
E2-95-16 

R.Alvarado*, Yu.P.Rybakov*, B.Saha, G.N.Shikin* 

EXACT SELF-CONSISTENT SOLUTIONS 

TO THE INTERACTING SPINOR 

AND SCALAR FIELD EQUATIONS IN BIANCHI 

TYPE-I SP ACE-TIME 

Submitted to «Communications in Theoretical Physics» 

*Russian Peoples' Friendship University, Moscow 



. The aim of the paper is to find some exact sdf-consistcnt solutions to the equations·, de
scribing spino'r and scalar field syste1ri with the: intcract~on Lagrangian L;ni· = cp:0 cp•0 <l>(S), 
<I>(S) being arbitrary function of the invariant S = t/Jtf; for Bianchi type-I space-time. 
Equations for partial choice of <l>(S), while (<I>(S)J:"1 = l +.ASn, A being the coupling 
constant, n being some constant, have been thoroughly s.tudied. It isshown that ·the 
equations, mentioned, can possess initially regular, as well as singular solutions, deperid
ing on the sign of A, nevertheless singularity remains absent for solutions describing the 
field system with broken dominant energy·condition. . 

The Lagrangian for the interacting sy;tern of spinor, scalar and gravitation fields can 
be written as: . . - . . 

-· R i [- . · .· ] . I . -
L = 

2
" + ·2 t/;1µV µt/' - V,,t/;,''t/, - mt/;t/; + 2cp,~cp· 0 <I>(S), ' ( l) -

· with· R being the scalar curvature, ,c being tl1c Einstein's gravitational constant. Func'tion 
<I>(S) = 1 + AF(S), S = ef;t/;; describes the interaction between spinor and scalar· fields, A_ 
being the interadion ·parameter, For A = 0 the interaction vanishes and <I>(S) = 1. In 
this case we have the system of fields with rni11imal coupling. . . 

Bianchi type-I spac~-tim~ metric can be chosen in the form (I) ' 

ds 2 = dt 2 
- a2(t)dx2 

- li(t)dy2 _- c2(t);lz 2 • (2) 

From Lagrangian (1) we will get. Einstein equations, spinor and scalar field e·quations 
· and co~ponents of their energy-momentum tensor. We. will use Einstein equations for 
a(t), b(t) and c(t) in _the form [l]: 

a a (b -C) (' l' l ·) - + - -_+ - = -,;, . T - -1 ' . 
a a b c 1 2. 

(3) 

. l, b(a c) (. ,.2 1,,) 
. b + b ; + ~ = _,,, 12 - 21 ' (4) 

c c(a . ii) . · , (1•· ,3 . 11,)-- + - - + - = -,;, - - , 
c ,·C a · b · ·· 3 

_ 2 
(5) 

• a · b ·c (1.0 • 11.) -+- +- = -l'i. - -a b c . · 0 .2 · ' 
(6) 

· where point mea~s differenti!l,tion withrespect tot, an<l 1' = 'l'f:;· 
Spinor and scalar field equations and components of its energy-m_omentum tensor can 

be written as follows: ~ 

. - .,. :,. l ·0 '( ) ';,;,(S).• . d<I> 
i,"V µ'I':-:- my,+ 2'P,a'f'' <l> S t/; = 0, "'·. = dS, 

' : 1 . a'.('.' ' ') 
.. · c::;;--a V H9vµ,P,µ<l>(S) = o, 

v:-:-9 X .• . 

r:, = {gpv( ef;,µ '1v'P +efi,vV ;t/; ~ '1µefi%; _ v:t~µt/; )+ )µ~·Pt(S)_--oiL. 

In (7) and (9) v!' den~tescovariant derivati~e-o'f spinor; having the form [2]: 

(7) 

(8) • 

(9) 

·-
- aip . 

v "t/; = -a - r"i,1,,; :, .. · x'' . 
··. (10) 
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where fµ(x) are spinor affine connection matrices. ,".(x) matrices are defined for the 
metric (2) as follows. Using the equality 

9µv(x) = e:(x)et(x)1/ab, "/µ(x) = e:(x)'ra,. 

where 1/ab = diag(l, -1, -1, -1), 'Ya being flat space-time Dirac.matrices, e: denoting a 
set of tetrad 4-vectors, we will get 

,o = 'yo, ,1 = --//a(t), ,2 = 72/b(t), _,3 = 73/c(t). 

fµ{x) matrices are defined by the equality 

which gives 

ro = 0, 

fµ(x) = i9pu(x)(8µe~et- r:5)1"/, 

1 . -1-0 r1 = 2!:!(th 1 , 
1 · r 2 = 2b( t )727°, 

1 r 3 = 2c( t)737°, 

Flat space-time matrices we will choose in the form, given in ,[3]. 

