


: The umﬁed 5D geometrlc theory ‘of gravlty and clectromagnet:sm ﬁrst was . pro—-' :

: " posed by Kaluza in 1921 ([l]) Later this tlleory was' developed by O Klein ([2]), .
~.Mandel([3]), V. A Fock([4]), Ralmch ((s)) and Einstein and Bergmann ((6]) in 1938. ‘
lts foundation' is-the metrlcs of 5D spacc 1ncludmg as its components 4D Rie-

Introductlon

‘mannian space—tlme metrlcs 'md ‘the electromdgnetlc vector potentlals In"1965 " -

B.de Witt ([7]) proposed to use the (r+4)D extension of 5D Kaluza-Klein the01y

" as a geometric treatment of a class1cal gauge ﬁcld theory. By this extenslon one can
. unify the nonabellan gauge ﬁelds with gravity: In the B.de Witt scheme electrodv- .
namics was consxdered an abellan one- paramctrx( gauge theory In 1968 R. Kerner
([8]) used the de Witt’s prescrlptxon to write manlfcstly all geometr:c relations and .
the classical gauge fields equations. It becarie clear (sce [9]) that a simple method"' -
of producxng of the class:cal Yang—Mxlls cquatrons in its usual form in de Witt's
‘scheme is absent. The same conclusxons are truc of the others also (the lagranglan T
forms the’ correct relatxons between the vcctor-potentlals and stress tensor of the'.

; ‘gauge ﬁelds, etc.).. Wlthout a number of supplcmentary ~conditions and hand- "0

: ‘prescrlptlons the (r+4)D geometric Kaluza-Klein theory doesn’t “correspond 10 e
" ‘the usual variational gauge fields theory." chcrthclcss (r+4)D Kaluza-Kleln the~ ‘
-ory is wxdely being used in the modern quantum thcory of thc gauge ﬁelds and its 0

supersymmetrlc extens:ons and the strings. theories.

" In contrast to (r+4)D extcnslons of Kaluza-Kl( 2in theory,ln the geometr:c gaug;e L
 fields theory bemg based on the ﬁbre bundle sp.lccs geometry the maln .concept’ of
- the theory isa connectlon but not a metrlrs Thcrefore the gauge ﬁelds vector-

: potentlals are included i in the components of a connectlon but not a metrics of the
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space.’ So the gauge fields: stress tensor is co11s1dered a curvature tensor of fibre .
bundle space but not a’ part of | connectmn components as occur in Kaluza—Kleln N
, .theory The dlﬁ'erence between these gco1netr1( ‘ways' is: d1spar1ty in the order of -
" the derxvatlves of a space-txme metrics being used for. the geometrlc treatment. of
the gauge ﬁelds ‘Moreover the ﬁbre bundle’ space may be not supplled w1th a
metrics at all: These features of the two geometrlc ways can be taken 1nto account -

when quantlzatlon of theory is producmg

.

:7 2 The structure of the Kaluza-Klem theory ex--

tensmn in (r+4)D

"’The essence of the Kaluza-Klem thcmy (xtcusmn 111 (r+4)D cons1st in followmg

K

1 The space is Rlemanmdn (r+4)D mdmfol(l V M: whcre r - gauge group Lie =
@, parameters number,” thrc(_ com(lmdtcs are spa( ehke coordmates and one Sl

coord:nate is tlmehkc

: A‘&_ o

gL

.2, The symmetry group of theory is the general covariant tra.nsformatlons of
all coordinates of V4. : ‘

3. The main field variable is (r+4)D metric tensor gag, where o, § = 1,2, ..., +
4. . :

4. The main equations of the theory are (r+4)D Einstein’s equations which are
postulated in this theory.

) .
Pap — ‘égaﬂP = KQup, (1)

where P,s - (r+4)D curvature tensor Ricci, P - (r+4)D curvature scalar,

Qap - the fields sources.

