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1 Introduction 

Jn papers. (1) ,:the idea of unification of the coupling con~ 
stants of strong electromagnetic and weak interactions h~s 
been tested on the basis of new. data of the DELPHI Col-
laboration. . . 

'' ' ' 

The,essential point for th.e analysis performed fri (1] 'Yas 
the input value for the strong interaction coupling constant 
o:5 (Q2

,) found at s(s = Q2
) = M;. 

As has been shown in papers (2)-(4), the DELPHI data on 
differential cross sections of the process e+ e- ·. _; h + X. allow 
one to enlarge essentially the region, available for a QCD
analysis of the scaling violation effects in the fragmentation 
functions, as compared to the region where the data were 
collected by MARK II, TASSO and other non-LEP colla
borations and analysed for the first time in the framework 
of the. QCD evolution equations in papers (5] (TASSO and 
MARKII data) and (3) (analysis' of TASSO data with the 
evolution in Q2 · of the fitted theoretical expression into the 
DELPHI region). . 

In recent papers (6),(7), the QCD analysis of the scaling 
violation in the fragmentation functions has been perfomed 
for the first time with inclusion of new LEP data on the pro:. 
cess e+e- ~ h+X ( X are all other particles). The metho'd 
of the QCD analysis used in these papers is based on the 
method of a direct numerical integration of the exact QCD 
matrix element (including the second order of perturbation 
theory} which are implemented in the Lund string model. 

Here we shall report on the preliminary results of QCD 
analysis of the data of the same collaborations as in• Ref. 
(6],[7) but our present analysis is based on another method, 



that was applied earlier in Ref. [3] for analysing scaling vio
lation in TASSO· data for the fragmentation functions. The 
main features of the program, used in our analysis, are the 
same as of the program used in Ref.· [8] for analysing the 
BCDMS collabaration data on deep inelastic muon-nucleon 
structure functions ( see for details Ref. [9]). Of course, 
the modifications of the anomal~us dimension~ ( or splitting 
functions) .for annihilation channel were taken into account. 

2 QCD formulae for .the fragmentation 
functions 

The process of producing of the inclusive hadron h ( of 
the momentum p) e+ e- -+ h + X is discribed ,in terms. of 
twokinematic variables: 1) the square of the momentum 
transferred from the leptonic ( e+ e- ) block to the hadronic 
one (h + X), i.e. Q2 = q2 = (ke+ + kc )2 = s(= 4Eleam in 
c.m.s.) and 2) the fraction ofthe beam energy Ebeam carried 
by the inclusive hadron h, i.e. z = 2pq/Q2

( . Eh/ Ebeam in 
c.m.s.). 

The fragmentation functions, we are inte~e~ted in, p,re 
defined through the cross section normalized to the total 
one, 1.e. 

D(z,Q2) = _1 do-(z,Q2)' (1) 
O-tot dz 

We shall restrict our analysis to the region _of z > 0.18 
where, as it is known from the experiment performed 
at PETRA energies [10], the contribution of a longitudi
nal part of the cross sectio~1 is negligible as compared to a 

\ transversal one. 
' ' 

2, 

This transversal part is defined through the quark and 
antiquark fragmentation functions ( we follow the notations 
and definations given at [11]) as follows (i=1 or Z) 

N1 

D!p(z,Q2) = L>.}[J5;J(i,Q2) +Dt(z,Q2)J, (2) 
/=l . 

where >.J--:- Q;; >.j = VJ+ a;, and v1, a, are electrowea.k 
coupling constants. 

Now after these necessary remarks we proceed directly to 
the discussion of QCD analysis that b~came possible for an 
annihilation channel ·due to an application of a "cut vertex 
formalizm" , developed by A.H.Mueller [12}. 

The fragmentation functions (2) do obey the Altarelly
Parisi integro-:-differential evolution equations. These equa
tions after passing to a singlet ( i - h, j - Ji) 

, N1 

Dt(z, Q2
) = L(D;i(z, Q2

) + J5;i(z, Q2
)) (3) 

i=l 

and a nonsinglet (NS) 

-h -h 2 -1i 2 
DL°:l.q;qi = Dq;(z, Q ) - Dqj(z, Q) (4) 

combinations transform into a set of a single equation for 
, a nonsinglet fragmentation function and two coupled equa

tions for a singlet sector. 
The solutions to integro-differential Altarelli-Parisi equa

tions have not yet been found in an explicit analytical form. 
They are found only for the moments 

