


- I.INTRODUCTION -, .-

Fhe fundamental quest1on of how the hadron propert1es a1e modl-
ﬁed in. hot -and dense. nuclear matter is the’ currently central problem
in relativistic heavy-ion collisions. The rho meson dynanucs is cruaally
important here because it may be related to the observables. Really, one
hopes to explore the dilepton: productlon in the rtr '~ annjhilation [1]
because the pion electromagnetic form factor. is almost completely dom1—
nated by the p meson below an invariant mass of, about 1.GeV [2]; Wl’llCl’l
strengthens the well known and widely used vector dominance model [3].

The rho properties under extreme condition are amblguous especially
in the region below the chiral phase transition. Above the critical tem-
perature, which probably coincides with the deconﬁnement temperature,
the p meson should disappear from the hadronic spectrum of excitations
as.predicted by both the chiral mean field models [1] and lattice calcula-
tions [4]. The p properties below the chiral phase transition depend on
the physical picture of the. "matter”. constituents and_their interactions .
with the rho meson [5]. The models based on quark degrees of freedom, ,
such as QCD sum rules [6], the effective Lagrangians of the Nambu-Jona-
Lasinio type [7], or the models based on the conventional hadronic degrees
of freedom [8-10] show different qualitative and quantitative predictions

* of the in-medium modifications of the rho propertles

For a deeper understanding of the role of the. conventlonal hadromc
interactions on the p property modification at extreme conditions, which
should be considered as background for more exotic interactions, it seems
to be important to study the simplest system -.a dense and hot pion gas
of a strongly interacting matter with a small baryon density, which is
often expected to be produced in the central region in relativistic heavy-
ion collisions. - Gale and .Kapusta [11] have analyzed the temperature
modification of the p self-energy in the one-loop order-(order g?) at a
vanishing pion chemical potential. They found a modest increase in,the
p-width and mass with temperature, which means that if a high energy
experiment shows a substantial modification of the dilepton spectrum
with an invariant mass in:the.p. reg1on it may be some indication of a
more exotic interaction.

The model of Gale and Kapusta is extended by Koch [13] who con-
siders the pion system in a chemical non- equll1br1um state described. by a
positive chemical potential p,. The chemical potential is.associated with -
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the total pion density of the pion gas, and it is supposed that g, has the
same value for 7+ and 7~. Previously, this idea has been put forward by
Kataja and Ruuskanen [14] for explanat1on of the observed enhancement
of pions at low transverse momentum in relativistic heavy ion collisions
[15] as a consequence of the Bose-Einstein statistics. In Ref. [13], it is
found that the incorporation of the pion chemical potential u; gives a

strong enhancement of the muon pair yield in the low invariant mass
region, provided the lepton: pa1rs are produced predominantly via pion 3

annihilation. This might serve as"explanation of the so-called d1lepton

excess [16] observed in the present CERN- SPS heavy jon’ experlments ’

[17].

In principle, one can consider an additional degree of freedorn in the

conventional p-7 dynamics, namely a possible non-zero total electric or

isospin charge of the pionic system. Generally, there is no restriction on
the production of a hadronic fireball with a net electric charge in the first
~ deep-inelastic stage in a relativistic heavy-ion collision. Moreover, some

experimental data [18] and theoretical speculations [19] point out - this

. possibility.: This'may be a consequence of the proton-neutron asymmetry
of the colliding heavy ions, and the asymmetry increases with i increasing
atomic weight of the colhdlng ions. The electric charge of a pionic system
is controlled by the ”charge” chemical potential pg which should\:not be
confused with the chemical potential used by Koch p, = p2 that is a

- measure of the chemlcal equilibrium breakmg The chemical potent1als
for positive and negative pions are pr+ = 2 + pg. SEREE

* Incorporation of the finite pg into the theory leads to non-trivial
effects as, for example, the dilepton enhancement at 2my [20] sharp
rnod1ﬁcat1on of the Golstone modes [21], and others.
~ Here, we explore this additional degree of freedom. Our work may be
viewed as an extension of the results of Gale and Kapusta [11] to'the p
meson self energy ‘at finite temperature to finite values of the chemical
potential pg. Crucial questions of how does the isospin asymmetric:sys-
tem may be produced in experiment and the role of the baryonic degrees
of freedom at high temperature are beyond. the scope of our present:con-

~ sideration which may be considered as necessary part of the future theory

of the pion - rho medium in a hot and dense baryon1c 1sosp1n asymmetrrc .

