


Introduction

The calculation of the quark determinant modulus can be reduced to the calculation
of the Schwinger proper-time integral [1]:

=]

log(det A) =f d-:iTr K(r), )
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where K (1) = e A7 is the so-called “heat kernel” for operator A = DD, with D =
7D, being Dirac differential operator in the presence of the external background
fields. The coeflicients h; of the expanaioﬁ of the interaction part of the heat kernel
in powers of the proper time r are known as the heat-kernel coefficients. They
determine the low-energy expansion of the effective one-loop action [2]. Therefore,
the calculation of these coeflicients is an alternative method to the direct calculation
of Feynman diagrams {3], thus having a fundamental character.

This paper is an extension of our previous pa|:;er [4]. We discuss the implemen-
tation of the classical DeWitt algorithm [5] to calculate the higher-order heat-kernel
coefficients by means of computer algebra. After presenting the results obtained
with this method we briefly compare them with those of other groups using different
techn'iques. This method is demonstrated to obtain also the nonlocal corrections
taking into account the finite sizes of mesons, that leads to the modification of the
heat-kernel equation. We also discuss technical questions connected with the work
with large expressions in Lisp-based computer algebra systems such as Reduce. Our
techniques allow us to push the calculations of the heat-kernel coefficients to higher

orders.

1 General outline of the heat-kernel techniques

The logarithm of the determinant of a positive definite operator A is defined in
proper-time regularization with the integral relation Eq. (1). The trace Tr is to be

understood as a space-time integration and a “normal” trace over Dirac, color and



flavor indices. The operator A is an elliptic one in usual cases:
A =D'D =d.d* +alz) + p?,

where d, = 0, 4 I',, operator I, describes vector gauge fields, a(z) is a local oper-
ator without free derivatives, The explicit form of these operators depends on the
particular mode}. The effective parameter g fixes the regularization in the region of
low momenta.
The heal kernel K(7) = e™A7 satisfies the equation
@

5, K7} + AK(r) =0

with the boundary condition

The asymptotic behavior of A at short distances is defined by the “free” part
AQ = 0;,3'“ + ﬂ2.

Using the ansatz
K = KyH

it 1s convenient to separate from the heat-kernel its “free” part K,

2
< z{Koly >=< z|exp(—(8.0" + p*)7)ly >= (4737_)2 €xp {_ﬂz'r + (14:1‘_&} )
which satisfies equation
%}frg + ApKp =0,
with the boundary condition
Ko(r=0)=1.

The “interaction” part H of the heat kernel satisfies the equation

g 1
('3? + ;Zﬂdp +d¥d, +a}f(z,y;7) =0,
Hz,y=z,7=0)=1, {2)
with 2z, = z, — y,. The differential operator d, acts on z only. Using now an

expansion for H(r) in powers of 7

o

H(z,y;7) = Z hi{z,y) - *

k=0



a recursive relation is obtained from Eq. (2):
(n+z.ud'u)h'ﬂ($!y) = _(a+dndu)hﬂ—l(xﬂy)a (3)

with the boundary condition
zyd ho(z,y) = 0. (1)

After the integration over v in Eq. (1) the following expression for the quark

determinant is obtained

Tr hy,

= 1 P 1t Ik — 2, 42/A?
log | det D] = filog(det D'D) = —5(;;_)2 Z ( #2:‘ /A7)
k

where I'(a, z) = fmw di 71>~ ! is the incomplete gamma Tunction and hy = helx,y = ).