5. The metric tensor ggp has the form (in [7]):

. Gop = (gab Ao )
N af Asy  Guu + AuAS )

aﬁ gab + Aa.Ab/\ — A%
g _Aby ’guv : ?

whereab:l2 r'p,u/\=r+1 r+2r+3r+4

In the 5D Kaluza-Klein theory (see for exa_mple [10]) the metric tensor has the

" form:

G =[G+ A+x)gg O+ X)y(c)
e (1+ x)g: 14x.
LGP — ( 57':" ‘ ;ﬁikyk )
T\=*e 15+ %0
where i,k =1, 2 3,4 - space-tlme indexes,a, § = 1,2,3,4,5;2° = £ 5 S,m - actlon

and mass of particle; g; = A = £ Aie - electron charge, K - gravitational”
constant, ¢ - light velocity, A; - electromagnetlc vector-potential, X - scalar field,

(14 x) = Gss = N - normalizing multxpher , S

"“Though the 5D metric components G =-§* almost coincide withthe’ GR
4D metric components ¢* the automatic transition from 5D Einstein equations
to 4D Einstein equations in Kaluza-Klein theory is absent for the simple reason
that the gravitational potentials.in GR are the covariant components of metrics
gix but not the contravariant components g**. The 5D metric components Gy =gix
+(1 + x)g:9x don’t coincide with the GR 4D metric components g;; and contain’
an electromagnetic field g; in addition to a gravitational field. It is also neces-
sary to note that even Gix=(1 + ¥)gix and §* =(Hl,x)g‘-" are different from the GR
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mefrics components g;x and ¢* and contain a scalar field x. Just from this pomt
an idea of a scalar gravitation arose. Moreover the Einstein's gravitational poten-

tials g;; are considered the effective potentials in Kaluza-Klein theory but not the .

true potentla.ls The true gravitational potentials in Kaluza-Klein theory are g
and § §* including a scalar field. This field is experimentally inseparable from the
gravitational field and mix with the electromagnetic field also. ’
For a comparison of Kaluza-Klein theory with GR and 4D Maxwell theory the
components of 5D Einstein equations can be separated into the following groups:

Pik _ %gikP = fCQik (2)
Pi=rQy | (3)

1 .
Psg — 59551J = KQss , - 4)

If one suppose Q¥*=T* (T%* - stress-energy tensor of mé,tter) the equations
(2) may be transformed to 4D Einstein equations. But a coincidence of these
equations take place only if the scalar and electromagnetic fields are absent.

If one suppose Qi=j" (j' - electromagnetic field sources) the equations (3) may

be transformed to 4D Maxwell equations in the 4D Riemannian space.. But a -

coincidence of these equations take place only if the scalar field is absent.

The equations (4) has not a clear physical sense and may be considered the
supplementary conditions. . :

The symmetry group of Kaluza-Klein theory and its generahzatlons is 5D (or
"(r+4)D) general covariant coordinates transformations of 5D Riemannian space
(or (r+4)D-space). By the proper conditions it may be separated’into 4D general
covariant transformations of 4D Riemannian space-time coordinates and'a gauge
tra.hsformations i

'In the 5- -optics this separatlon is: the transformatlons of 4D space-tlme coor-
dinates (i, k =1,2,3,4) ‘

M = a:‘ + f(z', 2%, 23,24, 5) : )]
correspdnding to 4D coordinates transformations in GR, and the transformations
‘of z5-coordinate correspondlng to the action S transformations nammg the gauge
tra.nsformatlons

S' =S+ f(2',2%,2%,2%, 9) - (8)

So far as any. dependence of the physical phenomena from a fifth coordinate

is not observable experimentally a supplementary assumption was proposed. This

assumption consists in that 5D space is topologically closed in a fifth coordinate.
Consequently 5D space of Kaluza-Klein theory is really 4D surface of a 5D cylinder
of radius b. In 1938 Einstein and Bergmann proposed to connect the constant b

become their subgroup

with the Planc’s constant k. Such 5-optics unified the classical and quantum

physics as two limit cases of the 5D classical gravity and electromagnetism theory. = -

Moreover the periodic conditions for the wave functions of the particles admit
a geometrization of the mass of these particles in Proca’s equations. Then the
constant b becomes proportional to the particle mass (Fock, 1926).

