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1 Introduction , 

Recently, the interest to construct classical models of relativistic 
particles with spin is again revived (see, for instance, paper [1] and 
references therein); between the motivations, we remember here the 
string approach to the theory of elementary particles [2, 3], the con
struction of the· supersymmetric particle models [4], the searching for 
models of particles with arbitrary fractional spin, the anyons [5], the 
theory of particles with maximal proper acceleration [6]. 

A special class of such models are obtained, in particular, by con
sidering Lagrangians depending on higher order derivatives, i.e. on 
the velocity, the.acceleration and other higher derivatives of the par
ticle position vector [7]. The E~iler-Lagrange equations in these mod
els written in terms of the position vector turn out to' be very com
plicated already in the free case. An effective method for their inves
tigation has been proposed in: a previous paper [8]. This geometrical 
approach is based on the description of the particle world line by 
its geometrical invariants, the principal curvatures, rather than by 
its position vector; the closed set of equations for principal curva
tures were derived applying the Hamilton principle, _and the general 
solution obtained in terms of integrals in the case of an arbitrary 
Lagrangian function .C(k1) depending on the proper acceleration of 
the particle, i.e., on the 'curvature of the world line, k1. 

The investigation of spinning particle interacting with external' 
gauge and gravitational fields is an important task, and, as demon
strated in papers [9, 10], is a nontrivial problem. For instance, the 
introduction of the external electromagnetic or gravitational fields· 
into. the model with Lagrangian .C = - a kJ entails the violation of 
the closure of the constraint algebra. 

Therefore it seems to be worthwhile trying to extend the geomet
rical approach proposed in· ref. [8], to the interacting case and, first 
of all, to the case in which one takes into account. the. space-time 
curvature. This is the aim that will be pursued in the present pa
per. It turns out that new equations of motion, in terms of the 



principal curvatures of the particle world trajectory, will be derived 
in space-time of constant curvature. Furthermore, for an arbitrary. 
Lagrangian function ,C(k1) these equations can be exactly integrated; 
on the analogy of the flat space--;-time case, one can interpret the in
tegration constants as mass and spin of the particle in the constant 
curvature space-:time.- . 

·, The layout of the paper is the following. In Sect. 2.; after calculat
ing tlie variation of the proper acceleration in a curved space-time, we 
derive the equations of motion, generated by the Lagrangian £( k1), 
in terms of the principal curvatures of the world line; the basic tools 
used here are. the Frenet equations for the moving frame · along the 
curve. In Sect.' 3. the general solution to the new Euler-Lagrange 
equations are obtained in terms of in~egrals. The effectiveness of this 
method is illustrated by considering some exijmples: Lagrangians 
,C(k1) linear in k1 and the model of relativistic particle with maximal 
proper acceleration. 1 In particular, in the last model an important 
inequality relating the sectional curvature of the space-time, G, and 
the limiting acceleration of the particle, M0 , is derived very easily: 

, M(f > G. In Sect. 4. the results obtained are shortly discussed. In 
Appendix A some mathematical details are presented. 

' 

2 Euler-Lagrange equations in terms of 
the principal curvatures of the world 
line 

We assume that .the space-time is an arbitrary D-dimensional 
Riemannian manifold with the metric tensor 9µv(x), µ, v = 
0, 1, ... , D - l having the Lorentz signature ( +, -, . , . , -). Reduc
tion to space-time of constant curvature will be made later. In this 
manifold we sh~ll consider the parametrized curves xµ(s) and the 

1These models have been investigated recently in a flat space-time (see references in 
Sect. 3.). 
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generic action 

S = J C(k1)ds (2.1) 

defined on them. Here ,C is an ~rbitrary function of the first cur
vature of the world line, k1, i.e., of the proper acceleration of the 
particle, s is the arclength.2 It can be shown [11] that any Lorentz 
and reparametrization invariant action with a Lagrangian function 
depending on the first and on the second derivatives of the particle 
position vector can be transformed i?to the action (2.1). . 

