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>1 • Introduction· 

The unified 5D ·geomet~ic theory ·of gravity and dectrnm.agnetis~ first was pro-· 
posed by Kaluza in 1921 ((11). Later this theory was developed by O.Klein ((21), 

.Mandel([3]), V.A.Fock((4]), Rainicli ([51) and Einstein and 'Bergmann ((61) in.1938. 

. Its foundation is the metri<;s ·of 5D space including as its components 4D Rie­
'manni°an space-time metri~s and the electromagnetic vector-potentials. In ·19(i5 

• B.de Witt ((7]) proposed to u·se the (r+1)D extension of 5D. Kaluza-Kl~in theory 
as a geometric treatment of a classical gauge ficl;l theory. By this extension one can 
unify the nonabelian gauge.fields with gravity. In the B.de Witt s~hemc electrody­
namics was considered-an abelian one-parametric gauge theory .. In 1968 R.i<erncr 
([8]) used the de Witt's.p
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re;crip"tion_to wdtc manifcsUy allgeo~etric relations and 
the classical gauge fields equations. It became clear (see [9]) that a simple method 
of producing of the classical Yang-MiHs equations in its usual.form in de Witt's 
scheme is absent. The same conclusions arc true of the others also ( the lagrangian · 
forms; the· correct relations be.tween the vector-potentials and_ stress terisor of the 
gauge fields, etc.). WithouLa number ·of silpplcmentary conditions and hand­
prescriptions the (r+4)D geometric -KaluzacKlein theory doesn't correspo°iid t~ 
the usual variational gauge fields theory. Nevcrthdess (r+4)D Kaluza-Klcin the­
ory i~ widely being used in the modern quantum theory ~f the gaµge fields and its . . )' . . . 

supersymmetric extensions. and the strings theories. . . . 
• In contrast to (r+4 )D extensions of KaJ{1z,~-Klc:in theory in the geom~tric gaui•e 

• • • • s-· ' , ' '· • , '·. 

fields theory being based on the fibre bundle spaces geometry the main concept of 
the theory is a conne_ction b~t not a metrics. Therefore the gaug~ fields vector­
potentials are included in the c~mponcnts of a connection but not a metrics of the 
space. So the gauge fields stress tenso~ is considered a curvature tensor of fibre 
bundle space but not a· part of connection components as occur in Kaluza-Klein 
theory. The difference between these ge~rhetri;: \vay~. is disparity in the order of 
the derivatives of a space-time metrics being used for the geometric_ treatment of 
the gauge fields. Moreover the fibre hunclle. space may be not supplied with a 
metrics at all: These features of the two geometric ways can b~ taken into account 
when quantization of theory is producing.· 

2 The structure of the Kaluza-Kleiri theory ex­
. tension in ( r+4) D 

. . . 
The essence of _the Kaluza-Klein theory extension i_u (r+4)D consist in followinf';. 

1. The sp~ce is Riemannian (r+4)D manifolcl .V.+1 , where r·- gauge group Lie 
G. parameters number; three coorcliuatcs arc! spacelike coordinates and one 
·coordinate is timelike. 
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2. The symmetry group of theory is the general· covariant transformations of 
all coordinates of V,-1-4. 

3. The main field variable is (r+4)D metric tensor 9a{J, where a, /3 = 1, 2, ... , r + 
4. 

4. The rriain equations of the theory are (r+4)D Einstein's equations which are 
postulated in this theory . 

1 
Pa/3 - 29a/3P = K.Qa/3, (1) 

where Pa/3 - (r+4)D curvature tensor Ricci, P - (r+4)D curvature scalar, 
Qa/3 - the fields sources. 

s: The metric tensor 9'1/3 has the form (in [7]): 

( 
9ab 

9a{3 = Abµ 
Aav ) 

9µv + AµcA~ ' 

0</3 _ ), . '(gab+ Aa Ab), -Aa") 
9 - -Abµ gµv . ' 

where a, b = 1, 2, ... , r; µ, v,).. = r + 1, r + 2, r + 3, r + 4. 

In the 5D Kaluza-Klein theory (see for ~xample [10]) the metric tensor has the 
'form: . 

G - (fa+ (1 + X)9i9k 
o{J-

(1 + x)g; 
(1 + X)9k) 

1 + X. 