From a topological closure of the fifth coordinate it follows that S-transforma-

tions obey the periodic constraints. .
f‘(zl,zz,za,x4,5+h) = f'-(.rl 22,23, 24 5) (M
f(z*, 2%, 23,2, S+ h) = f(z',2° , 23,11, 5) . 8y

From (8) it follows that 5D Lorentz group is not a subgroup of 5D general
covariant coordinates transformations. Consequently a transition from 5D general

. relativity to 5D special relativity is impossible in contrast to a 4D case.

In a classical limit & — 0 5D general covariant coordinates transformatlous

=g + fi(zl7z2,$3’zd)
S=5+ f(xl,$2,tra,x4)

This subgroup may-be separated into

" a)-subgroup of 4D general covariant coordinates transformations under condi-
tion S=const - - _ '
' =12+ fi(z', 22, 2%, 2Y)

S =S+ f(z!, 2% 2%, z")

_If the nature laws are formulated by 5D covariant equations for 5D-tensors their
_ ‘gauge covariance is manifest. But it’s necessary to keep the gauge invariance when

the fifth coordinate is separated and the transition to 4D space-time take place.
5D general covariant coordinates transformations destroy the separation of 5D
Einstein equations into the components (2) - (4).
In a special coordinate system under A5 =1 the transformations (6) lead up to

a usual gauge transformations of vector-potential covariant components 4,:

\a ’ R . ) . )

Al = Ai - As—f~, As' = As

Ozt »
But in contrast with usual electrodyna.mlcs the contravariant vector-potential coni-
ponents A° do not transform simultaneously a.nd A’ = A under (6). The analogous




properties have the transformations of additional r coordinates in the extended
Kaluza-Klein theories.

Thus 5D (or (r+4)D) general covariance of Kaluza-Klein theories have rather
declared than real character. The true possibility to use it in these theories do not
exist because all transitions to the usual formulae (being obtained by variational
methods) are fulfiled under special conditions fixing a freedom of transformations
choice.

3 The structure of the fibre bundle space gauge
fields theory

The essence of the geometric gauge fields theory based on the fibre bundle sbaces ,

geometry consists in following.

1. The space of this theory is the fibre bundle space. Locally this space may be
considered the direct product of two spaces. In our case it is a product of 4D
Riemannian space-time and the gauge group rD space. The global structure
of a fibre bundle space is given by following definition. It is a differentiable
c’-manifold E on which there is specified an equivalence relation' R such

" that: a) the quotient space B =E/R, or the basic space, is a differentiable
manifold of n dimensions; b) the projection p, i.e., the canonical mapping
of the manifold E onto the base B, corresponding to the definition of B as
the quotient space, is a ¢¥- differentiable mapping that is everywhere of rank
n. Under these conditions, the structure of a differentiable fibre space on
E is determined by the following collection of elements: B - the base; F -
the standard fibre; a c’-differentiable manifold; G, - a Lie group, which acts
in a ¢~ differentiable manner on F' (the group of automorphisms of F); p -
the projection of E onto the base B; and ® - the family of homeomorphisms
of the topological product U x F onto the inverse image p~!(U), where U
is an open set of the space B, a number of conditions on @ being satisfied.
If F is the group space G,, we call F the principal fibre space; if F is the
tangent space to the base, we speak of the tangent bundle; when F is the
representation space of G,, we say that F is the associated fibre space.

‘A connection in a homogeneous fibre bundle determines a mapping of fibres
one onto another when they are transported along different paths in the base.