(11) 

We will study the space-independent solutions to spinor and scalar field equations (7), 
Ww~ . 

t/; = V(t), ,~ = cp(t). 

In this case solution to the equation (8) is: 

cp(t) = r<I>~S), C = c'onst, r(t) = a(t)b(t)c(t). 

In accordance with (12) the spinor field equation (7) can be written as: 

· 0( a T) C
2 

I ; i'y - + - V-mV- -P (S)V = 0 
8t 2T 2r2 . ' 

where P(S) = 1/<I>(S); P'(S) = ~; = -!~. For the components !pp 
1, 2, 3, 4, from (13) one deduces the following system of equationsi 

. + . ·( c2P') 
V,. + 2r V,. + i m + 2r2 . V,. = 0, r = 1 2· 

- . ' ' 

. + ( C2P')' Vi + 2T Vi - i m + 2r2 . Vi = 0, .l= 3,4. 

From (14) and (15) we will find the equation for invariant function 

s = ef;t/; = ½*½ + ½*½ - ½*½ - ¼*¼ : 

which leads to 

. + 
s+-s = o, 

T 

Co S = -, · C0 = const. 
T . 

h~·. n ,.-.,7"fl~;;1 
•·.:. ............... ··~~ .... ,y~ \t 
Jt.Si-.u. m:~.,~;:a.:mmn 1 

6HSJ1t!OTe{A U , .... _. 

(12) 

(13) 

Vp(t}, P = 

(14) 

(15) 

(16) 

(17) 



A~ in the considered case P 'depends only on S, from (17) it follows that P(S) and 
P'(S) are functions of 7 = abc. Taking this fact into account, integrati~n of the system 
of equations (14) and (15) leads to the expressions 

V,.(t) · = ~exp[-i(mt + IQdt)], r = 1, 2; 

V,(t) = ~exp [i(mt + J Qdt)], l = 3, 4. ( 18) 

· where Q(t) = ~;,', Cr C1 - integration constants. 
Putting (18) into (9), we will get the following expressions for the components of the 

energy-momentum tensor for the interacting spinor and scalar fields 

ai C2 
I 2 3 Ta = -N + 2 P - R, T1 = T2 = T3 = -R, 

2 7 

where 
. 2i 2 2 . 2 2 2iCa ( C2 P') 

N = --:;:(C1 t C2 - Ca:- C4 )(~ + Q) = --7- m + 2:7-2_ . ; 

. c2 
T = T"' = !_N + -P - 4R. 

0, 2 7 2 
R = .C2 (p + CaP'), 

272 7 

Summation of Einstein equations (3),( 4) and (5) leads to the equation 

~ = -,."(Tf + T] + T;- ~T) = 3x:(mCa _ CaC
2P'). 

, 2 _27 473 :. 

The first integral of the equation (22) takes the form: 

i 2 = 3K(mCa7 + ic2 p + C1)! C1 = canst. 

Final solution of the equation (22) reads 

! --==="=• =· =d=
7
=== ~ ±~(t+ta), 

J(mCa7 + ½C2 P + C1 ) 

ta= canst . . 

(19) 

(20) 

(21) 

(22). 

(23) 

. (24) 

Giving the explicit form of <l>(S), i.e. P = 1/<1>, frorii (24) one can find concrete function 
7(t) = a(t)b(t)c(t). Putting the obtained· function in (18), one can get expressions for 
components of spinor function Vp(t), where p = 1, 2, 3, 4. 

Let us express a, b,_c through 7. For this we notice that subtraction of Einstein equa
tions (3)-( 4) leads to the equation . 