G"'/3 .= ( gik 
-g•kg; 

-gik9k ) 
_I_ -ik , 
I+x + 9 9i9k 

where i, k = 1, 2, 3, 4 - space-time indexes,a, fJ = 1, 2, 3, 4, 5; x5 = :c; S, m - actiori 

and mass of particle;· g; = m•c2 A; = /fiA;, e - electron charge, K. - gravitational 
constant, c - light velocity, A; - electromagnetic vector-potential, x - scalar field, 
(1 + x) = G55 = N - noima1izing multiplier. . . 

Though the 5D metric components Gik = gik almost coincide with the GR 
4D metric components yik the automatic transition_ from 5D Einstein equations 
to 4D Einstein equations in Kaluza-Klein theory is a,bsent for the simple reason 
that the gravitational potentials in GR are the covariant components of metrics 
9ik but not the contravariant components yik. The 5D metric components G;k=9ik 

+(1 + X)9i9k don't coincide with the GR 4D m«:tric corii.ponents 9ik and contain. 
an electromagnetic field g; in addition to a gravitational field. It is also neces­
sary to note that even g;k=;c(l + x)Yik and gik = (i!x)yik are 'different from the GR 
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metrics components 9ik-and yik and contain a scalar field X· Just from this point 
an idea of a scalar gravitation arose. Moreover the Einstein's gravitational poten­

tials 9ik are considered the effective potentials in Kaluza-Klein theory but not the 
true potentials. The true gravitational potentials in Kaluza-Klein theory are 9ik 
and gik including a scalar field. This field is experimentally inseparable from the 
gravitational _field and mix with the electromagnetic field also. 

For a comparison of Kaluza-Klein theory with GR and 4D Maxwell theory the 

components of 5D Einstein equations can be separated into the following groups: 

pik _ !gik p = 1,,Qik 
2 -

P1 = 1,,Q~ 

1 . 
Pss - -g55P = KQss 

2 

(2) 

(:l) 

(4) 

If one suppose Qik=Tik (Tik - stress-energy tensor of matter) the equations 

(2) may be transformed to 4D Einstein equations. But a coincidence of these 

equati~ns take place only if the scalar and electromagnetic fields are absent. 

If one suppose Q~=/ (/ - electromagnetic field sources) the equations (3) may 

be transformed to 4D Maxwell equations in the 4D Rier'u.annian space. But a 
coincidence of these equations take place only if the scalar field is absent. 

The equations ( 4) has not a clear physical sense and may be considered the 

supplementary conditions. 

The symmetry group of Kaluza-Klein theory and its generalizations is 5D (or 
· (r+4)D) general covariant coordinates transformations of 5D Riemannian spa,:e 
(or (r+4)D-space). By the proper conditions it may be separated'into 4D general 
covariant transformations of4D Riemannian space-time coordinates and 'a gauge 
transformations. -

In the 5-optics this separation is: the transformations of 4D space-time coor­

dinates (i, k =1,2,3,4) 
xi'= xi+ J(x1,x2,x3,x4,S) (5) 

corresponding to 4D coordinates transformations in GR, and the transformations 
of x5-coordinate corresponding to the action S transformations naming the gaui~e 

transformations 

S' = S + J(x1,x2,x3,x4, S) (6) 

So far as any dependence of the physical phenomena from a fifth coordinate 
is not observable experimentally a supplementary assumption was proposed. This 
assumption consists in that 5D space is topologically closed in a fifth coordinate. 

Consequently 5D space of Kaluza-Klein theory is really 4D surface of a 5D cylinder 
of radius b. In 1938 Einstein and Bergmann proposed to connect the constant b 
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with the Plane's constant h. Such 5-optics unified the classical and quantu·m 
physics as two limit cases of the 5D classical gravity and electromagnetism theory. 

Moreover the pe~iodic conditions for the wave functions of the particles admit 
a geometrization of the mass of these particles in Proca's equat_ions. Then the 

constant b becomes proportional to the particle mass (Fock, 1926). 
From a topologica:l closure of the fifth coordinate it follows that S-transforma­

tions obey the periodic constraints. 