2 Recursive algorithm

In order to construct a recursive algorithm let us use the basic properly of the
heat-kerne! ccefficients providing the recursive relation (3) between f,(z,y) and
hoo1(,y). The boundary condition (4) for ko(z,y) is determined from Eq. (3) with

n =0 and h_i(z,y) = 0. The task is to find the coincidence limit &, = ha(z,y)| -
We cannot set z = 0 in Eq. (3) directly, since when acting by differential oper-
ator d, on this equation we gel a nonvanishing contribution: da(zud"hn”
Gau " d“h.nL:O = dohy

One can see that the usage of Eq. (3) for the calculation of A, will preduce terms

2=0

z=0"

like dody . . . An(r, y)‘uu. In order to get the recursive relation for them we apply the

product of m differential operators dadg ... d, on Eq. (3) and take limit 2z = 0:

dﬂdg e dw hﬂ(l‘, y)lz:O -
e e’

1

w4 m

{d{,d(g Cas dw(a + dud“)hﬂ_l(l‘, y) + })aﬁ‘.‘wh'n(l'u y)}

(5)

z=0

where (n + m) > 0 and

Pap.ww = dady - -y zud®| _ —mdads .. d.

m

For P,s ., we have the recursive relation

Pa,@...w = duPﬁ‘..w + RB..,w;a (6)



with the boundary condition P = 0, where Ry ... = [dg...d,,ds]. Performing a
commutation of the differential operator d, successively through the others dg, ...,
dy,, one can move it to the left side. Then the two products with m differential
operators cancel each other, and only terms with (mm — 2) ‘differential operators are

lefi. over. Finally we will get. the recursive relation
Rﬁﬂy.‘.u;n = 113& ' d’? B 'du + d,l’)' ' Hw...w,(r (7)

with the boundary condition R, = 0. Thus, one has to use the recursive relation
(5) starting from m = 0 to caiculate h“(I’y)lz:(]' After each iteration it is necessary

‘to commute all differential operators arising from d,d* or Payg ., to the right side up

10 hi(z,y) imtroducing commutators of the type
S, =[dual, 5. =1[d., 5] Sap = [da, Su], elc.

Mo = ldedi), Ko = ldoiTs)y Kpape = [ds, Koy, etc (8)

n and m change under these iterations in the following way: either (n — n — 1), or
(m—om-2),or (n —>n—1;m— m+2). It is casy to show that alter 2r iterations
ouly hg(x,y) remains withont differential operators. At the end one gets the desired
resull by setting the limit z = 0 where ho(:r,,y)!z:c =1.

Following the strategy outlined above, the calculation of the heal-kernel coeffi-
cients is straightforward bul eumbersome. The lengthy calculations can be performed
only wilh computer support. The caleulation of the heat-coefficients is a recursive
process which can be done by computer algebra very conveniently using the recursive

relations (5-7) until substitutions cannol be made any further.

3 Heat-kernel coefficients

The expressions for Lhe heal-kernel coefficients contain a large number of terms which
can be related to each other with the following transformations: cyclic properties of
trace, commutator identities (8), removing physically redundant total derivatives,
renaming of the dummy indices and Jacobi identities for symbols K.

I1 is necessary to reduce the expressions to some minimal basis of linearly inde-
pendent terms for the [inal presentation of the resulls and their comparison with the
resulls of other papers. As soon as we know, it is still not possible for nontrivial cases
to bring all expressions Lo a canonical form using some identities. The solution of this

problemn is very important since sometimes it is easter 1o perfonn a calenlation in a



noncanonical basis than to bring it to a canonical form or test its equivalence with the
similar expression in another presentation. For example, we had to perform by hand
the reduction of the effective chiral lagrangians of the order p° in the momentum
expansion to a minimal basis [6], after most of the initial “trivial” simplifications
had been done automatically with computer algebra.