- b · · ·b · d ( · b) ( · · b) ( · b ·) ~ - b + :: - b: = dt ~ - b + ~ - b ~ + b + ~ = o. (25) 

Equation (25) possesses the solution 

1 = D1exp( X1 J ~), D1 =·canst, X 1 = canst. (26) 
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Subtracting pquations (3)-(5) and (4)-(5) one finds the equations similar to (25), having 
solutions 

a ( J dt) b ( , J dt) ;: = D2exp X2 .-:;: . , ;: = D3exp X3 -:;: , (27) 

where D2 , IJ3 , X 2 , X 3 are integration constants. There is a functional dependence between 
the constants Di, D2, D3, X1, X2, X3: 

D2 = D1D:1, X2 = X1 +X3. (28) 

Using the equations (26), (27) (28), we rewrite a(t), b(t), c(t) in the explicit form: 

t 

a(l) (/)2/J )1 1 [2X1 + Xa J -t:1 '] 
1 3 , 7J c.rp _.:___ 7 at 
. . 3 

to 

b(t) 1 1 1 [ X1 - X3 ft 1 ] (/~1 D3)'7scxp -
3 

7- dt' 
to. 

t 

c( t) (D D2)-l ! [ X1 + 2X3 J -Id'] 0 

I 3 J 7J exr -
3 

7 t (29) 

to 

where ta is the initial time . 
Thus the previous syst~m of Einstein equations and interacting spinor and scalar 

field ones is completely integrated. In this process of integration only first three of the 
complete system of Einstein equations have been used. General solutions to these three 
second order equations have been obtained. The solutions contain six arbitrary constants: 
D1 , D3 , X 1, X3 and two others C1 and ta, that were obtained while solving equation (22). 
Equation (6) is the consequence of first three of Einstein equations. To verify the cor'. 
rectness of obtained solutions, it is necessary to put a(t),b(t) and c(t) in (6). It should 
lead either to identity or to some additional constraint bctw<>cn the rnnstants. Putting 
a(t),b(t),c(t) from (29) in (6) one can get the following equality: 

1 [· .. i
2 

2 ( 2 , 2)] ( a • 1 ). 
37 

,fr - 2-:;:- + 
37 

X1 + X1Xa + X3 = -K Ta - 2T , (30) 

that guaranties the correctness of obtained solutions. 
To get the constant G'i in (24) one can use the equation (30). Inserting f from (22), 

i 2 from (23) and 

T.a _ ~T = !:_N ~ C2
p R == mCa C

2
p 3C0 G

2 
P' 

0 2 4 + 2 72 + 27 + 72 + 473 ' 

one deduces the identity, if 

1 ( 2 2) C1 = 
9

11'. X1 + X1Xa + X3 , (31) 

which means that the constant C1 is a positive one. 
We will first study the solution to the system of field equations with minimal coupling 

when the direct interaction between the spinor and scalar fields remains absent, i.e. in 
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the Lagrangian (1) <I>(S) = 1. The reason to get the solution to the self-consistent. 
system of equations for the fields with minimal coupling is the necessity of comparing 
this solution with that for the system of equations for the interacting spinor, scalar and 
gravitational fields that permits to clarify the role of interaction terms in the evolution of 
the cosmological model in question. 

In this case the components of the energy-momentum tensor look: 

Tg 

T 

mC0 c2 ~+--
T 2r2' 

1;1 = Ti = Tf = - i22 , 

To_ mCo c2 
Q - - -

T -:;Y' 
Tl + T.2 + T.3 _ ~ T = 

I 2 3 2 
3mCo 
2 T 

(32) 

Note that as the energy density ig should be a quantity positively defined, the equation 
(32) leads to C0 > 0. The inequality C0 > 0 will also be preserved for the system with 
direct interaction between the fields as in this case the correspondence principle should be 
fulfilled: for ,\ = 0 the field system with direct interaction turns into that with minimal 
coupling. · 

Taking into account (32) equation (22) writes 

.. 3 C 
T = -K,m O, 

2 
(33) 

with the solution 
3 

r(t)= 4K-mCot 2 +r1t+r2, T1,T2=c~nst. (34) 

Putting r(t) from (34) into (18) and (29) one gets the explicit expressions for the 
components of spinor field functions Vp(t) and metric functions a(t), b(t),c(t): 

where 

', 'er -imt 
V,(t) = ,;:/ , 

· Ct imt 
½(t) = '..fie , 

a(t) 

b( t) 

.· c(t) 

(D; D3)½r½ z 2x,:x, ,., 
= (D11 D3)½r½ Z_x,~x, 

(D1D~)-½r½ z_x,~2X3 

4 

, 

, 

Z= (~)" 
t - t2 ' <T = 3K-mCo(t1 - t2)' 

(35) 

(36) 

(37) 

and t1,2 = -
3

K
2,;;h ± 3K~Co ✓rf-,- 3K-mCoT2 are the roots of the quadratic polinomial in 

the right-hand side of (34). If the roots are real, i.e. if . 

