


1 Simple Introduction into RG

1.1 Group Fquations

The base of RG formalisin is the Functional Equation (FEq) for § which, in
{1V case, has the form

More popular differential equation

= o) o e = 2o
e=1

can be directly obtained from 1t by differentiating over = and putting then
t = 2. On the other hand, by differentiating (1} with respect to t at { = 1 we
get the partial DEq of Ovsiannikov-Kallan-Symanzik type. Hence, FEq.(1)
as well as Fligs for propagators and vertex functions must be considered as
the most adequate and general formulation of the RG symmetry in QFT,

However, in reality group FEqs, do not content any physics at all being
just the reflection of nothing else but the group composition law! Here, we
mean the group of transformations based upon the operation of changing a
reference point p involved into the definition of a coupling constant g,,.

Namely, we can regard the change of a reference coupling g, — ¢, as a
result of the operation of a group element 7, depending on a real continuous
positive numerical parameter {(= u/g) defined as

4{z; g)
dinz

(2)

Tf,g,u = gut = g(tagu) :

If we set & = 7t , then the Lhs. of (1) can be achieved from ¢ by T}, while
the r.h.s. may be identified as 7,7ig. The content of Eq. (1) now is just the
group composition law,

?:,-t = ’I;Tt .
Thus the property of the basic RG equation (1) is the formal condition for
transformations 7 to form a group.

1.2 Renorm-Group Method

An approximate solution of a physical problem with the RG symmetry does
not. usually obey this symmetry which is lost in the course of approximation.
This is essential when the solution under consideration possesses a singularity
as far as the singularity structure is, as a rule, destroyed by approximation.



On this basis one can put the problem of "renormalization-invariant in-
provement” of perturbative results. The key idea is to combine an approxi-
mate expression with group equations. The most simple and convenient way
for this “marriage” (as formulated first in Rel.([1]) is the use of the Lie equa-
tions, i.e., group differential equations. The renormalization group methaod
(RGM) is essentially based on group DEgs.

Technology of the RG Method. The idea of marrying an approx-
immate solution to the group symmetry can be realised with the help of the
group DEgs. If we determine group %cnerators like @ from these approxi-
Thate solutions and then solve the cvolution Digs, we obtain RG improved
solutions that obey the group symmetry, on the one hand, and correspond
to approximate solutions used as an input, on the other hand.

The solution gug, thus obtained, exactly satisfies the RG symmetry, i.e.
it is an exact solution of Eq. (2} and corresponds to the inpul gappe. For
illustration remind that, starting from the simple UV perturbative input

Gappr = § — 9‘251 Inx

we obtain by few lines of elementary calculation the well known geometric
progression:
g

l—I—gﬁl]nI'

gralz,g9) = (3)

2 RG and Functional Self-similarity

2.1  RG-transformation

The renorm-group transformation for a given solution of some physical prob-
Jem in the simplest case can be defined as a one-parameter transformation
ol its two characieristics, say ¢ and g, by

RO - {g-d=q-1, g—*.q’:G(li,g)}: (1)

the first being a translation and the second of a more complicated functional
form. The equation

G{)G(L,g)} =GA+1g). (5)

for the transformation function G provides the group property of the whole
transformation {4). The Lie equation can be obtained by diiferentiating of
Eq.(5): -

0G(Lg) 3G (L, 9)

e GO Tl (6)



Performing the logarithmic change of variables accompanied by the ap-
propriate redefinition of the transformation function

G — g(z,9) = G(Inz,g)
we can obtain the multiplicative version of group equations, i.e., Eqgs.(1), (2)

and
R, : {Z’:‘i':/ta g’:g(tag)} (7)

2.2 Simple classical illustration

A rather simple and physically interesting illustration is provided by one-
dimensional transfer problem. (Mnatzakanian [2]) Consider a half-space filled
with a homogeneous medium, on the surface of which falls from the vacuum
some flow (of radiation or particles) with the intensity go.

Let us follow the flow as it moves inside the medium at a distance { from
the boundary.