So far we do not know an efficient general algorithm which allows to transform the
total heat-kernel coefficients into some unique minimal basis. For the reduction of the
heat-kernel coefficients to the minimal basis let us use what is always possible to do
— test whether two expressions are equivalent or not. Here it is sufficient to express
all 5, and T, . according to their definitions in terms of operators a and d,. The
comparison of such expressions is easier since the only equivalent transformations
here are cyclic permutations and renaming of dummy indices. If we can lest the
equivalence of any expressions with some unknown coefficients, then we can cxpand
any expression in the minimal basis solving the system of linear equaiions for the
coeflicients of this expansion. The minimal basis itscl can also be constructed by
rejecting the linearly dependent terms and including the linearly independent ones.
‘These operations were fully automated by means of the computer algebra and they

have allowed us to obtain the heat-kernel coefficients &1, ... hs in the minimal basis

form:
ho =1,
hl = —a,
1 2, 1
Trh, = ETr {a + EFP"} )
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Here Hermitian conjugation h.c. is defined by
al=ea, (5.)1=5,,

(I‘yw)T = -1‘“,1 (h’mm.‘.)T = 7hlmw.‘.-

QOur expressions for the heat-kernel coeflicients kg5 proved to be equivalent with the
results of Refs. [7, 8]. On the other hand, we have found deviations from Ref. [2] in

the part containing terms with 6 and 8 indices:

(24T hadelsis Ref, — (24 Tr halger, (9]

= (_ﬁadidud;du + ﬁadf‘dudadudo - F—rad“dﬁd,ldi + ;i_ad“d,dud,,df,
b v ) o

16 16
+———ad#dudzdudu - Fad“d,,dr,d,dmd“)
b}

—Edjd’d - %dﬁdﬁd,,d"d + 6; & d2d,dpdady + 105d;id dod,d%d,
U_d;d dod,dyd,dy + Urdf‘d dudid,dy + 32 ordiddadyd.dod
—;d‘d,,dr,dgd;,dﬁdn -5 8 d,dodydad,ds +1 6 105 Gdvdadsd,dsd,

130_4 dyd,d,dodydydy + (0511 d,dudod dﬁd dy — ‘5‘)‘ o duddudodod, dody

l)rdi‘d dyd,dgd.dgd,

These deviations arise from the terms of the expression [rom Ref. [2]

(+ S‘rmrzu {l off ‘ hﬂp# | ]‘tmﬁ})

105
where {A| B C} = ABC 4+ C'BA. The corresponding terms of our expression are

2 16

(g Soal g Ko Lo ).

We have performed the Totlowing checks of our results, First of all, we have used
the identities d( Tr b, )/ 8a = —hn_y [2]. Secondly, substituting the explicit form of
operators @ and I', in the Nambu: Jona-Lasinia (NJL) madel [9] and cvalnating trace
over Dirac gamma-matrices we derived the effective chiral p'- and p®-lagrangians
describing the low-encrgy processes with mesons and photons [6]. In particular, we
reproduce the structure coefficients L; of the p*-lagrangians oblained in Ref. [10]. We
also reproduce the effective Buler-Heisenberg lagrangian [11] describing the photon-

photon scattering for particles of both spin 0 and spin 1/2 {12].



In the case I', = 0 we can also present the next orders of the “minimal” parts of

the heat-kernel coefficients:
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The expressions for the heat-kernel coefficients up to TrAP™ have been also
presented in Ref. [13], and up to Tr 27" in Ref. [14]. The minimal coefficients Amn
can be easily transformed into a unique minimal basis [14]: it is necessary 1o move all
identical indices in each symbol, e.g. S,.,.., to the rest symbols in every term because
any addition of some total derivative lo the lagrangian does not alter its physical

content. This way we have checked our expressions for the minimal coefficients to

coincide with other papers.



4 Nonlocal corrections for the effective lagrangian

The usage of the recursive relations allows us to extend the local NJL model [9] by
taking intc account the finite sizes of mesons [15] in a simple way. In this case the
modulus squared of Dirac operator D receives some additional contributions propor-

tional to a small parameter a/A? characterizing the size of the nonlocal corrections:
D'D = o+ + 20" +T% +a

a e - - a?
+z [b + Qa8 + (a+ )3 +2(T,3* + 8.5 3 )6“} + O(F)’
where § = 1+ 20p2/A? and a, b, ¢ and @, are local operators (their explicil form
can be found in Ref. [15]). )
The modified recursive equation for the heat-kernel coefficients &, {for simplicity

we study only the case without vector fields) reads

cr
mzzchﬂ.,.l(.’z, y)