In order to shorten the formulas, the differentiation with respect 
to s will be denoted by an overdot and the scalar product generated 
by the metric tensor 9µv(x) will be denoted by<; .. , ... >. We shall 
also use the notion of the covariant differentiation along the vector 
field A( x) : v' A· In these notations one has [12, 13] 

< ±, ± >= 1, (2.2) 
7 

ki = - < v' xx, v' x x >, (2.3) 

where ± is the tangent vector field associated with the particle tra
jectory xµ ( s). In the usual notations v' i: ± is nothing else but 

d2xµ dxv dxP 
ds2 + r~P ds ds ' 

where r~P are the Christoffel symbols for the metric 9µv(x). 
To obtain the equations of motion we, as usually, equate to zero 

the variation of the action (2.1). 

8S = 8S1 + 8S2 = 0, (2.4) 

where 
8S1 = j ds 8£(k1) = j ds £ 1(k1) 8k1, (2.5) 

2 More precisely, k1 is the geodesic c'!lrvature of the world line in the Riemannian 
manifold. 

3. 



882 = j .C(k1) o(ds). (2.6) 

The pri~e 9f the Lagrangian function .C denotes the differentiation 
with respect to its argument k1 .. 

Under variation, as usu.ally [13], the position vector of the curve 
is treat~(as a function of two variables, xµ(s, ~), with the condition 
xµ(~, _0) --- xµ(s). Associated with such a variation is the vector field 

~µ·(s) = axµ(s, ~) I : . 
a~ {=o 

(2.7) 

defined along the curve xµ( s). The variation of an arbitrary function 
of x, F(x), is given by 

oF = 8F(x(s, ~)) I 0~ = e aF 0~' (2.8) 
a~ . {=0 axµ 

or in componentless notation 

8F 
a~ = ~oF. 

In order to calculate the variations, it is convenient to use the 
Frenet frame associated with the world curve xµ ( s): 

lla(s), a=0,l, ... ,D-l, (2.9) 

llQ = X, < lla, llfJ > = T/a{J, 

T/afJ = diag(l,-1, ... ,-1), a, /3 = 0,l, ... ,D-l (2.10) 

and the Frenet equations describing the motion of this basis along ' . 

the world lirie [12] · 

y' :i: lla = Wa/3 llfJ, WafJ + WfJa = 0. (2.11) 

The rising and lowering the frame indexes a, /3, 1 , ... are made by 
the constant diagonal tensor T/afJ (2.10). Nonzero elements of the 
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matrix w are determined by the principal curvatures of the world 

line ✓ 

Wa,a+l = -Wa+l,a = ka+i(s), a = 0, 1, ... , D - 2. (2.12) 

In the Frenet basis, the variation oxµ will be defined by the expansion 

oxµ(s) = e(s)o~ = c°'(s)vt(s), 

µ = 0, 1, ... , D - l, a·= 0, 1, ... , D - l, 

where c°' ( s) an~ arbitrary functions. 
For the variation 882 'Ye have 

(2.13) 

882 = J ~(k1)xvgµvd(oxµ) + ~ J ds.Cxµxv8::: ox>-. (2.14) 

Here we have used the commutativity of the symbols 8 and d. Par
tially integrating in the first term and dropping the terms outside the 
integral, as it is always done when deriving the equations of motion 
from the Hamiltonian principle, we arrive at the fori:nula 

882 = - j .C' k1 < x, ox> ds - j .C < \7 xx, ox> ds. (2.15) 

Taking into account the Frenet equations (2.11) and the expansion 
(2.13), the variation 882 acquires the form 

882 = - j .C'(k1)k1c0(s)ds - J .C(k1)k1(s)c1(s)ds. (2.16) 

Let us now turn to the calculation of the variation 881 defined 
by (2.5). At this end we firstly calculate the variation of the first 
curvature k1 ( s) in terms of oxµ. For two arbitrary vector fields A( x) 
and B(x), the following equality holds: 

a . . 
~
8 

< A, B > = < \7 µ A, B > + < A, \7 µ B > xµ 

5 
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Making use of (2.3), (2.8) and (2.17), we obtain the following expres
sion for the variation of the curvature k1 ( s) 

8kf = 2k18k1 = -2<'vx:i:, 'v€'vx:i:>8(. (2.18) 

Commutator of two covariant derivatives can be expressed in terms 
of the Riemann curvature tensor. For three vector fields A, B, and 
C we have the first structure equation [13] 

'vA'vsC - 'vs'vAC - 'v[A,B]c = R(A, B)C, 

where [A, B] is the commutator of the. vector fields/ A and B 

[A B] = (A)JBµ - BJJAµ) ~-
, ' OX 11 &x 11 oxµ 

(2.19) 

(2.20) 

This enables us to su bsti tu te 'v € 'v :i: :i: in ( 2 .18) by the following ex
pression . 