/(x 1 ,x2 ,x3,x4,S+ h) = /(x 1 ,x2,x3,x4,S) 

J(x 1 ,x2,x3,x4, S + h) = f(x 1 ,x2, x3,x4, S) 

('l) 

(8)° 

From (8) it follows that 5D Lorentz g~oup is not a subgroup of 5D general 

covariant coordinates transformations. Consequently a transition from 5D general 

relativity to 5D_ special relativity is impossible in contrast to a 4D case. 
In a classical limit h -> ·o 5D general covariant coordinates transformations 

become their subgroup 
xi'= xi+ fi(xl ,x2, x3, x4) 

S' = S + J(x1,x2,x3,x4
) 

This subgroup may-be separated into 
a) subgrm1p ·of 4D general covariant coordinates transformations under condi-

tion S=const -
xi'== xi+ fi(xt ,xJ,x3,x4) 

S'=S 

b)_subgroup of gauge transformations under condition xi=const 

,, ' 

x' = x1 

S' = S + J(x1,x2,x3,x4
) 

If the nature laws are formulated by 5D covariant equations for 5D-tensors their 

gaug~ covariance is manifest. But it's necessary to keep the gauge invariance whl'n 
the fifth coordinate is separated and the transition to 4D space-time take place. 

5D general covariant coordinates transformations destroy the separation of 5D 

Einstein equations into the components (2) - (4'). 
In a special coordinate system under As =1 the transformations (6) lead up to 

a usual ga~ge transformations of vect~r-potential covariant components A,,: 

A/= A; -A5 ·aaf_, As'= As 
x• 

But in contrast with usual electrodynamics the contravariant vector-potential ~om­
ponents Ai do not transform simultaneously and Ai' =Ai under (6). The analogous 
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properties have the transformations of additional r coordinates in the extended 
Kaluza-Klein theories. 

Thus 5D (or (r+4)D)'general covariance of Kaluza-Klein theories have rather 
declared than real character. The true possibility to use it in these theories do not 
exist because all transitions to the usual formulae (being obtained by variational 
methods) are fulfiled under special conditions fixing a freedom of transformations 
choice. 

3 The structure of the fibre bundle space gauge 

fields theory 

The essence of the geometric gauge fields theory based on the fibre bundle spaces 
geometry consists in following. 

1. The space of this theory is the fibre bundle space. Locally this space may be 
considered the direct product of two spaces. In our case it is a product of 4D 
Riemannian space-time and the gauge group rD space. The global structure 
of a fibre bundle space is given by following definition. It is a differentiable 
cv-manifold E on which there is specified an equivalence relation R such 
that: a) the quotient space B =E/R, or the basic space,- is a differentiable 
manifold of n dimensions; b) the projection p, i.e., the canonical mapping 
of the manifold E onto the base B, corresponding to the definition of B as 
the quotient space, is a cv- differentiable mapping that is everywhere of rank 
n. Under these conditions, the structure of a differentiable fibre space on 
E is determined by the following collection of elements: B - the base; F -
the standard fibre; a cv-differentiable manifold; Gr - a Lie group, which acts 
in a cv- differentiable manner on F (the group of automorphisms of F); p -

the projection of E onto the base B; and 4> - the.family of homeomorphisms 
of the topological product U x F onto the inverse image p- 1(U), where U 
is an open set of the space B, a number of conditions on 4> being satisfied. 
If F is the group space Gr, we call E the principal fibre space; if F is the 
tangent space to the base, we speak of the tangent bundle; when F is the 
representation space of Gr, we say that E is the associated fibre space. 

· A connection in a homogeneous fibre bundle determines a mapping of fibres 
one onto another when they are transported along different paths in the base. 

In the geometric fibre bundle space gauge fields theory 4D Riemannian space­
time is identified with the ·base of fibre bundle space and the fibr~ is identified 
with the space of r-parametric gauge Lie group Gr- The gauge fields vector­
potential A: (a =1,2, ... r) becomes the connection in the fibre bundle space. 
Then the gauge fields stress tensor F;v coincides with the fibre bundle space 
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curvature tensor ([9]). The relation between A~ and F;v has a usual form 
corresponding to the variational formulae: 

F:v = OµA: - OvA: - ~fi'c(A~A~ - A~A~) 

2. The symmetry group of this geometric theory locally is d_irect product of 4D 
GR coordinate transformations in the base and group G, acting in the fibre. 
The result is a local Lie group. 

3. The main field variable is the gauge field vector-potential A~ if the gauge 
field is not, a gravity and gµv for the gravity being considered a gauge field. 

4. The main equations of the theory are not postulated a'priori but are pro­
ducing by the variational principle after the transformational properties of 
A: under local group G, and 4D GR coordinates transformations are given. 
These equations automatically coincide with the Yang-Mills equations in 4D 
Riemannian space-time if the gauge field is not gravity and with 4D Einstein 
equations for the gravity as the gauge field. 