' env1ronrnent : : :
~In our recent-paper [22], we restrict ourselves to the s1mplest case
| vvhen ‘the vector field is taken in its rest frame with p = 0. We find an
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increase in both the p meson mass and the width with increasing tem-
perature and chemical potential pq.  In this paper, we generalize our
approach to an arbitrary and finite value of the rho momentum. We
evaluate the p meson self energy by using, as starting point, the conven-
tional 7-p effective Lagrangian and the functional integral representation
for the partition function, which is familiar to the relativistic quantum
field theory at finite temperature and charge chemical potential. We
pay attention to the gauge invariance of the rho polarization operator
and analyze its dependence on the invariant mass M and the spatial
momentum |p| of the p meson. We show that this dependence leads
to a sensible modification of the shape of the thermal dilepton produc-

" tion rate. Moreover, at large g we find a definite difference in the pole

positions and in the value of the imaginary parts of'the‘self-energy for
different polarization states as the functions of M- and |p|. This leads
to the perceptible asymmetry of the dielectron production when the mo-
mentum t = p; — p- is perpendicular or parallel to p, where p4-are the

momenta of e*.

II. THE MODEL

Our starting point is _the effective Lagrangian £ which describes a-
system of charged pions and neutral vector p mesons

T T ooy Lmag, (1)

=4W@D¢ ;

where d) is the complex charged pion ﬁeld, p stands for the vector field
with the strength p,, = 8,0, —0,p,, and D, = 8, —1g,p, is the covariant
derivative; p and v are the Lorentz indices. The Hamiltonian of the
system is related to the Lagranglan of Eq.(1) i in the usual way
_oc

with ¢ = (¢, ¢*, p). The reference for what follows at finite temperature
T # 0 and p,+ =0, is the paper of Gale and Kapusta [11].

Let us consider the case when the system admits some conserved
electric or isospin charge. We consider the case 19 = 0 and concentrate
on the incorporation of pg. The incorporation of. the chemical potential



pq leads to a transformation of the Hamiltonian wh1ch we use for .the
calculation of the partltlon functlon

’H?H—uoffo,q L (3)

where'Jy is the time component of Noether’s current ~
gL ¢ :

(qs* 6= 4(D 0 )

The ,o meson’ propagator in a medium is related to the self—energy

Gt

: (D-J) - (Dgl) +Ie, o 5)
, where D(‘,‘ is: the free propagator g :
_In the Euclidean: space, the rho meson- self-energy may ‘be obtamed

w1th the help of the partition function havmg a functlonal lntegral rep-
resentation of the form:[23]

5 o Coa
Z=[Dn, | Dy exp dr dx zmpa— — H+ﬂQJO) ,
periodic

where again ¢ = (¢, ¢*, p), and Ty = 35/6(3090) are the relevant conJu-
gate momenta. The integration over 7, glves ‘

zZ = / 'Dp'D(ﬁ'D(ﬁ* eSo-l-Sfm , (6)
pertodic - ’

where Sy = SO1r + So, describes the non-interaction part of the total
eﬁ'ectlve action; and Si,; corresponds to the 1nteractlon part, i.e., '

/ dr / dx |a¢|2'—‘—(m — )P —umo)

Sop = / dT/dx —puup vy m (3u/’))
mt—/ dT/dx 9,,/7 l¢l2+gp(/’n.7 "+ pqpo|d) )) I (7)

- where Dp = Dp det(&;) (det 34 = det ( )) and Ji= z/2(¢ 0, ¢ -

¢3u$ ); z30 = 0ry po = ips, etc: Sp, 1ncludes the gauge ﬁx1ng term We

_use the Landau gauge with a — 0.