Due to homogeneity along the ! coordinate the intensity of a penetrated
flow g(I) can be represented as a function of two essential arguments, g(I) =
(7(1, go}. The flow values at the the boundary point “O” and two other points
“1” and “2” with coordinates [, = A, I, = A+ { can be connected with each
other by the transitivity relations

g = G()\,gu) IS G()‘ + lsgﬂ) = G(lagl) s

which lead to Eq. (3), i.e., to an additive version of a group FE.
Note that the beta-function here is just the infinitesimal response at the
boundary ]
Gle,g) =g+ Blgle 5 e
Suppose we can find it from some simple reasoning (without solving the
kinetic Boltzmann equation). Consider two spesial cases when this response

is linear (Case a) or quadratic (Case b) in the boundary flux value g,

Gle,g) =g —¢ckg e<1 (Casea) ,

g—-exg® el (Caseb) , (8)
Calculating 3(g) and solving Eq.(6) we find
Gra(l g) = {ge"“ (Case a) , . +grcgl (Case b) } . (9)

These expressions possess the FSS property, 1.e., they are solutions of Eq. (5).
On the other hand, at small values of ! they coincide with input approximate
expressions (8). At the same time they describe solutions in the whole posi-
tive axis including the asymptotic region as | — oo .

Another simple examples from classical physics are provided by the "weak
shock wave” and "elastic rod” problems (see, e.g., Refs.{[4]).



2.3 Functional Self-similarity

The RG transformations discussed above have a close connection to the con-
cept of Self-Similarity(SS) in mathematical physics. The 55 transformations

for problems formulated by the nonlinear partial DEgs are well known since
last century mainly in hydrodynamics of liquids and gases. They are simulta-
neous 1-parameter A transformations defined as power scaling of independent
variables z = {z,t,...} and functions Vi(z,t,...) ,etc. :

Syi{z ozh t— A, Vi(z) = V/(2) = V() }

To emphasize their power structure we shall use a term Power Self-
Similarity = PSS. To relate RG with PSS let us turn to solution of the basic
renorm-group FEq.(1) Its general solution depends on an arbitrary function
of one argument.

However, at the moment, we are interested in a special solution linear in
the second argument: g(z,¢) = ¢f(z) . As it immediately follows from the
basic equation (1), the function f(z) should have a power form. This means
that in our special case the RG transformation (7) is reduced to the PSS
transformation,

Ro:{x—at g—gt'}=25. (10)

Generally, in RG, instead of a power law we have an arbitrary functional
dependence. Hence, we can consider transformations (4, {7) as it functional
generalization of usual (i.e., power) self-similarity transformations. Hence, it
is rather natural to refer to them generally as to transformations of functional
scaling or functional self-similarity[5] rather than to RG-transformations.

In short RG = FS§§,

where FSS stands for “Functional Self-Similarity”.

3 Wilson’s Renormalization Group

3.1 Kadanoff-Wilson construction

In the early seventies the RG method was successfully applied by K. Wilson[6]
to critical phenomena in spin lattice systems. As the phase transition in
these systems is essentially a large-distance phenomenon, it could be associ-
ated with infra-red (IR) limit in QFT. Wilson exploited Kadanov’s idea(7]
of "blocking” nci%hboring spin cites, i.e., constructing some auxiliary set of
spin lattice models. _

RG in critical phenomena is based on the Kadanoff-Wilson procedure
referred to as "decimation” or "blocking”. Consider a 2-dimensional spin
lattice with spacing a, an elementary spin & sitting at every lattice site.



Hamiltonian describing the spin interaction of the nearest neighbours is
expressed as
H=kY G G (11)
-

where k is the coupling constant,

To realize the blocking or decimation, one has to perform an "averaging”
over blocks consisting of n elementary sites. This 1s a very essential step
as far as it diminishes the degree of freedom number (from N to N/n). It
destroys the small-range propertics of the system under consideration, in
the averaging course some information being lost. However, the long- I‘dﬂg(‘
physics (like critical phenomena of phase transition) is not affected by it and
one gains the simplification of a problem. After this procedure new "effective
spins” X arise on a new "effective” lattice. We obtain also a new effective
Hamiltonian,

Hy = K, ZEI B+ AR

where AH contains quartic and hlg]l(‘r terms, For the long distance proper-
ties AFl s nonessential. Hence, we can conclude that the spin averaging over
blocks and the transition to new effective blocks leads to an (approximate 1)

transformation,
kY (6-5) > K2y (B-%), {(12)

1

or, taking into account the size of "elementary block™ change,
KW, : {a—> vna, k- K, .}.

