


1 Introduct1on FACCIENORI T . : e
Slnce the pxoneer paper of Zamolodchlkov [1], a lot of extended nonllnear conformal
algebras (the W-type algebras) have:been :constructed and: studied (see, e.g. ,[2],
and references therein).. The growing interest tothis subject is motivated by .many.
interesting applications of nonlinear algebras to the string theory, 1ntegrable systems,
etc. However, the intrinsic nonhnearlty of W-algebras makes it rather difficult to
apply to them the standard arsenal of technlques and means used in the case of linear
algebras (while constructing their field representatlons etc. ) A way to crrcumvent
this difficulty has been proposed by us in 3]- .We found that i in many cases a,given
nonlinear W algebra can be embedded into some linear conformal algébra’ which is
generated by a finite number. of currents and contains the; consrdered w- algebra as
subalgebra in some rionlinear basis. Up to now the expllc1t construction has’been
carried out for some simplest examples of nonlinear (super)algebras ( W3 and W, () 131,
W B, and W4 [4] ). Besides being a useful tool. to construct new field' reallzatlons
of nonlinear algebras [3-4], these linear algebras provide a sultable framework for
considering the embeddings of the Virasoro string in the w- type ones-(5]..

In the present letter! we show that the linearization is‘a general property in-
herent to many nonlinear W-type algebras. We demonstrate that a. w1de class of
W-(super)algebras, including U(N)-superconformal [6], W, ( -1 [7 9],"as well as Wy
[10] algebras, admit a linearization. The explicit formulas related linear and nonlin-
ear algebras for all these cases are given. The example of W4 algebra is elaborated
in detail.

2 Linearizing U ( ) (quas1)superconformal alge-
bras oo e s e e

= "5

In this Section we construct linear.conformal. algebras which _contain. the algebra
WI(VIX_";l) or U(N) superconformal algebras as subalgebras in some nonlrnear basis. By
this we mean, that the currents of nonlinear algebras can be- related by an invertible
transformation to those of linear algebras In what follows these llnear algebras will
be called the linearizing algebras for nonlinear ones.

' Let us start by remlndmg the operator product expansions (OPE’S) for .the
ng;l) algebras and U (N) superconformal. algebras (SCA) ‘The OPE’s, for these

algebras can be written in a general uniform. -way. keeping in mind. that. the W(N l)
algebra is none other than U(N — 2):quasi-superconformal-algebra (QSCA) [7 9]
. Both’ U(N) SCA and U(N) QSCA have the same number of generatmg currents:

1The prehmmary version of this’ Letter has been present as talk at the Internatlonal Workshop
”Finite Dimensional Integrable Systems” July 18—21 JINR Dubna, 1994 ‘

2Strictly speaking, the W(N algebra’ coin¢ides with GL(N 2) QSCA In what follows, we
will not specify the real forms of algebras and use the common term U(N) QSCA.




the stress tensor T'(z), the U(1) current U(z), the SU(N) Kac-Moody currents J¢(z)
(1<a,b<N, Tr(J) = 0) and two sets of currents in the fundamental G,(z) and con-
]ugated G”(z) tepresentations of SU(N).: The currents G,(z), G*(z) are bosonic for
U(N).QSCA and fermionic for U(N}) SCA. To distinguish between these two cases
we, followmg refs.” [8], introduce ‘the parameter € equal to 1(—1) for the'QSCAs
(SCAs) and- wrlte the OPE’s for these algebras in the followmg umversal form
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. where the centra.l charges ¢ and parameters 'z are defined by+
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; The currents in'the r.his. of OPE’ (2 1) are evaluated at the point 2'2, Z12 = zl — 2

and the normal ordering in the nonlinear terms is understood. :

» 'Thé main question’ we'need " to answer in order to linearize the algebras (2. 1)

is as to’ which” minimal set of additional currents must be added to (2.1) to-get

extended linear conformal algebras containing (2.1) as subalgebras. The idea of our

* construction comes from the observation that the classical (K — o0) U(N) (Q)SCA
(2 1) can be rea.lrzed as left shifts in the following coset space

g = efsz (Z)Gn(zl SN (23)

which is paramietrized by N parameters-currents Q°(z) with unusual conformal
weights —1/2. In this case, all the currents of U(N) (Q)SCA (2.1) can be con-
structed from Q°(z), their conjugated momenta G.(z) = 6/6Q" and the currents of
the maximal linear subalgebra Hy ) ’ ,
Hy = {T,U, J,’;,Gﬂ} 4 (2.4)

Though the situation in quantum case is more dlfﬁcult it seems still reasonable to
try to extend the U(N) (Q)SCA (2.1) by N additional currents Q°(z) with conformal
weights —1/2.3

Fortunately, this extension is sufficient to construct the lmear1z1ng algebras f(:r
the U(N) (Q)SCAs. Without going into details, let us write down the set of OPE’s
for these linear algebras Wthl] we will denote as (Q)SCA"”

T(zl)T(Zz) = %%+i—£+% E y(zl)U(z2)=_2,
SRV OF SR
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' c b Ne
e = SR
Ga(zl)Q';(Zz) = % , Ga(zl)’éb(h):regula‘rﬁ.» L (2.5)

Here the central charges cand ¢, are the same as in (‘2.2)jand the currents G, (z), G%(z)

and (Q°(z) are bosonic (fermionic) for € = 1(-1).
In order. to prove that the linear algebra (Q)SC A} (2.5).contains U(N).(Q)SCA
(2. l) as a subalgebra let us perform the following invertible nonlmear transformation