Expanding Eq.(6) in power series in ‘S;n; and taking the logarithm of
both sides, we get in the second order of g,
InZ =1InZy+InZ;p,
1n th

%92( / drdx ol >0 + < (/ drdx(p.jo + papold* ) o), (8)
where '
2= /Dsoes°; <R >o ,E Zo—l./ D‘PR e*. 9

‘The polarlzatlon operator Hu,, is related to,the partition function as

follows i+

: 5 anint
M., = —2—
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III. RHO PROPAGATOR

The calculation of In Z;,; may be performed by utilizing the meth-
ods of Ref. [23] and textbook recipes [24]. After some tedious algebraxc
exercises we get the followmg expression for O B ot

, &k ~1.‘ A(K) = Bk~
_72/ o) Ak +A(k)2+B(k)2)‘
Bk 4k kY — 46“5gpQ

I#hTE/ e (L4 Flan, )

d3k ByA-+B- A,
TZ/ 27‘{')3 (A2 +B )(Az +B2) (12)

where

In the above, the fourth component of the. momentum four- vectors is the
Matsubara frequency, i.e., ky or py = 2xT xinteger. The functions A4
and By depend on the chemlcal potential as :

1 : . . 1 1 o
Ag = (k4i§P4)2+‘_"i—ﬂZQ, Bi'Ev—ZMQ(k4i§P4), wi = (kiEP)2+mZ,



and A(k) = A+(p=0), B(k)=Bi(p= 0). The function Fng,pk) is
a combination of Ay and Bi . - X . o

-B2 A2 -p?

f(l‘Q,p,k) Az +32 Az_ +B_2_

- (m-B)(a-p)-4a,4.B.8. |
(42 +B3) (a2 + B2)

In the limit of pg = 0, Eq. (11) reduces to the self-energy of Ref. [11],
obtained within the finite- temperature Feyllman rules. We calculate the
self—energy of Eq.( 12) by maklng use of the standard technique [24,25],
i.c., the discrete summatlon is replaced by the contour integral as

+

loo“';‘ . v

T Z flho = iks) = 5 / ko (ko) + f(~ko)]
1 _I:;'f-c y . L ) - ’
tom / dholf (ko) + SRl gy, (19)
o o—ioote o ) T .

: The first term in Eqgs.(12) I does not depend on’ the external mo-

mentum p, and its calculation' gives’

=2 / (‘2’31;3 21 (1+‘N(’w)), Lo “(14)

whereN( w) = n(w + pq) + n(w — pg), n(w) = (e“/T — 1)~ 1 and w? =
k?+m?. Calculating I and I" we see that only the poles at the points
ko = a1,2; bl \2) where .

G2 =wy kg = gips, b =w_ +Eug +5ips,

contribute to the contour integral. For example, the’ contnbutlon comlng
from a; to I;* and I" reads :

&’k 4(/c2 + ) 1 1 oo
144 _ 2/ ‘ Q ‘ _
. 2 al (27T)3 i w+ » (w p0)2 i w 2 + n(kO) ko-—a1 ,

' : &k k 1
1“" =2 0 l
3L g (2m)3 dw,y (wy = > po)? — w? 2 +,n(k0) ko=ay ’

and their contribution to. g;2II*(uq, p) in (11) results in
- I;al + 8#013 al =
; K2+l 2k o1 (1
o [Fh ( Botig, "”"} - 2{—+n(ko)}
, (27)3 Wi Wi (“.’+ — Po) Tl 2, " J kg=a1

R

The final result for the components of I is

= - KA /kzd(c {4w —'1’4;;(::)‘4’P‘*“’zntﬁ)x }{HM )}

(27)2. 4kq kg 00
4 = P4P7H44
1 5'JA+””7 S @)
" where 3 o S
_ (Pt 2kp])? +4pi® (P24 p?)" — 4(ipe + 2K[pl)?
- (i+p R E R f.‘l(ipwa—.?’flpl)%’.;
a- L9 [ Kdk (2( —p’) _ipw(pitPp ), () +
T 24x2 w - p? klp |
0 ' I
p4( _ 4w2) (4k2 T p 2p4)ln(a) {1
+N( )}
4klp,l,3, R )
5 =“_1£§_ kzdk'(_2(3p3 -p )+ zp4w(p +3P )l (b)
2 4n? w p2 kl |
0 - R ST
2( 2 A k2 2 Rt .
Spilp] — ") = — (|4k — 2% )ln(a)) {1+N(w)} o ae)