/-
T{ - 3K-mCoT2 ~ o,· (38) 

the' solution (34) is sing~lar one,' while in the opposite case it is not. Putting (34) into 
(30) one deduces the following relation between the constants: 

2 · · ' 3 2 ,' 1 ( 2 · · 2) r1 - 3K-mCoT2 = 2KG + 3 X 1 + X1X3 + X3 • (39) 
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As the right-hand side of the equation (39) is positive, the quadratic trinomial in (34) 
possesses real roots and the solution obtained is singular one at initial time t = t 1 , whereas 
t1 > t2, t1 S f S 00. , , 

Let us study the solution (34)-(36) at t-+ oo. Hence we have: r(t) ~ ¾K-mC0 t2, 
and a(t) ~ b(t) ~ c(t) ~ t2l3

, that leads to the conclusion about the asymptotical 
isotropization of the expansion process for the initially anisotropic Bianchi type-I space
time. 

Thus the solution to th_e self-consistent system of equations for the spinoi:, scalar and 
gravitational fields is the singular one at the initial time. In the initial state of evolution 
of the field system the expansion process of space-time is anisotropic, but at t -+ oo there 
happens isotropization of the expansion process. 

To investigate the system of spinor and scalar field equations with direct interaction 
we will consider the partial case for choosing P(S): 

P(S) = I + .\Sn = 1 +,\Ct;, 
Tn (40) 

where ,\ is the interaction parameter, n is some arbitrary constant. Inserting ( 40) into 
(24) one obtains 

J dr r,:;----;::=======~ = V 3Kt, 
✓mCoT + .\C2C[; /2rn + CJ • · 

(41) 

where Cf= C2/2 + C1; in (24) t0 has been taken zero, a~ it only gives the shift of the 
initial time. 

Let us study different cases of choosing ,\ and n. I. ,\ > 0, n > 0. In this case ( 41) 
leads to the following behavior of r(t): 

3 
at t-+ oo r(t) ~ -K-mC0 t2 -+ oo, 

4 . . 

at t-+ 0 r(t)~ [(i+1) 
I 

3K-.\Cnc2 ] n/2+1 
--

0--t -+0. 
,2 

(42) 

(43) 

Note that (42) coincides with (34) at t -+ oo. It leads to the tact that in the case 
considered, the asymptotical isotropization of the expansion process of initially anisotropic 
Bianchi type-I space-time takes place without· the influence of scalar field. In this case 
the initial state is singular: r(0) = 0. 

Thus, the evolution of the interacting fields system at ,\ > 0 and n > 0 is qualitatively 
the same as that of the system with minimal coupling. 

II. ,\ = -a2 < O, n > 0. The equation ( 41) takes the form: 

- ' , =~t. I · dr -

✓mCoT - a2C2C'[j/2rn + CJ , , _ 
(44) 

From ( 44) follows: 

at t-+ oo 
3 ' 

r(t) ~ 4K-mC0t2 -+ oo, 

i.e. as well as in the previous case the asymptotic::al isotropization of the expansion process 
of initially anisotropic Bianchi type-I space-time takes place. But T = 0 cannot be i;eached 
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as in this case the denominator of the integrand in ( 44) becomes imaginary at T -+ 0. 
There exists the minimum value Tmin =To> 0, which is defined from the equation 

u2c2cn 
mC0 i;+1 + C;r(; -

2 
° = 0. 

It means that for >. < 0 and n > 0 there exist regular solutions to the previous system of 
equations. The absence of the initial singularity in the considered cosmological solution 
appears to. be consistent with the violation for >. < 0, of the dominant energy condition 
in the Hawking-Penrose theorem [l]. 

III.>.> 0, n ~ -k2 < 0. In this case the equation (41) takes the form: 

1--;::====d=T===== = ~t. 
✓mCoT + >.C2rk2 /2Cf + Ci 

Let us study concrete solutions for some values of k2
• 

· a) k2 = 1. Then from (45) one gets: 

3 c; 
r(t) = 4MC0Kt2 - MCo' 

>.c2 
M=m+ 2C;f 

(45) 

(46) 

The solution ( 46) is singular one at initial time t0 = $~co and asymptotically isotropic. 

b) k2 = 2. The equation (45) writes 

J--;::==========dT====c===='=' = ~t. 
· ..jmC0r + >.C2r 2 /2CJ + C? . 