'v€'vx:i: = 'vx'v~:i: + 'v[€,x]X + R((,:i:):i:. (2.21) 

The. torsion of the space-time is assumed to be zero. Therefore the 
second structure equation reads (13] 

'v€± - 'vx( ~ [(, ±] = o. 

In Appendix A it is shown that 

[(,±] = - <x, 'vx(>x. 

Hence, eq. (2.21) acquires the form3 

'v€ 'vxx = 'vx 'vx( - 2 < ±, 'vx( > 'vx:i: -

-:s ( < x, 'v x ( >) x + R( (, x) x . 

(2.22) 

(2.23) 

(2.24) 

3
0perator V :i: acting on the scalar function reduces to the usual differentiation d/ ds. 
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Substituting (2.24) into (2.18) and taking into account that < 
'vx:i:, :i: >= 0, we can write 

k1 8k1 = - 8( { < 'v xx, 'v x 'v x ( > + 
+2ki < ±, 'vx(> + < 'vx:i:, R((, x)x >} .(2.25) 

It should be noted here that 8( i'n eq. (2.25) is a variation of the 
independent variable which enters as an argument of the function 
xµ(s, (). Hence, 8( obviously commutes with the differentiation op
erator 'v x· Now we expand (µ 8( in (2.25) according to (2.13) and 
use the Frenet equations (2.11). As a result, the variation 8k1(s) can 

be represented as 

i;:k Ok. ··I 1 (k2 k2)' 2 ·2 k 2 k. u I = c 1 - c + c 1 : 2 - c 2 - _c 2 -

D-1 

- c3 k2 k3 + I: c0 (s) < vi, R(va, vo)vo > (2.26) 
a=O 

In the component notations th; last term in (2.26) is wri~ten as 

D-I 

Lc0 (s) < v1, R(va, vo)vo >= c0 (s)Rµv/v~VoVbVIu· 
a=O 

Thus for an arbitrary Riemann curvature tensor Rµ 11/, the variation 
8k1 is expressed not only in terms of the principaLcurvatures of the 
world line, kj(s), j = 1, 2, 3 but it also depends on the normals 
v

0
(s), a = 0, 1, ... , D - l to the curve. As a consequence, for 

an arbitrary curvature tensor Rµv/, we cannot· derive a closed set 
of equations of motion containing only kj ( s); however,· for special 
Riemannian manifolds, dependence on the Frenet frame in (2.26) 
may disappear: For example, the space-time of constant sectional 
curvature G has the Riemann tensor defined by [13] 

Rµv>.p = G (gµp9v>. - 9µ>. 9vp) • 

Scalar curvature R = _gµp g~>. Rµv>.p is related to the sectional cur
vature Gin the following way R = D (D - 1) G, where Dis the 

~ 



dimension of the space-time. Now we have 

D-1 

Lc°'(s) < vi, R(va, vo)vo >= -Gc1(s). 
a=O 

. (2.27) 

Taking into account (2.26) and (2.27), the variation 8S1 can be rep-
resented in the form · 

8S1 = j ds { £'(k1) k1 c0 (s) + 

+ [(k/ + k)) C'(ki) - :,, (£' (k1)) - £'(k1) G] e1(s) (2.28) 

+ [2 :s (£'(k1)k2) - k2£'(k1)J c2(s) - £'(k1)k2k3 c3(s)}. 

Summing eqs. (2.14) and (2.28), we obtain the set of three equations 
for principal curvat1.rres k1, k2, and k3 (terms containing c0(s) in 8S1 
and in 8S2 are ca:ricel~d): 

d2 
ds2 (£'(k1)) - (ki + k~ - G) £'(k1) - k1 £(k1), (2.29) 

2 ! (£'(k1) k2) 

~'(k1) k2 k3 

k2 £'(k1), 

0. 