- We see that all dependence on the chemlcal potentlal 7%} and the tem- .

perature T are absorbed 1nto the Bose factor N ( ); The substltutlon ;
—{n(w+#q)+n(w #Q)}_’"( ) |

7.



in the above equations leads to the result of Ref. [11]."
In the Minkowski space, the self-energy II*¥ may be expressed in the
form ,

™ = FP/ + GPY, (17)

where G and F are the so-called ”longltudlﬁal” and "transverse” masses,
and Pf” and P} are the longltudma.l and transverse prO_]eCtIOIl tensors:

Py = T ﬁ_P =0, P =6 PPJ/P, /
P =p'p’[p" —¢* - Pp". (18)

The tensor structure of P£” and Pk ¥ confirms the current conservation or,
the tra.nsversa.hty of, H‘“’ with respect to the- external momentum. The
final expression for the p propagator in the Landau gauge in medium
reads ‘

P“ g Py

wo_ L -
b = pP—-mi-F p—m2 G (19)

' For the concrete application we must perform the ana.lytlca.l continua-
tion from the discrete Matsubara frequencies to the Minkowski space:
po = ips — po = E + i, and calculate the divergent part of self-energy
regula.rlzmg it with counterterms. We use the dimensional regularlzatlon
as in Refs [11, 22] and find ‘

Re Fvac( ) = Re Guac(M ) —_ :
2 3/i (1 ’"4m2/M2)1/2 \
W/M) { —(1—-4 m2/M2)1/2 + 8m? +C)
: C.= _(1_ )3/21 ((1 4m1r/m2)1/2+1 8m?,": s
o mmp s (L AmE [ =1

, (20)

2
s

E?(dw? + E?) — p(4k? — p? +2E7)
!
| v nlal] (22)
M?1 g2 [Rdk . [4u? + E? 2Ew
F mat = —=f [
; Rimat = 52 9 4r2 w (w)[ 2k|p| nlal+ k| |ln|bl ]
o | R
: o lgb [ kdk
. GI,mat 24r " N(UJ)
0 : .
E*(4w? + E?) — p2(4K? —p +2E2)—-4M2Ew<, (o3
V HpP — @)
Mg TRk (w-EB)? .
Fima=—g—22 N ¢,
| et . 2p2 27r/._ w) 4k|p| AT (24)
0 R

=0k —k.)- Ok, — k),

where ke =|EQ- 4m2/M2)1/2 + |p|| and ”mat” a.nd ”vac” denote the
matter dependent contrlbutlon a.t finite T, 1q, a.nd vacuum contrlbutlon
at T = 0 Ho = 0, respectxvely ' '




IV. SELF-ENERGY

From the above we sce that the medium effect can be manifested (i)
in the shift of the rho meson propagator pole position because of the real
part of the self-energy modification; (ii) in modification of the imaginary
part of the self-energy which is responsible for the decay width; and

. (iii) in the difference in (i) and (ii) for different polarization. All these’

phenomena depend on T, pg and the rho momentum p. At large value
of the spatial momentum |p| all medium corrections vanish because this

case corresponds to the short range correlation where the many-body

effects become rather small. At |p|=0 we have no preferential direction
and difference in (i) and (ii) is absent. '

. ‘The matter corrections as functions of 7" and |p| at po = 0 have been
studied in Ref. [11). It is shown that the corrections decrease rapidly
with decreasing T. So, we limit ourselves to presenting the results at

’ large T. In our calculations we use: m, = 139.6 MeV m, = 770 MeV,

g2 /4w = 2.93. o /

We start with the discussion of the dispersion relation or dependence
of the p energy on the spatral momentum. In the medrumm th1s depen-
dence is different from that in'the case of the free meson: w20 = m2+p?.
Moreover, the dispersion relations are different for different polarlzatlon
states: - the longitudinal and transverse dispersions are defined by the
functions ReG(po,p) and ReF(po, p), respectively, and should be found
as solution of the equations

wi = p* +m)+ Fr(wr, |pl, T, 1q)
w% = p2+m,2,+GR(WT,'PtaT,ﬂQ) : (25)

At the point |p|=0, wy 7 are just the ”in-medium” p mass.