In the geometric fibre bundle space gauge fields theory 4D Riemannian space-

time is identified with the base of fibre bundle space and the fibre is identified
with the space of r-parametric gauge Lie group G,. The gauge fields vector-
potential A% (a =1,2,... r) becomes the connection in the fibre bundle space.
Then the gauge fields stress tensor Fy, coincides with the fibre bundle space

curvature tensor ([9]). The relation between A} and F}, has a usual form
corresponding to the variational formulae: i

a a a 1 a c c
Fuu = a“Au - aVAu - —z—fbc(AzAu - AsAu)

2. The symmetry group of this geometric theory locally is direct product of 4D
GR coordinate transformations in the base and group G, acting in the fibre.
The result is a local Lie group.

3. The main field variable is the gauge field vector-potential A% if the gauge
field is not a gravity and g, for the gravity being considered a gauge field.

4. The main eqﬁations of the theory are not postulated a’priori but are pro-
ducing by the variational principle after the transformational properties of
A% under local group G, and 4D GR coordinates transformations are given.
These equations automatically coincide with the Yang-Mills equations in 4D
Riemannian space-time if the gauge field is not gravity and with 4D Einstein
equations for the gravity as the gauge field.

Such situation corresponds to the lower derivatives of fields variables in a
lagrangian. But taking into account the higher derivatives one may to gen-
eralize these equations ([11]).

5. The metric tensor in the base coincides with usual 4D GR metrics g,;. The
- metric tensor in the fibre is a Cartan group metrics. The metric tensor of
the global fibre bundle space may not ex1st

It is necessary to note that the difference between a gravity and other gauge
fields is only illusory. Really all gauge fields vector-potentials are furnished by two
indices: one index corresponds to 4D base coordinates (Greek index) and another
index (Latin) corresponds to the gauge group parameters.. When 4D GR coordi-
nates transformations are considered the gauge transformations corresponding to

local gauge group G, (local displacements group in 4D manifold) both indices of the

gauge vector-potential become Greek and one may consider the vector-potential
the tensor of rank two. Hence one need not urge the necessity of g,,, being a base
metrics. The Einstein equations are obtaining by variational principle for Gy N
this scheme independently from a g, role in the base space ([12]).

In the fibre bundle space geometric approach all fundamental interactions are
unified by a single principle of constructing the every of them theory. To produce
the lagrangian and the equation of theory one can give: 1) the field variables, 2)
two kinds of symmetry groups (in base and in fibre); 3) two kinds of the field
variable transformations (in correspondence with two kinds of symmetry groups),
4) the derivatives order of the field variables in the lagrangian.



4 .Conclusions . ' _ S g

So what is Kaluza-Klein theory and its generalizations?

In these theories we have one space (sufficiently large dimensional), one syni-:

metry group (large dimensional general covariant group of the coordinate transfor-

mations) and one equation, (large dimensional Einstein equation). The 4D gravity

and the gauge fields, their symmetry groups and equations are shared out from the
components of above-mentioned large dimensional space, general covariant group
and Einstein equations.

What are the gauge fields in a fibre bundle space geometry terms?

The sp'ace of this theory is two spaces being unified by the special construction

of a fibre bundle space. One space is the 4D general relativity space-time. Another

space is the gauge Lie’s group space. Everyone point of GR space furnished by a

- copy of the gauge group space. So we have a possibility to represent the internal

properties of point partlcles in 4D Riemannian space-time by the properties of Lie’s
group of the gauge transformations of the field variables (but not the coordinates
transformations as occur in Kaluza-Klein theory). Thus in a fibre bundle space

" geometrical gauge fields theory, we have two kinds of symmetry groups which act

"in the each from two kinds of spaces and two kinds of equations: 4D Einstein

equations with the gauge fields sources and the gauge fields equations (of Yang-

Mills type) in 4D GR space-time. The localization of gauge group manifests in ’

the fibre bundle space structure.
What is a difference between these ways?

