow v1~ry mtlrh during tlw lar,!!p-scall' recursin• calCldations. This 
problem is effectively !.arklcd by Uw CAS Form [! 9] whid1 works wi! h t.lw terms 
of large (~xpressious "]O('<tlly" kPeping only a n·!a!.ivt.J.y sn1cdl part. of t.!lt' krms in 
t.lu~ memory and storing !.llt' others on t.ltt' disk. Anot.lwr al!t'J'Il<-tti\T is wri1iTtp," 
specialized progralll t.o cakulat.e t.ltl' hPat kcrnt'l nwllicients in t.hc lanp;uagt· (' [:?OJ. 

We have implenwnkd t.he following simple nwt.\H)d t.o rt·solvt· t.hc problem of 
uncontrolled growth of expressions causing the !ll<'mory overflow in Bt·du('e: During 
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thf' work of algorithm the exprt'ssion is regularly (aft.er each itt'l"ation) looked through 

and a limit is imposed on the number of terms to he subst itut.Pd at t.hc next iteration. 

This can be done by a simplP change of all differential operators d1, except. the first 

nmar ones, to some new operator d~'- for which no substit.ut ions <Ht' sd. The parameter 

nma.x is chosen to provide an optimal londing of memory wit.ho11t. its overflow. This 

method has turned out t.o bf' effective. It. allowed us t.o calculate t.he next. orders of 

the heat-kernel coefficients. 

Conclusion 

The usage of tlw classical Dc\Vit.t algorithm allows to gcm~rate d!"cct.ivc lagrangians 

for a wide range of problems in a simple wa.y. In our previous papers [6] we oht.aincd 

an dfcctive chira.l lagrangian from hosonization of tbc N.JL model at. O(p1
;) order 

usinr, this method. It also allows to study the ll<mlocnl correct.imJS for t.hc p~ chiral 

lagrangian [lSJ. The usi:l,('/' of tbt' CAS Hcduct' extended hy a spt~cializcd padmpp a.! 

!owed us t.o ohtain t.lw highcr-ord('r lwnt-kcrncl nwfflcient.s, reduct' t.hPst' t'xprcssions 

to n1inimal basis <tnd cotnpc1rc the rcsl;1t.s with some o1.lwr papt~ts. 
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