In describing the matter rnodrﬁcatron for longitudinal and transverse
dispersions it is more lllumlnatmg to specify the difference Awrr =
Wi, T — Wy which is shown in Fig.1 at different values of the chemical
~ potential pg =0, 60 and T' = 150 MeV. We find that (a) Awpr increase
with the chemrcal potential, (b) decrease with increasing momentum [p|,
and (c) the matter modifications for different polarization are similar in
shape but they do not coincide exactly. ' :

. We find that the conventional 7—p dynamics predicts increasing "in-
r'nedi’um"" mass. This contradicts the QCD-sum rules conclusion on de-
crease in all in-medium masses [5,6]. We see that finite and large ug=120

10
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MeV leads to the corrections which are about two times as large as those
at po =0. : "

In parallel with drspersmns it 1s mterestmg to look at the pole posi-
tions My 1(p) defined as MZ .(p) -,wL'T(p) p? which coincide with
wr,T at |p| =0. Fig.2 shows the difference in the shifts of the pole posi-
tion AMp r = ML r—m, for different polarrzatron states: AM, 1, decreases
faster with increasing |p|. This is because of the 1nequa.llty ReF < ReG
at |p| >0. - . o

Fig.3 shows the M—dependence of the imaginary parts of the self—
energy on the p invariant mass M at fixed temperature and different pg
and p. We find increasing in'Im G, F with M, which leads to inrease
in the damping constants. We find some difference between I'm F' and
Im G predected by Eqgs.(23) and*(24) where |ImF| > |ImG)| at‘|p|. The
largest difference is in the Tegion of M '~ 0.3 — 0. 5 GeV for finite values
of |p|. “This is illustrated in' Fig:4 where we: show thé ratio I'm G/ImF
as a function of M at different |p|-and ug: Hereiand in the following
discussion we have restricted ourselves to the case pg =0, 120'MeV. The
results with po=120 MeV may be considered as upper limit of possrble
effects

| V’.fTHE‘THERMALVI.D"II}EPTON‘ PRODUCTION RATE

Now we try to understand may the predlcted ma.tter correctlon be
seen in-the dlelectron productlon rate? Reca.ll tha.t the therma.l dllepton
productlon rate in the vector dornlna.nce model is rela.ted to the 1ma.g1na.ryv
part of the p propagator as follows [11 27}

dR’ “"1 etmd o

o E “Ppidp. (2n)y ,Z,M?’(( _f)WL+(1+€)'WT) ( I)_"".:(z's)
‘£J=,.,1,.—r<t?:<‘t et
Wy =" SRl ) GO I Wi =G

T (M —m2 = FR)+F2 (M2 GR)+G2
;,??(E)—(‘E’T,ll)f‘,_ U S APTRIRT (27)

where p=ps+p-is ‘the: tota.l pair mornentum p= (E p);, P’ = M2 and
t = py — p_. The function ¢ dependson the angle between vectors t and:

11



q and varies through 0 at 85, = 7/2 to 1 at 65, = 0. Integrating Eq.(26)
over the lepton directions we ﬁnd the 1ntegrated rate as a function of the
invariant mass

dR L 1 e4m4 i
T T / dE,/ " 1 WL+2WT (E) (28)

Frg 5 shows the dllferentlal rate given by Eq. (26) as a function of M at
different |p| at the points £ = 0, where both the polarizations contribute
with the same weight. These points correspond to events where.the
leptons have equal energies £, = E_ = E/2 and the angle between their
momenta is related to M and E as sin(6,-/2) = M/E. One can see
that at small |p| we have standard "two-bumps” structure of the rate
where' the first- bump is the combination of the threshold increase and
suppression. factors in Eq.(26), and the second bump is the consequence
of the resonance-like béhavior of the rate. At large |p|, the first bump is
suppressed by the Bose factor.n(1/M?2 + p2/T) which leads to the total
rate suppression as well. We confirm the conclusion of Ref. [11] that the
shape of the. dlStI’lbuthIl at fixed |p| is not sensitive to the temperature
~at pg =0. '