The latter can be called the Kadanoff-Wilson transformation.
In general, the "new” coupling constant K, is a function of the "old” one

k and the decimation numnber n. It is convenient to write it down m the
form K, = K(1/n, K). Then, we can formulate the KW-transformation as

follows:

KW(n}:{a—» Vna, ko K,=FK (l,k)} . (13)

n

These transformations obey the group composition law KW, . KW, =
KW.... Denoting now z = 1/nm, { = 1/n , we obtain

K(z,k) = K(2/t, K(t,k)) (14)

- just a RG = F55 {functional equation.
Here, several comments are in order:

s The FSS=RG symmetry here is approximate (due to AFI).

e The transformations are discrete.



o There exisls no reverse transformation to KW (n}.

Hence, the " Kadanoff-Wilson RG” is an approzimate and discrete semi-group.
As we see, the Kadanov-Wilson motivation was quite diffeent from the ong-
inal QFT one. However, this formally more simple and physically more
transparent argumentation turned out to be more apprehensible and in the
course of the next decade a quick proliferation of RG practice in quite di-
verse fields of theoretical physics took place. The "decimation” procedure
was successively used by other people in polymers, percolation, non-coherent
radiation transfer, dynamical chaos and some other physical systems.

3.2 Paths of the RG ezpansion

A bit different line of reasoning was used in turbulence. Here, a closer cor-
respondence with QF'1" has been employed. The corresponding construction
for the RG analysis in the turbulence problem has been obtained along the

following steps (see Refs. ([8]):
1. Define the generating functional.

2. Write the path integral representation.

3. Find the equivalence of the considered system to some QIFT model.
4. Construct the system of Schwinger-Dyson equations.

5. Apply the Feynman diagram technique.

6. Perform the finite renormalization procedure.

7. Then the RG ideology and equations are obtained.

The physics of the RG transformation in the turbulence problem is related
to the change of high-frequency cut-off k... value and simultaneous trans-
formation of some eflective k,..-dependent parameters like, e.g., Reynolds
number.

We see that RG expanded in different fields in two different ways:

e the direct analogy with the Kadanov-Wilson construction {averaging
over some set of degrees of freedom) in polymers, non-coherent transfer
and percolation, i.e., constructing a set of models for a given physical
problem.

s search for the exact symmetry (FSS = RG) by proof of the equivalence
with QI'T.
Now we can conclude that the answer to the question:
Are there different renormalization groups?
s - YES:

As we saw



o In QFT and macroscopic examples, RG = F8S§ symmetry 1s
an exact symmetry of a solution formulated in its natural variables.

# I[n turbulence, continuous spin-field models and some others, it is
a symmetry of an equivalent QFT model.

o In polymers, percolation, etc. , (with Kadanov-Wilson blocking), the
RG transformation is a

transformation between different auxiliary models
(specially constructed for this purpose).

Here RG transformation is acting inside of the set of models. Thus,
the FSS symmetry “exists” only inside this set of models.

Hence, as we have seen, there is no essential difference in mathematical
formalism. Thetre exists, however, a profound difference in physics. In
what follows we shall use the term ” renorm—group ” only in the first (i.e.,

non-Wilsonian) sence,

4 Renorm-group and Lie analysis

4.1 Including Boundary Parameters into Group Analysts

The standard group analysis ascending to the last century papers[9] by Mar-
ius Sophus Lie reveals (see, e.g., Refs. [10], [11] the problem of discovering
the symmetry of diflerential equations (DEq). However, it does not consider
transformations involving parameters (like, e.g., coupling constant) entering
into these equations. Also, it does not deal with symmetry of their solution
and, particularly, with transformations involving parameters entering into
the solution via the initial or boundary conditions.

Due to this, it is quite interesting to look for a regular method of revealing
such RGS in different types of physico-mathematical problems including ones
that cannot be formulated by a finite systern of DEgs.

In problems described by the DEqgs such a regular algorithm can be
constructed [13] by combining the standard Lie analysis [10] with Ambart-
sumian’s [15] invariant embedding procedure. When the embedding of the
boundary DEqs problem yields an integral equation, one faces the problem of
enlarging a classical group algorithm on integro-differential systems. As far
as in this direction some progress has been recently achieved, one hopes that
the above-mentioned combination procedure could be rather constuctive in

this case. )
On the other hand, the embedding of the Cauchy problem for the system

of ordinary differential equations (ODEqs) returns us to the basics of the
theory of these equations. Here, it turns out to be fruitful to treat param-
eters (like, e.g., a coupling constant) standing in equations as new variables



involved into the group transformation and/or invariant embedding proce-
dure.