Such situation corresponds to_ the lower derivatives of fields variables in a 
lagrangian. But taking into account the higher derivatives one may to gen­
eralize these equations ((11]). 

5. The metric tensor in the base coincides with usual 4D GR metrics gµv• The 
· metric tensor in the fibre is a C~tan group metrics. The metric tensor of 

the global fibre bundle space may not exist. 

It is necessary to note that the difference between a gravity and other gauge 
fields is only illusory. Really all gauge fields vector-potentials are furnished by two 
indices: one index corresponds to 4D base coordinates (Greek index) and another 
index (Latin) corresponds to the gauge group parameters. When 4D GR coordi­
nates transformations are considered the gauge transformations corresponding to 
local gauge group G 4 (local displacements group in 4D manifold) both indices of the 
gauge vector-potential become Greek and one may consider the vector-potential 
the tensor of rank two. Hence one need not urge the necess_ity of gµv being a base 
metrics. The Einstein equations are obtaining by variational principle for gµv in 
this scheme independently from a gµv role in the base space ([12]). 

In the fibre bundle space geometric approach all fundamental interactions are 
unified by a single principle of constructing the every of them theory. To produce 
the lagrangian and the equation of theory one can give: 1) the field variable~, 2) 
two kinds of symmetry groups (in base and in fibre), 3) two kinds of the field 
variable transformations (in correspondence with two kinds of symmetry groups), 
4) the derivatives order of the field variables in the lagrangian. 
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4 - Conclusions 

So what is Kaluza-Klein theory and its generalizations? 
In these theories we have one space (sufficiently large dimensional), one sym-­

metry group (large dimensional general covariant group of the coordinate transfor­
mations) and one equation.(large dimensional Einstein equation). The 4D gravity· 

and the gauge fields, their symmetry groups and equations are shared out from the 
components of above-mentioned large dimensional space, general covariant group 

and Einstein equations. 
What are the gauge fields in a fibre bundle space geometry terms? 
The space of this theory is two spaces being unified by the special construction 

of a fibre bundle space. One space is the 4D general relativity space-time. Another_ 

space is the gauge Lie's group space. Everyone point of GR space furnished by a 
copy of the gauge group space. So we have a possibility to represent the .internal 
properties of point p·articles in 4D Riemannian space-time by the properties of Lie's 

group of the gauge transformations of the field variables (but not the coordinates 

transformations as occur in Kalt,1za-Klein theory). Thus in a fibre bundle space 
_ geometrical gauge fields theory. we have two kinds of symmetry groups which act 

in the each from two kinds of spaces and two kinds of equations:, 4D Einstein 

equations with the gauge fields sources and the gauge .fields equations ( of Yang­

Mills type) in 4D GR spa~e-time. The localization of gauge group manifests in 

the fibre bundle space structure. 
What is a difference between these ways? 
In Kaluza-Klein theory and its extensions the space is a configuration space 

but not a physical real space which is universal for all particles.· It is universal only 

fo~ the particles with the same ratio e/m (charge to mass ratio). Moreover the 

decisio_n of the problem of fields finding under given sources and inverse problem of 
sources finding under given fields produce the different configuration spaces. These 
configuration spaces may be identify only under special supplementary conditions. 

Each particle can see the Universe with its own eyes and there is no Universe which 

are seen identically for all particles. Einstein's gravity is seen as effective but not 
veritable gravity. 

In the fibre bundle space gauge fields theory it is postulated that the universal 
physical space exists. It is 4D space-tim~ of_GR and Einstein's gravity is a real 

veritable gravity forming the Riemannian structure of this space. ~ut each point 
of this space is_ furnished by its own structure reflecting its individual properties. 

As the internal properties of points it is possible to consider the higher derivatives 
of field functions, internal freedom degrees, etc. Riemannian 4D space-time is 
interpreted as the physical space in which experiments are usually fulfiled. - The 

fibre corresponds to the space which properties represent the internal freedom de­
grees space or the space of measurement instruments states localized in each 4D 

8 

space-time point. Thus in the fibre bundle space gauge fields theory we have a 

clear physical interpretation of the mathematical (geometrical) space-time con­
structions. In the Kaluza-Klein theory the space is formal mathematical space 
and it has not a physical interpretation. 

The symmetry gr_oup of Kaluza-Klein theory is the formal extension of 4D 

GR symmetry group. After gauge transformations being shared out from 5D GR 
coordinates transformations these 5D GR transformations can not be using as the 

symmetry group of theory because we can keep the separation "of 5D GR symmetry 
group as well as 5D Einstein equations into the 4D components. 