1 

(D~(Q2))n = J dz· zn-2 · zDi(z, Q2
). (5) 

0 
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This moments do satisfy the evolution equations· 

Q2 8~2 (J5i(Q2))n = -as(Q2)'Y;iq(J5i(Q2))n (6) 

2 8 ( (.l5£(Q2))n ) , 
Q BQ2 (J5~(Q2))n = 

,= -as(Q2) ( 'Y;qia) . 2fzcq ) X (' (J?~ (Q:))n )' (7) 
'Yqc 'Yee (Dc(Q ))n 

that under inverse Mellin transformation take a form of 
' ,, 

integro- differential Altarelli-Parisi ,equations. The second 
order anomalous dimensions 'Y~(l) for the case of inclusive 
annihilation (IA) 'Y.ere calculated in [13]- [15]. It is easy to 
check with allo~ance for of the results of [17],[18] (see also 
[11]) that the structure of the analytic solutions of evolu
tion equations (6) and (7) is analogous to that one of the 
solutions, found for the moments of the deep inelastic scat
tering (DIS) structure functi?ns, i.e. ( we follow the notation 
of [16] and show the results for the leading order only): 

(D1(Q2))n = [::i~;;]dNs{fl1(Q~))n (8) 

(J5~(Q2 ))n = 

[( - h 2 - h 2 as( Q2
) ]dn = 1 - an)(D~(Qo))n - cn(Dc(Qo))n] · [as(QB) + 

[ ( -h( 2)) , (-h( 2))] [as(Q
2

)]dn + an D~ Qo n + En De Qo n · as( QB) - , (9) 

and_ ari. analogous to (9) equation for gluon· moment (see 
. An 

[16]). Here d± = 2;
0

, and the expressions for >.± through 
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the anomalous dimentions and for th<' codficients an, an 
and En are given in [16]. 

An important feature of the analytical solutions (8) and 
(9) is that they contain the explicit dependence on the 
boundary conditions at a refcre1ice point Q5 from which 
the Q2 evolution starts. ThcsP boundary conditions are 
concentrated inthe quantities (Dt,(Q5))

11 
and (D~(Q5))n 

( q = E, NS) that are moments of the 15:1 
( z, Q5) functions 

( i = NS, E, G) _describing th<' distributions of hadrons h 
inside quarks and gluons at the refere1ice point Q5 . 

Here we shall use. the method of QCD analysis based on 
the method of expanding the fragmentation functions, as 
functions of the z-variable, in a: s<'ries of the polynominals 
[19] Pk(z) = E!=o Ak11 z

11 
, orthogonal '"·ith some weight 

function w 0
'( z) in the interval O :=:; z'-:::; 1 : 

1 

;· w 0 (z)Pt(z)P/1(z)dz = bk1 

0 

Our approach is close to the Parisi-SomJas [20] method 
that consists in application of the Jacobi polynomials. They 
are d~fined by the weight function wn(x) , x01 (l - :r)02

; 

( a = { a1, a2}) that reproduce wdl the main part of the x

dependence of deep inelastic lPpton-hadron scattering struc-
ture fun-~tion~ .Fi(x, Q2). · · 

The expansion of the fragmentation function ( or struc
ture function) in orthogonal polynomials has the form 

N,\/,\X 

D(z,Q2
) = wn(z) lim L <rk(CJ2)Pt(z). (10) 

· NMAx-oo 
k=O 
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So if the form of the weight function w(t ( z) reproduces well 
the main part of the z-depcnd<'nce of the D( z, Q2

), then 
only a few number NM AX of terms iu the sum in the right
hand side of (10) is really needed for reproducing of this 
function by a series of polynomials. 

The coefficients ak( Q2) in the series oL(l0) _ can be rep
resented as a linear combination of the moments [19],[20] 

~ k . 

ak(Q2) = j dzP;(z) · D(z, Q2
) = L AknA1(n + 2, Q2

); 

, , o , n=0 
(11) 

which can be verified by applying the orthogonality relation 
, k 

to (10) with the use of P;(z) = I:n=O Aknzn. 
According to [19], [20], the transition to-the QCD analy

sis is achieved by a substition of the rnoments in (11) by the 
analytical expresions for 1\!lQC D ( n, (J2) found in the frame
work of the QCD perturbation theory, i.e. by formulae 
(8)-(9). 

In what follows we shall use the generalization of this 
method, proposed in rcf.[21 ]. and aprJlied in ref. [3] for the 
leading order analysis of the TASSO data on production of 
inclusive hadrons in c+ c- interactions. 

