


1. Introductlon

When the general theory of relat1v1ty (GTR) and quantum theory' :
of field were developed, an 1nterest to study the, role of grav1tat10na1;-' .
“interaction in elementary part1c1e phys1cs arose. On this context, to -

~ obtain and study the particle-like solutions to the consistent systems“

of wave and ‘gravitational fields present a’ ‘major interest.  To"obtain -

and study the properties of regular localized solutions to the. nonhnear
classical field equations (soliton- or particle-like solutlons) is connected
with the hope to develop a divergence-free theory of elementary parti-
- cle, which in its turn would describe the complex spatial structure of: .
particle; observed experimentally. In doing so-one should keep in mind .

that the nonlinear generalization of field. theory is necessary 1rrespec- S
tlve of the question of divergence as the consideration-of 1nteract10n" o

between the fields 1nev1tably leads to the advent of nonlinear terms m'.y‘ -
the field equat1ons Consequently, nonlinearity should be cons1dered’ :
ot only as one of the ways to eliminate difficulties of theory, but also‘

- the reflection of objective properties of field. As it is noticed- by N

N. Bogoluibov.and D. B. Shirkov [1}, the complete description of ele-'

mentary particles with all their physical characteristics (say, magnetic
" momentum) can give only the interacting field theory. So one can say!
 that individual free (linear) fields present themselves as the basis to de-

scribe these particles in the framework of 1nteract1ng field theory. "As

elementary particle is a quantum object, so the attempts to develop a
classical model of particle remain prehmmary but’ necessary stage of
study for transformation to quantum theory. ' : f

~In thls paper the system of interacting scalar and electromagnetlc
Aﬁelds are being considered in the Robertson-Walker Universe with the‘ ’
metrlc [2] ' : ‘

dr?

ds? ="dt* = R(t) [———-—

e Fr d02 +r sm20d¢>2] : (11)

 whiere R(t) defines the size of the Universe, and k takes the values
0 and +£1.. Droplet: it is some kind of soliton-like solutions to the
- field equations possessing sharp boundary Similar solution was first "

o obtalned by Werle [3]. Further, a series of work was done where the

“solutions with sharp boundary to the nonlinear field egualions were .
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b'eing found and studied in external gravitational field as well as in the
selfconsistent one [4-10]. Present paper generalizes the partial results
obtained by the authors earlier. Moreover here the question of stability
~ is considered’ whlch presents a growmg ‘interest.

2. ‘.Fundamentalequations and their
‘solutions '

We will choose the Lagrangian of interacting scalar () and eIcctro—

magnetlc (.7:0[3) fields in the form [4]:

L= (/20— DFg FOU), (1)

where the furiction U(p) =1+ £2(p) characterizes the interaction |

(T(p) =1 corresponds to the system of free fields). We will seek the
. static spherlcally symmetric solutions assuming that the scalar field ¢ is

‘the functlon of r only, and the vector field A, possesses one component ;

Ag(r) 1e .
: © = Q(r), A, = 62A0(r) = 6“.A(r).

It means that (Fap) also possesses one component i.e.
Fap = (826 — 8365 Fulr) = A'(r),

where 7 denotes differentiation with respect to T.
‘The equatlons to scalar and electromagnetic fields wrlte:

VI ) + (VD Faa PO = 0 Uile) = 6@‘/6%)
(2.2

9, (V=g 7" ¥(p)) = 0. (23)

In accordance with the assumption, made above the equation (2.3)
is easily integrated at r > 0

FUr) = ¢P@)/V—d = aP(e)V1 - kr2 /R (2.4)

29_ R64

where ¢ =const, P(p) = 1/¥(p) and —¢' = —g/sin%0 = TR

I B ; H ) *
The equation (2.2) for ¢(r) in this casce metamorphoses to the cqua—
tion with ’ ’induced noulincarity” [5]: : ,

o “y i . l . - . ! - .
‘/~gl( /_g/gll("oI) — q29“ Pp- p ’ (25)

It is also easy to find the first integral and solution in quadrature for
the equation (2.5):

¢ = —fq vP +FC'/R7'2 V1 = kr?, C = const, (26)
/d(p/\/P ¥C = V1 - kr?/Rr 4+ Cy. (2.7)

The regularity condition of T9 at the center leads to the fact that
C =0. Chooslng P((p) in the forln ‘