In Kaluza-Klein theory and.its extensions the space is a configuration space

but not a physical real space which is universal for all particles. It is universal only
for the particles with the same ratio e/m (charge to mass ratio). Moreover the
decision of the problem of fields finding under given sources and inverse problem of
sources finding under given fields produce the different configuration spaces. These
configuration spaces may be identify only under special supplementary conditions.
Each particle can see the Universe with its own eyes and thereé is no Universe which
are seen identically for all particles. Einstein’s gravity is seen as effective but not
veritable gravity. .

In the fibre bundle space gauge fields theory it is postulated that the universal

phys_lca.l space exists. It is 4D space-time of GR and Einstein’s gravity is a real

veritable gravity forming the Riemannian structure of this space. But each point
of this space is furnished by its own structure reflecting its individual properties.
As the internal properties of points it is possible to consider the higher derivatives
of field functions, internal freedom degrees, etc. Riemannian 4D space-time is

_interpreted as the physical space in which experiments are usually fulfiled.’ The

fibre corresponds to the space which properties represent the internal freedom de-
grees space or the space of measurement instruments states localized in each 4D

space-time point. Thus in the fibre bundle space gauge fields theory we have a
clear physical interpretation of the mathematical (geometrical) space-time con-
structions. In the Kaluza-Klein theory the space is formal mathematical space
and it has not a physical interpretat‘ion.

The symmetry group of Kaluza-Klein theory is the formal extension of 4D

‘GR symmetry group. After gauge transformations being shared out from 5D GR

coordinates transformations these 5D GR transformations can not be using as the
symmetry group‘ of theory because we can keep the separation of 5D GR symmetry
group as well as 5D Einstein equations into the 4D} components.

In the fibre bundle space gauge fields theory the symmetry group unifies the -~
symmetry group of 4D space-time and internal symmetry group acting in the ﬁbre
in each point of 4D space-time. This unified symmetry is the symmetry group of
theory and its equations.

In the Kaluza-Klein theory the 4D Einstein equations and gauge fields equa-
tions can not follow from 5D Einstein equations automatlcally without a number
of supplementary conditions.

In the fibre bundle space gauge fields theory all equations of thcory follow from
the single variational principle and are being produced by the single variational
procedure. To produce them it is necessary to give the field variable and its trans-
formation properties under the group symmetry of theory. The same is true for GR
also. GR is the gauge theory of symmetrical tensor g,, and gauge group comcxdmg
with 4D GR coordinates transformations ([12]). Thus the problem of unification

-of 4D GR with other gauge fields does not exist in this scheme.. All fundamental
" interactions are on an equal footing. The usual Einstein equations, usual Yang-

Mills equations and other gauge fields equations are producing automatxcally by
the variational procedure without any supplementary conditions.

Thus two above-mentioned geometric ways in the classical gauge fields theory
lead to the different ways of quantum gauge fields theory. But.now a collection -
of the different quantum schemes is not ordered. That is the reason of different'
geometrical ways mixing up under the gauge fields quantlzatlon There 1s necessity
in distinction them.

It is need to note that both geometrical approach are the extension of Felix
Klein ideas. But the Kaluza-Klein theory base on the optics-mechanics analogy

following from the formal properties of differential equations. The fibre bundle

space theory extends the ideas of F.Klein’s Erlangen program (1872) where the
generalized spaces idea. was formulated and a connection between geometry and

“the measurement instruments properties was demonstrated.
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Two basls geometnc ways in the modern theory of the gauge helds“

| are analyzed and compared. The first way is an extension of the Kaluza- Klein.
| unified’ theory of ‘gravity . and electromagnetlsm The: second way: extends~ g
.the Cartan’s -formulation - of Riemannian geometry and -GR- Wthh

is transformed now to the fibre bundle spaces geometry. It i is shown that two.

; “above- mentloned geometnc ‘ways in ‘the  classical gauge- helds theory,

are nonequwalent and lead to the dlfferent schemes of the quantum gauge helds 1
theory Sl : » B o
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