This generalization, according to [3], consists in applic_a
tioh of the polynomials clcfi:riccl by the weight function of an . ,. 

arbitrary, more general than in a case of Jacobi' polynomials 
fori:n . For this reason, we shall take the weight function, 
as in [3], in a form of a suin ~f exponents. ,, 

(j 

;] 

'} 

i 
I. 

,I' 
i) 

3 Results and discussion 

The final expession to be used in what follows will be 
NMAX k 

D(z, Q2
) = w 0 (z) · L L Akn ·.MQfD(n + 2, Q2

) · P;(z), 
k=O n=0 

(12) 
with the substitution of the explicit expressons for 
MQC~,(n, Q2 ), calculated in ref.[13]-[15] up to the second 
order in as. 

We have taken for our analysis NM AX = 8, which pro
vides a reasonable accuracy of the methpd. The fit to the 
combined data of the same as in ref.[6],[7] set of _TASSO 
(here we have included TASSO data for all 4 energies, i.e. 
for ys · Ebeam = 14, 22, 35, 44 GeV, so the range Q2 used 
in our present analysis would be: 196 Ge V 2 < Q2 < M; 
(c:/ 8312 GeV2

)), MARK-II, CELLO, AMY, ALEPH and 
DELPHI collaborations was done for the region of 0.18 < 
z < 0.80 with NJ = 5 and with th~ inclusion of contribu
tions of singlet (3) and nonsinglet ( 4) combinations, of quark . ' ' ' 

contributions. 
The data of each experiment k ,were mult~plie,1 as in [6], 

[7] by the normalization factor Nk. . The systematic and 
normalization uncertainties were taken into account in the 
sa:me way as in [6],[7] by introducing a point-to--point error 
for each data P.oi~t. 

The fit to these data has given the result~ for 0:'5 in agree
ment within the errors with those of ~ef. [6],[7]. 

-A~= 151+101 MeV (13) MS -73 

or 
as(M2) = 0.111 +0.009 

z -0.009· (14) 
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The parameters of quark distributions defined at the refe-
rence point Q5 = 110 Ge V2 were found to be: · 

1. Singlet distribution: S(z) ' A(5) · exp(-A(6) · z) 
A(5) = 30.17 ± 0.68; A(6) = 6.182 ± 0.047; 

2. Nonsinglet distribution:NS(z )=A(9) ·exp(-A(l0) • z); 
A(9) = 30.03 ± 2.9; A(l0) = 5.68 ± 0.19. 

3. The fit has shown that the parameters of gluon con
tribution G(z) = A(l) • exp(-A(2) · z) could not be de
fined from the fit of the data with. z '> 0.18. So MINUIT 
has shown no need in a gluon contribution at the reference 
point Qr= 110 GeV2

. (But it should be emphasized that 
due to the evolution equations (7), the gluon contribution 
is generated by the~e equations at 'any o_ther po'int Q2 not · 
equal to Q5 r So in our an.alysis, it was set to zero at a 
chosen reference point Q5 · 110 GeV2

:· G(z, Q5) = 0. 
The values of the' normalisation factors Nk for each ex

periment k were found to be equal to that found. in Ref. 
[6],[7] with the errors less than 2%. The obtained val~e of x2 

is: x2 = 73 . The number of experimental points included 
in fit is 97 (one point from TASSO (z = 0.55, ./s = 35 GeV2 

with the contribution to x2 around 14 was omitted in fit
ting procedure). So we can conclude that t?e quality of the 
description is quite good. 

The found value of as can be considered as a prelimi
nary one , because· the data with lower values of x were not 
included into analysis. In the region x < 0.18 the iongi
tudinal component of the fragmentation function gives an 
important contribution. Still it should be noted that it 
agrees well with the value of O's found from the analysis of 
the scaling violation in deep inelastic structure functions 
[8], [9]. 

8 

A possibility of the pres enc<' of pmvcr corrections ( m 2 / Q2 

or m/Q) due to heavy quark effects (sec [22]) or other non
perturbative effects was PXPminPd also. It was found that 
the inclusion of these pcm:er corrections into a fit proce
dure (in a. way as it was discussed in [22]) results in a small 

(5-;-7%) shift of the central vafoe of A\~\,, ,vhat gives a neg
ligibly, small correction to a value of <ls (as compared with 
the value of its error). 

I am gratefull to U.Amaldi and W. de Boer for 
many fruitful discussions and collahonition during the per
formance of this work. 
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