Integration of ( 4 7) leads to 

CJ [ (~C) ] r(t) = >.C2 !::,sh ../2Co t - mCo , 

l::, = ✓2>.C2Cif C5 - m2CJ. 

From (48) one gets: r(t0) = 0, where t0 is defined from the equation: 

(
~C to) _ mC~ = 0, !::,sh ../2Co 

i.e. the solution (48) is singular at initial time t = t0 • 

At t-+ oo 

r(t) R:i CJ 6exp(~C ) 
. . . >.c2 . ../2Co t . 

(47) 

(48) 

(49) 

(50) 

The solution ( 48) describes initially (i.e. at to) singular and asymptotically (i.e. at t -+ oo) 
isotropic Bianchi Type-I cosmological model. Note that in this case the transition to the 
isotropic regime happens exponentiaHy. 

IV.)..= -u2 < 0, n = .:..k2 < 0. In this case the equation {41) takes the form: 

--:::========== = ~t. J 
.. dr 

✓mC0T - u2C2rk2 /2C;' + C? • 
(51) 
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Let us consider concrete solutions for some values of k2 as in III. 
a) k2 = ½- In this case one gets from (51): 

k( ,/r+ ✓-r;ln I vr-Fil) = ~t, 
u2c2 

Fi=-c3f2' 
4m o 

which leads to 

at t-+ oo 31,,mCo t2 -+ oo, T(t) R:i 4 

at t-+ -oo ( 
u2c2 ·)

2 

T(t) -> T1 = 4mCg/2 

(52) 

(53). 

(54) 

From (53) and (54) one comes to the conclusion that the solution (52) is initially.(i.e.' at 
10 = -oo) regular one and at I -+ oo asymptotically isotropic. 

b) k2 = 1. In this case (51) writes: 

1---====dT==== = ~t. 

( m - u2C2/2CJ )coT + q 
(55) 

If in (55) m - u2C2 /2CJ > 0, then the solution coincides with ( 46), where M = m -
u2C2/2CJ. 1t m - u2C2/2CJ = -T2 < 0 from (55) one gets ' ' 

Ci 3,-T2Co 2 r(t) = - - --t . (56) 
.PCo 4 

In this case r( t) possesses 
'' . 

and 

maximum at t = 0, i.e. 

2C2 
minimum at l1,2 = =f ~T2C

0 

Ci 
T(O) = r2c

0
' 

i.e. T(f1,2) = 0, (57) 

The solution obtained describes the cosmological model, which begins to expand at t1, 

acquires its maximum at t = 0 and then collapses into a point at t2, 
c)· k2 = 2. From ( 45) one gets: 

1--;====a=:cdT~=;=;=;=~~ = ~t. 
✓mC0r - u2C2r 2/2CJ + q 

· Integrating (58), for r(t) one gets the following expression: 

r(t) = CJ [me + I\ . (uC~t)] u2c2 o L>Sm ../2Co ' 

2u2C 2C2 ( . )1~ 
where l::, = m2CJ + ~ . From (59) follows that T(to) = 0, where 

. ,Ii.Co . (mCo) 
t0 = - ~uCarcsm T , 
, 

9 

(58) 

(59) 

(60) 



then acquires maximum 

cg ( )· r(tmax) = u2C2 mC0 + /::;. , 

where 
1r../2Co 

t =--max 2J3Kuc' 

and further at t = ti again turns to zero: r(ti) = 0, where 

../2Co . (m.Co) 
ti= 1r + J3KuCarcsm T . 

Thus the solution (59) describes the cosmological model, which begins to expand at 
t0 , acqbires its maximum at tmax and 'then collapses into a point at ti. 

One of the authors (B.Saha) is grateful to the fond MNTP "Fundamental Metrology" 
grant 2.51 for financial support. 
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pemeHHSI ypaBHeHHH; OilHCblBalO~HX, CHCTeMy B3aHMOJ:(eHCTBYIO~HX CilHHOp..: 
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Self-consistent solutions to the system of spiqor and scalar field equations 
in General Relativity are studied for the case of Bianchi type-I space-time. It 
should be emphasized the absence of initial singularity for some ,types of 
solutions and also the isotropic .mode of space~time expansion in some special 
cases. 
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