


1 Introduction

~.In papers [1 ] the idea of unification of the couphng con-
stantb of qtrong electromagnctlc and weak interactions has
been tested on the delS of new data of the: DELPHI Col-
labOI‘dthIl ~

{ The essential point for the analy51s performed in [1] was
the mput value for the strong interaction coupling constant
a,s(Q2) found at s(s = Q?) = M2.

As has been shown in papers [2]-[4], the DELPHI data on
differential cross sections of the process ete™ — h+X allow
one to enlarge essentially the region, available for.a QCD-
analysis of the scaling violation effects in the fragmentation
functions, as compared to the region where the data were
collected by MARK II, TASSO and other non-LEP colla-
borations and analysed for the first time in the framework
of the QCD evolution equations in papers [5] (TASSO and
MARKII data) and [3] (analysis of TASSO data with the
evolution in @? of the fitted theoretlcal expressmn 1nto the
DELPHI region ). ‘

In recent papers [6],[7], the QCD analysis of the scaling
violation in the fragmentation functions has been perfomed
for the first time with inclusion of new LEP data on the pro-
cess efe™ — h+X ( X are all other particles). The method
of the QCD analysis used in these papers is based on the
method of a direct numerical integration of the exact QCD
matrix element (including the second order of perturbation
theory) which are implemented in the Lund string model.

‘Here we shall report on the preliminary results of QCD
analysis of the data of the same collaborations as in'Ref. .
[6],]7] but our present analysis is based on another method,
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that was applied earlier in Ref.[3] for analysing scaling vio-
lation in TASSO data for the fragmentation functions. The
main features of the program used in our analysis, are the
same as of the program ‘used in Ref. [8] for analysing the
BCDMS collabaration data on deep inelastic muon-nucleon
structure functions ( see for details Ref. [9]). Of course,
the modifications of the anomalous dimensions (or splitting
functions) for annihilation channel were taken into account

QCD formulae for the fragmentation 4
~ functions '

- The process of producing of the inclusive Liadron h (of
the momentum p) ete™ — h + X is discribed in terms of
two kinematic variables: 1) the square of the momentum
transferred from the leptoni( ( ¢Te™ ) block to the hadronic

one . (h + X) l.e. Q2 == q (ke‘l' + kc')2 = S(= 4El‘)zeam in

~c.m.s.) and 2) the fraction of the beam energy Fiyeqr, carried

by the inclusive hadron h, i.e. z = 2pq/Q?*(= E_”/Ebeam in

cams.).

. The fragmentatlon functions, we arc 1nterested in, are

deﬁned through the cross section normalmed to the total'

one, i.e.

1do<z',}c;>2>: BN
Bl e

et =

Otot

We shall restrict our analysis to the region of z > 0.18

where, as it is known from the experiment performed

‘at PETRA energies [10], the contribution of a longitudi-

nal part of the cross section is negligible as (ompared to:a
transversal one.. g

This transversal part is defined through the quark and
antiquark fragmentation functions (we follow the notations
and deﬁnations given at [11]) as follows (i=y or Z)

ZA Q)+ D4 (2,Q%),  (2)

where A} = Q%; )\f = v} + af, and vy, ay are electroweak
coupling constants. ‘ '

Now after these necessary remarks we proceed directly to
the discussion of QCD analysis that became poss1ble for an
annihilation channel due to an application of a "cut vertex
formalizm” , developed by A.H.Mueller [12].

The fragmentation functions (2) do obey the Altarelly—
Parisi integro-differential evolution equations. These equa-
tions after passing to a singlet (i= fi, 7= f;)

Z(Dh )+ D"<z Q* )) -
and a nonsinglet (NS)
Djgg = Dg(2,Q%) — Dy(2,Q%) (4)

combinations transform into a set of a single equation for

- a nonsinglet fragmentation function and two coupled equa-

tions for a singlet sector.

The solutions to integro-differential Altarelli-Parisi equa-
tions have not yet been found in an explicit analytical form.
They are found only for the moments

DL@I= [z oDl @h. )



This moments do satisfy the evolution equations-
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that under inverse Mellin transformation take a form of
integro- differential Altarelli-Parisi equations. The second
order anomalous dimensions 'yz]( ) for the case of inclusive
annihilation (IA) were calculated in [13]- [15]. It is easy to
check with allowance for of the results of [17],[18] (see also
[11]) that the structure of the analytic solutions of evolu-
tion equations (6) and (7) is analogous to that one of the
solutions, found for the moments of the deep inelastic scat-
tering (DIS) structure functions, i.e. (we follow the notation
of [16] and show the results for the leading order only):

=h 2 _ as‘(QQ) dns ()

(DE(@)n = [ 1" (D@D, 8)
(DAQ))n = o
— — YDA (0?2 e (DM (02 a(Q)d"
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Hom (D@D + en( DA(Q2))a] - (2L Ny

NG
and_ ‘aIi' analogous to (9) equation for gluon moment (see
[16]). Here d} = 2%3, and the expressions for A} through

4.

the anomalous dimentions and for the coefficients «,, Gy
and €, are given in [16]." |

An important feature of the analytical solutions (8) and
(9) is that they contain the explicit dependence on the

‘boundary conditions at ‘a refereiice point Q2 from which

the % evolution starts. These boundary conditions are
concentrated in the quantities (Dg(QF)), and (D?(Q%))n
(g = £, NS) that are moments of the D#(z, Q%) functions
(i = NS, X,G) describing the distributions of hadrons h
inside quarks and gluons at the referelice point Q3.