At small, [p] we have no d1fference between two polarlzatrons and the

_matter correctlon to the pole shift at finite ,uQ is largest. But, comparing

the calculated d1str1but10ns at different pq wefind a sensible deformatron
of the rate shape. At small M it is explalned by the Bose factors propor-
tional to (exp((M/2—pq)/T—1)7" in Egs. (23) (24) which increases the
rate at small M where itis proportlonal to ImF G’ At M ~ m,, the pole
position ‘shifts to the largest value with pg 1ncreas1ng ‘But because of
 the strong suppression factor exp( E/ T)/M?, the posmon of the second
bump increases moderately and as result we find some effective suppres-
_sion of the bump: wh1ch remains in the same p051t10n approx1mately 7
- At large |p| the, difference in Fmat and Gq; leads to a different con-
. tribution of the longltudmal ‘and transverse polarizations and, as a con-
sequence the.net rate has an addltronal ”deformatlon , ~
- Fig.6 shows the integrated rate as a function of 1nvar1ant mass.- We
_ see that its shape is,akin to the shape of a differential rate in the reglon
|p]|=0.4-0.5° GeV. wh1ch g1ves the lagest contnbutron to the 1ntegral of
Eq.(28). «

lzat1on contributions can be best’ rnanlfested from the asymmetry of the
dlfferentlal dlStI‘lbuthIlS i : :

12

The effect of the dlfference in the longltudlnal and transverse polar- '

dR(t Lp)—dR(t|p) Wr—Wr
dR(t L p)+dR(t| p) Wg+3Wr’

A= (29)
In Fig.7, we plot the asymmetry. At small |p| we have Wi, =~ Wr and
the asymmetry vanishes. In the case of finite p, at M — 2m, we find
Ay — 0.5(AMF — AME)/m?2 ~ 0. On the other hand, one can find that
Ay has the second zero at the point, M ~ m, + AM( ) + 8(p) where
6(p) is a smooth decreasing function of p? with §(p)/m, < 10~2. So, the
asymmetry reaches a maximum between the two zeroes: 2m, < M < m,
because of ImG < ImF at M < m,. We find that the asymmetry
increases with |p| and it may be as much as 0.25 for pg = 120 MeV,
whereas at pg = 0,it is about three times smaller.

Probably, this is the most interesting medium effect of our consider-
ation which can provide a fresh insight into the dilepton production as a
probe for the hadron properties at extreme conditions. ‘

- VL SUMMAR_Y‘

In summary, we have calculated the p meson self—energy in the plOIl.
medium at finite temperatures and charge chemical potentral which is’
responsible for the difference between n* and 77 densities in matter.
The calculation is performed within the functlonal 1ntegral representa-

tion for the partition functlon in second order of g2. 'We find that the
pole positions and the imaginary parts of the self—energy are modified-

in the medium and this modification is different for. dlfferent polariza-

tion states. We show that the shift of the pole positions is too modest

to be seen in dilepton production rate. However 1ncorp0rat10n of the .
large chemical potential changes- the shape of the rates: ‘both dlfferentlal T

and integral. Anothef non trivial effect is the: predlcted asymmetry in
the differential dielectron distribution which increases with 1g- But we
would not like to overestimate our results because at the present. stage,
the predicted effects have rather a methodlcal importance: than a_direct
relation to expenmental data. For the latter, on the one hand we have to
complete our consideration by the space~t1me evolut1on of: ‘the hadronlc
system with taking into account the kinetic theory.’ On the other hand,

more or less realistic calculatlon should take into account the baryomc :
degrees of freedom and thelr contrlbutlon to the complete picture. Re-
ally, the most llkely source of the large pion charge chemlcal potentral is

13
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FIC. 7. We plot the asym‘meiry; Al ageiinst ‘the invariant mass M at
different |p| and pug = 0, 120 MeV. T = 150 MeV. The asymmetry Ay
is defined in the text.

the neutron-proton asymmetry of the colliding heavy"ionks‘. In this case,
the pions are produced in a rich baryon environment w_}fé}'é t(}lé‘it‘lterac-
tion of the rho meson and baryons cannot be neglected. From this point
of view, our present work may be considered &s a necessary step ti)'ﬁar'ds
generalization of the vector dominance model to the case of the hot and

dense nuclear isospin-asymmetric systems.
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