(2.30) 

(2.31) 

It is remarkable that the constant sectional curvature of the space
time, G, enters only.in eq. (2.29). Equations (2.30) and (2.31) remain 
the same as in the fl.at space-time [8]. 

· In order to satisfyeq. (2.31) we put k3(s) = 0. Then all the higher 
curvatures will vanish too [14]. Thus, for arbitrary D,we have 

~n(s) = 0, n = 3, 4, ... , D - l. (2.32) 

Equation (2.30) can be integrated 

(£'(k1))2 k2 = C,. (2.33) 

.8 
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,· 

where C is an integration constant. Taking into account (2.33), 
we remain with one nonlinear equation of the second order for the 
curvature k1 ( s) 

a2 ( c2 - ) -d 2 (£'(k1)) = ki + 4 - G £'(k1) - k1 £(k1). (2.34) 
s (£'(k1)) • 

After integrating this last equation, we can reconstruct all the prin
cipal curvatures of the world line ki(s), i = 1, 2, ... , D - l. From 
the classical differential geometry [12], his well known that the prin
cipal curvatures of a world line in a background of constant sectional 
curvature determine this _curve up to its transformations as Q, whole, 
which are given by the symmetry group of the enveloping space (in 
the case under consideration it is the S0(1, D - l) group). Obvi
ously, this specification of the world line should take into account all 
the essential physical properties of the model in question. 

3 Exact integrability of the 
Euler-Lagrange equations for 
principal· curvatures. Examples 

The first integral for equation (2.34) can be found directly. As a re
sult the problem of constructing the general solution to this equation 
is reduced to quadratures. In Ref. [8] in the case of a· fl.at space-time, 
this integral has been derived by investigating the equations of mo
tion, generated by action (2.1), in terms of the position vector xµ of 
the world line. To accomplish similar calculations in the case under 
consideration is a rather complicated task. Nevertheless knowing the 
integral for eq. (2 .. 34) at G = 0 one can construct such an integral 
at G i= 0 too. Really, by a direct ·differentiation one can convinced 
oneself that the expression 

M 2 = £2- (!c) 2 
-2££'k1+(£')

2 
ki- (~;2-G (£')

2
, (3.1) 

9 



M 2 being an integration constant, is the first integral of the eq. (2.34) 
if k1£" =J. 0. For Lagrangians linear in k1, eqs. (3.1) and (2.34) should 
be treated as independent ones, because in this case the differentia
tion of (3.1) gives identically zero. From (3.1) we obtain 

dk1 
ds - ±vT[kJ, 

where 

f(ki) = (£~')2 { £ 2 
- 2 £ £' k1 + (£')2 

(ki - G) 

Integration of eq. (3.2) yields 

k,(s) 

J dx 

~ 
k,(so) 

±(s-so)-

(3.2) 

c2 
(£')2 - M

2
}. 

(3.3) 

(3.4) 

Thus, making use of (3.4), one can obtain the first curvature ki(s) of 
the world trajectory for'any given Lagrangian function £(k1). Then 
eq. (2.33) enables one to find the torsion k2( s) of the w:orld line, all 
remaining principal curvatures being equal t~ zero identically. Hence, 
the problem of solving the equations of motion reduces to doing the 
integral (3.4). 

As it was shown in Ref. [8] for a flat space-time, the constant of 
integration M 2 turns out to be the mass squared of the particle4 and 
th~ second integration constant, C, determines the partcle spin S 

2 C2 ki (C(k1))4 

s = IM2I = IM2I (3.5) 

Here the absolute value of M 2 is taken, because in general these 
models may also have tachyonic solutions. 