+{n + z,0" + % [2((1 +a)(l + %zua“) —2utz, 0" + %zp(a“a + ZQ“)] }hn(z, )

o 2o =200 0000 o o

Analogously to the algerithm described above, one can obtain the recursive relations
for dada .. .hn(z,y)L:O, where each iteration gives either (n = n — 1), or {m —
m—1jor(m—m-2),or{n —+n-I;m—-m+l}or(n =n-lim—om+2) It
is easy to see that functional F = 3n + m reduces at least by | after each iteration.

Therefore, the final result is obtained after 3n iterations [15].

5 Implementation of calculation in computer al-

gebra system Reduce

We have used the Computer Algebra System (CAS) Reduce [16] extended by our
package for the calculations in chiral meson theories [17]. Reduce suits well for our
purposes since it is a universal and open system which can be easily extended by the
users. It is widely used for our calculations of amplitudes of various meson processes
and for the derivation and transformation of lagrangians from bosonization of the
NJL model. It allows us to complete the general mathematical and algorithmic base

of Reduce by the specific data types and operations for this field. In general it has

10



provided a convenient computational environment for studying chiral meson theories.
A more detailed description of our package can be found in Ref. [17].
For the calculations described in this paper the following package features are the

most essential:

¢ transformation by cyclic permutation of noncommatative operator products
under the trace operation, e.g. It (ABC) = Tr{BCA);
G

¢ transformation by redefinition of dummy indices, e.g. 5,,5,.5, = SuuSuS,;

PLFTITRR TN

¢ [MT}aX output of large expressions (on the basis of RLFI package from Reduce
tibrary [18]).

For the work with the heat-kernel coeflicients the lollowing operations with indices

have been additionally introduced:

¢ ordering indices in a symbol:

. N i
‘qv,: i S‘;u/ + al s T 1 P

e moving indices from the symbols with too many of then:

Fr (SawSaSuS0) = = Tr(8,.]d,, 8,5,8,)):

¢ moving apart identical indices to different symbols:

Tr (50 S) = 11 (8,50 + commutalor terms,

As it was already noted, these procedures are not sufficient to transform CXPTeSsions
to some unique: form. Nevertheless, they perform the overwhelming part of the work
to reduce the original expressions,

Universal Lisp-based CAS such as Reduce cannot work with large expressions
which do not fit. inte available computer memory. At Lhe sane time the intermediate
expressions can grow very much during the large-scale recursive caleulations, This
problem is effectively tackled by the CAS Form [19] which works with the terms
of large expressions “locally” keeping only a relatively small part of the terms in
the memory and storing the others on the disk. Another alternative is writing a
specialized program to caleulate the heat-kernel cocllicients in the language ¢ [20).

We have implemented the following simple method 16 resolve the problem of

uncantrolled growth of expressions causing the memory overflow in Reduce: During

11



the work of algorithm the expression is regularly {after each iteration} looked through
and a limit is imposed on the number of terms 1o be substituted al the next iteration.
This can be done by a simple change of all differential operators d,,, except the first
e O€S, 10 sOME new operator d, for which no substitutions are set. The parameier
Mmaz 15 chiosen to provide an optimal loading of memory without its overflow. This
method has turned out to be effective. It allowed us Lo calculate the next orders of

the heat-kernel coeflicients.

Conclusion

The usage of the classical DeWitt algorithm allows to generate eflective lagrangians
for a wide range of problems in a simple way. In our previous papers [6] we obtained
an effective chiral lagrangian from bosonization of the NJL model at O(p%) order
using this method. Tt also allows 1o study the nonlocal corrections for the P chiral
lagrangian {15], The usage of the CAS Rednee extended by a specialized package al
lowed us to obtain the higher-order heat-kernel coefficients, reduce these expressions

to niinimal hasis and compare the results with some oiher papers,
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