In the fibre bundle space gauge fields theory the symmetry group unifies the -
symmetry group of 4D space-time and internal symmetry group acting in the fibre 
in each point of .4D space-time. This unified symmetry is the symmetry group of 
theory and its equations. 

In the Kaluza-Klein theory the 4D Einstein equations and gauge fields equa­

tions can not follow from 5D Einstein equations automatically without a number 
of supplementary conditions. 

In the fibre bundle space gauge fields theory all equations of theory follow frrni1 

the single variational pri~ciple and are being produced by the single variational 

proceaure._ To produce them it is necessary to give the field variable and its trans­
formation properties under the group symmetry of theory. The same is true for GR 

also. GR is the gauge theory of symmetrical tensor 9µv and gauge group coinciding 
with 4D GR coordinates transformations ([12]). Thus the problem of unification 
of 4D GR with other gauge fields does not exist in this scheme. All fundamental 

interactions are on an equal footing. The usual Einstein equations, usual Yang­
Mills equations and other gauge fields equations are producing automatically by 
the variational procedure without any supplementary conditions. 

Thus two above-mentioned geometric ways in the classical gauge fields theory 

lead to the different ways of quantum gauge fiel1s theory. But now a collection 

of the different quantum schemes is not ordered. ,That is the reason of di!ferent 
geometrical ways mixing up under the gauge fields quantization. There is ueressit:y 
in distinction them. 

It is need to note that both geometrical approach are the extension of Fdix 

Klein ideas. But the Kaluza-Klein theory base on the optics-mechanics analoi;y 

following from the formal properties of differential equations. The fibre bundle 
space theory extends the ideas of F.Klein's Erlangen 'program (1872) where the 
generalized spaces idea. was formulated and a connection between geometry and 

· the measurement instruments properties was demonstrated. 
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KoHormeBa H.II. E2-95-167 
Ka.n:y3a-K.neii:H wrn pacCJI9eHHhle rrpocrpaHCTBa? 

AHa.n:tt3HPYIOTCSI H "cpaBHHBaIOTCSI Me~y co6oii:. )];Ba .. OCHOBHbIX reOMeT-. 
pHtieCKHX rro.n;xo.n;a B coBpeMeHHoii: Teopuu Ka.n:tt6poB011HhlxnoJieii:: IlepBhIH · 
H3 HHX SIBJISleTCSI 06o6m;eH

0

HeM e.n;KHOH TeopHH rpaBHTaU,Hlj H 3JieKTPOMarne­
TH3Ma Ka.n:y3hl-K.neii:Ha. BTOpoii: o6o6w;aeT KapTaHOBCKYIO qmpMyJIHpOBKY pH­
MaHOBOH reoMeTpHH H OTO, pa3BHBllIYIOCSI B HaCTOSl~ee BpeMSI B reoMe:rpHIO 
pacCJioeHHhIX rrpocTpaHCTB. iloKa3aHo, ti:TO .D;Ba BhlmeyrroMSIHYThIX reoM~T­
ptttieCKHX rryTH riocipoeHHSI KJiaccuqecKoii: Teopuu Ka.n:u6poBOtIHhIX rroJieii: iie-
3KBHBaneHTHhI H Be.D;yT K pa3JIH1IHbIM CXeMa~ KBaHTOBaHHSI KaJIH6pOB01IHbIX 
Teopuii:. 

. Pa6oTa BhlriOJIHeHa B Jla6opaTOpttu TeopeTtttiecKoii: q>H3HKH HM.H.H.Eoro-
JI1060Ba 0il.51ll. . 

Coo6~emte Qm,e,111HeHHOI"O HHCTH-ryTa si,1epHhlX HCCJie):IOBaHHH. ,ny611a, 1995 -~ . . . 

Konopleva N.P. E2.;.95-167 .. 
Kaluza-Klein or Fibre Bundles? e 

Two· basis geometl'ic ways in the modern theory of the gauge fields 
·are analyzed and compared .. The first way is an extension.of the Kaluza-Klein. 
unified· theory of" gravity and electromagnetisi:n. The second way extends 

. the Cartan's formulation . of Riemannian geometry and _GR which 
is transformed now to the fibre bundle spaces geometry. It is shown.that two 
above-mentioned geometric ·ways in the classical gauge fields . theory 
are nonequivalent and lead to the differentschemes of the quantum gauge fields 
ili~~- . . .. 
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