Differential formulation of the RG symmetry employs an infinitesimal op-
erator (the tangent field) R that generally combines some symmetry of the
initial problem with a symmetry of its solution involving boundary parame-
ters. The invariant embedding includes these parameters into the number of
variables participating in group transformation. Hence, the object of the Lie
group analysis is now a new system of equations composed of the initial and
embedding equations. The last ones are constucted on the basis of the initial
equations (for equations parameters) and of the boundary conditions (for
boundary paramcters). The symmetry group G of this new enlarged system
can be found now by the standard group algorithm by sotving the defining
equation for coordinates of correspondingly modified infinitesimal operator
X describing the invariance of a new differential manifold.

Now ihe RG itself can be obtained {rom G by its appropriate narrow-
ing/contraction on the solution. ‘
To llustrate, take the boundary problem for ordinary first order DEqg

utzf(t1u)at27; u=zx t=7. (]r))

for the function u = u(t) of one variable. The embedding equation for the
boundary problem (15) is of the form:

ur + f(r,z)u, =0 . (16)
with the function u considered a a function of three variables
u = u(t,T,z). (17)

Eq.(16) can be obtained {rom (15) by ils appropriate differentiating and is
equivalent to the initial boundary problem. Meanwhile Fq.{15) coincides
with characteristics of equation for {16). A unnification of Eqgs.(15) and (16)
into a joint system (new differential manifold)

u— flt,u) =0, u, + f(r,7h, =0 . (18)

for the funcltion u(¢,7,z) of three arguments adds the parameters 7 and «
into the set of variables participating in the group transformations. Their
involvement is reflected by the fact that the infinitesimal operator of the
continuous {point) symmelry group for the system (18}

0 5 0 5 0 .

—+ T 19
TR L e P (19)
‘is defined by its coordinates ¢, %, depending on four variables {t, 7,z ,u} with
equations of its continuation on first partial derivatives u;, u,, u,, that ex-
plicitely account the new functional dependence (17) as described by the

X =¢




system (i8). Then, the operator X should be narrowed on any accessible
approximate solution up to R, the infinitesimal renorm{%roup operator.

Quite analogously one can involve the parameters, figuring in the initial
equation, into the group analysis. The simple illustration is provided by the
modified Burgers equation

Uy — aui —vu,, =0, {20)

al +>0;, —o<z<4oo, and u=f(z), =0,

with the dissipation v and nonlinearity a parameters. Its solution by pertur-
bation expansion in powers of a & 1 1s strightforward

u=uv(t,z,v)+av(t,z,v} + 0(a*) . (21}

with starting approximation v taken as a solution of a lincarised problem,

The group of symmetry for differential manifold of Eq.(( 20) can then be
found by the standard algorithm [9, 10, 11] with one important amendment
- the parameters a and v should be treated as independent arguments of
u = u(t,z,a,v} in the procedure of constructing the defining group equation
(as well as under its solving). In other words, the full set of group variables
now looks like {t,z,a, v, u}.

4.2 Recent Results

. Generation of infinite set of harmonics of the fundamental laser
frequency by inhomogeneous laser plasma [12] With the account of hier-
archy of magnitudes of potential and nonpotential fields in plasma the
one-parameter point renormgroup for the most intensive potential elec-
tric field in the vicinity of laser plasma critical density was constructed.
It enables to obtain an approximate solution of the problem of gener-
ation of high harmonics of radiation without restrictions on the value
of nonlinearity parameter (i.e. on the intensity of laser radiation). The
space-lime behaviour of solutions of nonlinear field equations which de-
scribes the structure of potential plasma field and non-potential field of
radiation was found. Conversion factors (transformation coefficients) of
the fundamental laser frequency radiation in multiple harmonics were
calculated and their temperature dependencies were analyzed.

For the most intensive potential fields at critical density of the laser
plasma the renorm-group symmetry has been formulated. This enables
us o write down an approximate solution for an arbitrary type/power?
of nonlinearity.

The structure of potential and nonpotential radiation field has been
found; coeflicients of transformation of the laser beam basic frequency
into arbitrary higher harmonics have been determined.



2. General expressions for nonlinear dielectric permittivities

{NDP) of hot inhomogeneous collisionless plasma were calculated start-
ing from special expressions for NDI” in cold plasma [13]. In this case
the group of admitted Lorentz transformations for vectors of electric
and magnetic fields strength and partial current and charge densities
in plasma was used as a renormgroup with noncanonical parameter of
renormgroup transformations in the form of velocity of plasima particles
kinetic motion.
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