Here we shall use the method of QCD analysis based on
the method of expanding the fragnientation functions, as
functions of the z-variable, in a series of the polynominals
[19] Pg(2) = SO _ A% 2" | orthogonal with some weight
function w*(z) in the interval 0 < =< 1: :

1 - '
/ w®(2) P () P (2)dx = by
-

Our approdach is close to the Parisi-Sourlas [20] method
that consists in application of the Jacobi polynomlals They
are defined by the weight function w®(x) = 2®1(1 — z)°2;
(a = {o, an}) that reproduce well the main part of the -
dependence of deep inelastic lepton- hd(ll o scattering struc-
ture functions Fj(z, Q%). o

The expansion of the fragnentahon function (or struc-
ture functlon) in orthogonal polynomials has the form

‘ Najax
D(z,Q% = w"(z)NMlAiile > QNP (). (10)
k=0
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So if the form of the weight function w®(z) reproduces well
the main part of the z-dependence of the D(z,Q?), then
only a few number N4y of terms in the sum in the right-
hand side of (10) is really nceded for reproducing of this
function by a series of polynomials. :
The coefficients ax(Q?) in the series of (10) can be rep-
resented as a linear combination of the moments [19],[20]

ZA Mn+2 Q?),
(1)

Wthh can be verlﬁed by applvlng the orthogondhty relatlon
to (10) with the use of P2(z) = Y5, ,

According to [19], [20], the transition to ‘the QCD analy-
sis is achieved by a substition of the 1"noments‘in (11) by the
analytical expresions for M QCU (n, Q%) found in the frame-
work of the QCD perturbation theory, i.e. by formulae
(8)-(9). o

In what follows we shall use the gencralization of this
method, proposed in ref:[21], and appli( d in rbf 3] for the

leading order analysis of the TASSO data on productlon of
+

a(Q?) = / dzmz)

inclusive hadrons in e*e™ interactions. |

This generalization, according to [3], consists in applica-
tioh of the polynomials defined by the weight function of an
arbitrary, more general than in a case of Jac 0b1 polynomlals
form . For this reason, we shall take the Welght functlon

as in [3],in a form of a sum of exponents.

6,

3 Results and discussion

The final expession to be used in what foliows will be

Nmax 'k

)Y D Ay QCDn+2 Q% - Py(z),

k=0 n=0 L
. . (12)
with the substitution of thé explicit expressons for .
MQCD(n Q*), calculated in ref.[13]-[15] up to the seéond
order 1n .

We have taken for our dndlyms NM Ax- = 8, which pro-
vides a reasonable accuracy of the method. The fit to the
combined data of the same as in ref.[6],[7] set of TASSO
(here we have included TASSO data for all 4 energies, i.e.
for \/_ Epeam = 14,22.35 44 GeV, so the range Q? used
1n our present analysis would be: 196 GeV/? <Q?< MZ2
(~ 8312 GeV?)), MARK II, CELLO, AMY, ALEPH and
DELPHI collaborations was done for the region of 0.18 <
z < 0.80 with N 5 = 5 and with the inclusion of contribu-
tions of singlet (3) and nonsinglet (4 ) (,ombmatlons of quark
contributions. |

The data of each experlment k were. multlphed as in [6],
[7] by the normalization factor Ni. The systematlc and.
normalization uncertainties were taken into account in the
same way as in [6],[7] by introducing a point-to-point error
for each data pomt ,

The fit to these data has glven the results for o, in agree-
ment within the errors with those of Ref. [6] [7].

A(5_)_ = 151778 MeV - (13)

D(z.Q%) =

or ;
oy (M) = 0.11175585. (14)
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The parameters of quark distributions defined at the refe-
rence point Q2 = 110 GeV? were found to be:

1. Singlet distribution: S(z) = A(5) - exp(—A(6) - 2) ;
A(5) = 30.17 £0.68; A(6) = 6.182 £ 0.047;

2. Nonsinglet distribution: NS(z)=A(9)-ezp(—A(10)-2);
A(9) = 30.03 £2.9; A(10) = 5.68 £+ 0.19.

3. The fit has shown that the parameters of gluon con-
tribution G(z) = A(1) - ezp(—A(2) - z) could not be de-
fined from the fit of the data with z > 0.18. So MINUIT
has shown no need in a gluon contribution at the reference
point Q% =110 GeV2 (But it should be emphas1zed that
due to the evolution equations (7), the gluon Contrlbutlon

is generated by these equations at any. other pomt Q2 not-

equal to Q3 ). So in our analy51s it was set to zero at a
chosen reference point Q3 = 110 GeV?: G(z,Q3) = 0.

The values of the' normahsatlon iaetors N, for each ex-
periment k were found to be equal to that found in Ref
[6], [7] with the errors less than 2%. The obtained value of x?
is: x2 = 73 . The number of experimental points included
in fit is 97 (one point from TASSO (2 =10.55,4/s = 35 GeV2
with the contribution to x2 around 14 was omitted in fit-
ting procedure). So we can conclude that the quality of the
description is quite good. |

‘The found value of @, can be considered as a prelimi-
nary one , because the data with lower values of x were not
included into analysis. In the region z < 0.18 the longi-
tudinal component of the fragmentation function gives an
important contribution. Still it should be noted that it
agrees well with the value of «; found from the analysis of
the scalihg violation in deep inelastic structure functions

(81, [9]-

A possibility of the presence of power corrections (m?/Q?
or m/Q@) duc to heavy quark cffects (see [22])-or other non-
perturbative cffects was exemined also. It was found that
the inclusion of these power corrections into a fit proce-
dure (in a way as it was discussed in [22] results in a small
(5+7%) shift of the central valuc of A__ wlat gives a neg-
ligibly, small correction to a valuc of (1. (db compared with
the value of its error).

I am gratefull to U. ~\111<11(11 and W. de Boer for
many fruitful discussions and collaboration during- the per-
formance of this work. :
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