41n particle models with action containing higher derivatives, the particle mass and 
spin are, at classical level, simply the integrals of motion, whose values are determined 
by the initial conditions for the corresponding Euler-Lagrange equations. Therefore these 
integrals may, in principle, -acquire arbitrary values. Only upon quantization, in some 
models of this kind one can obtain discrete values for M 2 and S [7, 15]. 
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For a curved space-time and in particular for space-time with con
stant curvature there is no unique prescription for defining the par
ticle mass and spin. Therefore on the analogy of the fl.at space-time 
case, one can treat eqs. (3.1) and (3.5) as definitions of the particle 
mass and spin in the case of particles with action (2.1), moving in 
constant curvature space-time. Applying these formulas to the usual 
scalar particle with action 

So= -m J ds 

one obtains M 2 = m2 and S = 0, i.e., mass and spin of the particle 
remain the same as in th"e flat space-time. 

It is worthwhile to note that our equations (2.29)-(2.31), as well 
as (3.1) and (3.5), solve the variational problem (2.1) (2.4) in a class 
of regular curves xµ ( s), i.e., in the class in which the standard Frenet 
frame (2.9), (2.10) can 'be associated with each point of the world 

. line. 
Let us now analyse some examples. We begin with the 

Plyushchay model of the massless spinning particle defined by the 
Lagrangian (15, 16] 

£ = - a k1 ( s) . 

In_ the Minkowski space-time the, principal curvatures are: 

k1 ( s) is an arbitrary function of s and 

k2(s) = k3(s) = ... = kn-1(s) = 0. 

(3.6) 

(3.7) 

The solutions obtained in [15], in form of helical curves, have 
just zero torsion and constant curvature; The last condition can be 
treated as a consequence of the gauge fixing. The essential point is 
that the conditions k2( s) = 0 and k1 ( s) = constant imply superlight 
velocities. Really, from the Frenet equations (2.H), which are at the 
same time the definitions of the principal curvatures k;, we obtain 
when k2 __:_ 0 

... 2 k·2 k4 -2 
X = - I+ 1X. (3.8) 

11 



From physical considerations, the vectors x and x should be treated 
naturally as space-like vectors (this follows immediately in the gauge 
in which the evolution parameter is x0). In view of this, one deduces 
from (3.8) that the vector xµ must be space-like5 when k1 = 0. 

In the case of constant curvature space-time, the solutions to 
eqs. (2.29)-(2.31) for the Lagrangia~ (3.7) are 

k1 ( s) remains arbitrary and 

ki = G, k3(s) = k4(s) = ... = kn-1(s) = 0. (3.9) 

Hence, the theory will be consistent only for space-time with con
stant curvature G. Probably, this point is related to the unclosure 
of the constraints algebra which has been recovered in Ref. [10) by 
considering the Hamiltonian formalism for this model in a curved 
space-time. 

Using eqs. (3.1) and (3.5) proposed by us for the particle mass and 
spin in space-time of constant .sectional curvature G, we obtain for 
the Lagrangian (3. 7) 

M 2 = -2a2G,. 

8 2 = a
2 /2. 

(3.10) 

(3.11) 

As it was noted above, the consistency of the model requires G ~ 0. 
Therefore, from eq. (3.10) it follows that all the solutions in this 
model are tachyonic with M 2 < 0. From (3.10) and (3.11) we obtain 
the relation between M 2 and 82 

M 2 = -4G82
. (3.12) 

In quantum case the parameter a, according to (3.11), becomes dis
crete 

a 2 = 2 8 (8 + D - 1), 8= 0,1, .... (3.13) 

51n Ref. (8], as weil as in the present paper, it has been assumed that the world lines 
must be time-like (vJ = 1). However, taking into account the remark made before eqs. 
(2.29)-(2.31), it is obvious that these equations remain the same in the case of space-like 
curves too. 
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Let us now consider the model defined by the Lagrangian 

.C(k1) = - m - a k1(s). (3.14) 

In a flat space this model has been examined in papers [7, 17). From 
the equations of motion (2.29)...:.(2.31) it follows that in the space
time of constant curvature the principal curvatures k1 and k2 are 
constants obeying the relation 

2 . . 
a k2 = a G + m k1 . (3'.15) 

All the other curvatures are equal to zero. Equations (3.1) and (3.5) 
give for the mass and the spin of the particle 

M2 = m2 - a2G 

1 + a-232 ' 
(3.16) 

(3.17) 
2 a4 k2 8 = __ 2 

M2. (3.18) 

Thus, the curvatures k1 ·and k2 are ultimately_ expressed in terms of 
M 2 and 82. Equation (3.16) is the spin-mass relation. As compared 
with the flat space-time there appears an additional term -a2 Gin 
eq. (3.16). 