Ple) = 1/3(p) = 771 - 7). (2.8)

where J = Ao, o =2u+1, n =’1 2.+, for p(r) one gets:
/2

olr) = %{1 “'°x1’< qu\/__+C)] | (2.9)" |

from Whl(‘h 1t is obvmus that

at 5 —»0 (p(()) — 1//\

‘and at. T =T = 2\/_qA/\/R2gzc2+8qu/\z) olr )_,0

L(‘t us write the élergy-momentum tensor for the mtcrd( ting fields:

. T, = o’ np FPu (‘P) by L. ' (2'10) ‘
From (2.10) we find the density of field energy of thie system:
o . 3P -
g _ 2 q .
T, = 3 i (2.11)‘

and total energy
o / 3IV2gr - -
E:/T"\/‘lx_ Tl St :

7 ‘ 0 | (1‘( T YE o—1) ,. (2.12)

Thus we came to the conclusion that energy density T() and total en-

crgy of the (()nhg,urdtlons obtained (lo not depend on the conventional
valucs of the parameter & = 0, 41. :



3. - Stability problem,

To study the stability of the configurations obtained we will write
the linearized equations for the radlal porturbatlons of scalar field.
Assurmng that

| p(rit) = p(r) +£(r 1), (<o, - (31
from (2.2) in view of (2.5) we get the equation for &(r, t) :

1-kr?_, 2-3kr?_, ¢?P,
B ST e ¢ T R

As far as according to the assumption the external gravitational field
is cosmological one, we can consider that R(t) is a slowly varying time-
function: R(t) = 0. Assurmng that

E(r, t) = v(r) exp(— th)

from (3.2) we obtain

£=0. (32

 5+3§€—

Q =w/R, (3.3)

L 2p
1= k) 4 (27 = 3kr) v + (w? - ‘1}%—4% v=0  (34)
Let us first consider the case when k¥ = +1. Then substivtuting v(r)> =
y(z), where z = 1 — 1/r?, from (3.4) we get the equation

2

w P,
4T Yrr + 2y, + ((1_.I)2’—qRWP>y_O (35)

which for y(z) = u(2),

- w? q2P : ;

T = 22, takes the form

- Further substitution

z = —th(,

z)/V]' - 227

leads the equation (3.6) to the normal form of Liouville [11]
’P, " _
ne -+ <w2 -1 q—h4—sech45> n=0 - (3.7)

4

In case of &k = —1 the equatlon (34) can analogously be transferred to

the form (3.7) doing the following substltutlons z=1+1 Jrt, =

22 and z = th(.
At last in case of £ = 0 from (3 4) we get
9 } N
) 2 O R
an (w - R4—:f> W=, 38)

where W(r) = r . v(r). o :
Using the form of P, from (2.8), we come to the conclusion that for

~ 0 2> 5 the expressions of the potentials

g
P,
Vi(p) =1 + R4 sech4C and Vy(p) = R4 4
tends to +oco at r — O as wellasatr — r, = S fgfi_/\sk 0N
o 3 q

It means that for ¢ > 5 for P(yp) given by (2.8) the configuration
obtained is stable for the class of perturbation, vanishing at r = 0 and
r = T

In stability can be assured in general introducing the variable

T 1 r dr
—/\/_—g,gu “E/rzm

. and rewriting the equation for perturbation in the form

&g

el + (02 - ¢*P,,)€ = 0.

The equation mentioned possesses at Q = 0 nonnegative solution & =
—dp/ d(, which according to the Sturm theorem corresponds to the
absence of "coupled” state with Q2 < 0.

4._' Conclusion

Thus, we obtain the object with sharp boundary, described by the
regular function ¢(r). In the center of the systemr = 0  ¢(0) — 1/2,
and at some critical value of radius r = r, function ((r) possesses triv-
ial value. The configuration obtained, possesses limited energy density



~and finite total energy. From (2.12) it is exphclt that the expressmn for
‘energy does not contain T, deﬁmng the size of droplet. It means that
the droplets of different hnear sizes up to the soliton w1th re — 00
- share one and the same total energy. For different values of k, the
field function ¢(r) changes it’s form. It is noteworthy to notice that at
r; — oo for k = 0 droplet transfers to usual solitonian solution, while
. in case of & k‘ *£1 this type of transition remains absent. It should
“also be emphaSJZed that the values k = +£1 enforce the stability of the

configurations obtained, which is obvious from the expressions of Vol)
~and Vi(p).
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