Let us consider the rigid relativistic particle with Lagrangian 

.C = - m - a k~. (3.19) 

In flat space-time this model has been investigated in papers [11, 17, 
21). In space-time of constant curvature the equations of motion for 
kj(s) read 

- 3 2 -1 2 k1 + k1 - 2 k1 k2 + 2 G k1 + a k1 m = 0 , 
16 a4 kf ki = 8 2 M 2 

, (3.20) 
· k3 = k4 '= ... = kv-1 = 0 . 

Applying general formula (3.4), the solution to (3.19) can be ex
pressed in terms of elliptic integrals, in complete analogy with previ
ous investigations of this model in flat space-time [14, 21). Therefore 
we do not present here the corresponding formulas. 

13 



And finally we consider the model of relativistic particle with max
imal proper acceleration [6] 

.C(k1) =· -µo✓ M5 - kt , (3.21) 

where µ0 = m/Mo and Mo is the upper value of the proper accel
eration of the particle.6 Obviously, for physical applications it is 
inte~esting to investigate the behaviour of k1 ( s) near the boundary 
Mo. In this region equations (3.2)-(3.4) give 

k1(s) 

J dk = ± JI=g (s - so) 
Jl - k2 . 

(3.22) 

k1(so) 

where k(s) is a dimensionless acceleration, k2 = krf M0 , s = s Mo is 
the dimensionless arclength, g stands for the ratio of the sectional 
curvature of the background space-time to the squared maximal ac
celeration MJ, g = G/M5- From (3.21) it follows that the model 
under consideration is consistent only when7 

MJ > G. (3.23) 

Integration in (3.21) gives 

k2(s) = tanh2 [JI=g(s - so)], s---+ ±oo. . (3.24) 

Hence, the restriction 
k 2(s) < 1 

always holds. 

6 In ref. (23] this Lagrangian has been investigated in another context. 
7The sectional curvature of the space-time, G, is supposed to be positive. The space

time with G < 0 has rather unusual properties; for example, the time-like closed geodesic 
curves may exist there (22]. 
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4 Conclusion 

The geometrical approach for investigating the models with action 
(2.1) in space-time of constant curvature, proposed here; enables us, 
without complicated calculations; to reveal the basic important par
ticularities in this dynamics. As well known, the reparametrization 
invariant actions, like (2.1), give rise to constrained dynamics [7], 
both in Lagrangian and Hamiltonian settings. The analysis of the 
constraints and the choice of an appropriate gauge fixing condition 
turn out to be a rather complicated task. In this regard, it is remark
able that our approach allows us to avoid this problem. Besides, in 
the framework of the geometrical treatment, there appears a pos
sibility for introducing in a consistent way the definition of particle 
mass and spin in space-time of constant curvature as special integrals 
of motion. Certainly, it is interesting to elucidate the relationship 
between these definitions and other approaches to this problem. 
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Appendix A 

By making use of the definition of the commutator 
bracket) of two vector fields (2.20), we can write 

[~, xJ = (~v axµ - xv a~µ) ~ axv axv axµ .. 
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(or_ the Lie 



= - - - - - = - - - ds -ad ·da 1(8 )d 
8( ds ds 8( ds 8( ds . 

(A.l) 

Further we have 

a d - a Jd d II ( ) - ( • µ i:11 l 89µ11 cP . µ . 11) d B( S - B( . Xµ X 9µ11 X - X. <,, 9µ11 + 2 BxP <,, X X S • 

(A.2) 

In eq: (A.2) 89µ 11 /8xP can be substituted by 

89µ11 89pµ 8911p -+---
8xP 8x11 8zµ 

because the additional terms are cancelled. As a result, eq. (A.2) 
transforms to · 

:,ds = i/'9>,µ (tµ + r~pex11) ds =< x,.v'x( > ds. (A.3) 

Finally we obtain 

[(, x] = - < x, v' x ( > dd = - < x, v' x ( > x, (A.4) . s 

where x should be treated as a vector field. 

~ 
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