3Let us remind that the current with just this conformal weight appears in the linearization of
W:E’) algebra [3].



to th i b ~a Aa .
Gf)a(z;vilslzvzﬁZa:(;saiT(z):U(z),Ju(z),Ga(z),G (2),Q%(2)}, where the néw current
i

G = G0l 4 ya(F0%) +ys(UQ™) + ya( 7' QY) + ys(U'Q) + yo(TO") +
y(BEI2Q") + us(J{I2Q%) + (U Q) + 1ao(UU Q%) + 3 (5G.Q*Q*) +
ylz(JchQch) + yla(G;,QbQ_a) + y“(GbQ"'Q“) + yls(GbQ—anl) +
¥16s(GG-Q°Q°Q") + uir (UG, Q*Q") , * - (26)

and the coefficients y; — y,7 are defined as
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g(l))v;: it fis ahmatter of strdght}orwmd (though tedious) calculation to check that
» s for the set of currents {T'(z), U(z),J}(2),G.(2)} and G° 2.6) coinci
with the basic OPE’s of the U(N) (Q)SCA (2.1), () and G(c) (2.) concide

Thus, we have shown that the linear algeb fin ins

, gebra (Q)SC A% (2.5 t N

(Q)SCA as a subalgebra in the nonlinear basis. W (2:5) contains U(N)

V‘_fe close this Section with a few comments. Co

First of gll., we would like to stress that the pairs of currents Ga(2) and Q°(z) (with
cox:-forlllna: wftiallg:ts e((jlual to 3/2 alnd —1/2, respectively) in (2.5) look like “ghost—
anti-ghost” fields and so (Q)SCALP algebra (2.5) can be simplified b
standard ghost decoupling transformations ) 1o SmpHter By means of the

U = (7~e(GuQ“), .
Bo= P eG.0N+ 63%(GCQ°),
_ 7 l‘l_u 3 Aat (2+N~I
T = T+34G0"+546.Q )—%u . (28)

Ig tihe‘ new basis the algebra (Q)SC AP splits into the direct product of the ghost—
anti-ghost algebra I'y = {Q“,G;,} with the OPE’s '

Gu(m) () = 22 '

212

and the algebra of the currenté f, U , -7';,5“ . We den(;te t“he,‘l'é.tter ?:"s# (Q)’Sh’bAﬂ{,"
It is defined by the following set of OPE’s | o
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(Q)SCALr =Ty @ (Q)SC A . ST (2i0)
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Secondly, note that the linear algebra (Q)SC A4 (2.9) has the same number of
currents and the same structure relations as the maximal linear subalgebra Hy (2.4)
of U(N) (Q)SCA (2.1), but with'the "shifted” central charges and conformal weights.
It is of importance that the central' charges and conformal weights-are strictly related
as in (2‘.9)‘.“ "Otherwise, with another relation between these parameters, we would
never find the U(N) (Q)SCA (2.1) in (Q)SCA%Pr. “Thus, our starting assumption
about the structure of linear algebra for U(N) (Q)SCA coming from'the classical
coset realization approach, proved to be correct, modulo shifts of central charges and
conformal weights. o B a ‘

Thirdly, let us remark that among the U(N) (Q)SCAs there are many (su-
per)algebras which are well known under other names. For examples:®

we
( ‘ E N =2 SCA 112], ‘
[ (Q)SCA(e=-1,N=2) = N=45U@)SCA 12].

(Q)SCA(c=1,N=1)
(@)SCA(e=—1,N =1)

4Let us remark that Jacoby identities for the set of currents {f, U ,fg,—G_a} do not fix neither
I3 ; ‘ B . B . ‘.

central charges nor the conformal weight of G°.
5To avoid the-singularity in (2.2) at ¢ = ~1,N = 2 one should firstly rescale the current

U — b=zl and then put €= —1,N = 2 f6]. ‘
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Fmally, let us remind that in the simplest case of W( ) algebra [3], the linear
QS CA'”‘ algebra (2.9) ceincides with the linear algebra W’m for W;. For general N
the situation is more complicated. This will be dlscussed in the next Section.

3 L1near1z1ng W algebras

The problem of constructlon of linear algebras for nonllnear ones can be naturally
divided in two steps. As the first step we need to find the appropriate sets of
additional currents which linearize the given nonlinear algebra. In other words, we
must construct the linear algebra (like (Q)SC AY') with the correct relations between
all central charges and conformal weights, which contains the nonlinear algebra as
a subalgebra'in some nonlinear basis.” As thesecond step, we need to explicitly
construct the transformation from the hnear basis to a nonlinear one (like (2.6)).
While the first step is highly nomn-trivial,: ‘the second one is purely technical. In
principle, we could write down the most general expression with arbitrary coefficients
and appropriate conformal welghts and then fix all the coeﬂic1ents from the OPE’s
of the.nonlinear algebra.

" In this Section we will demonstrate that the llnear algebra QS C Al"‘ (2.5) con-
structed in the previous Section gives us the hints how to find the linear algebras for
many other W-type algebras which can be obtained from the GL(N) QSCAs via the
secondary Hamlltonlan reductlon {13).

3 1 Secondary hnearlzatmn

The bOSOIllC GL(N ) QSCAs (or in another notatlon W,lﬁgl) ), which have been lin-
earlzed in the previous, Section, can be obtalned through the Hamlltoman reduction
from the afﬁne sI(N+2) algebras {7- 9] The constramts on the currents of sl (N+2)
' a.lgebra whlch y1eld Wgﬁl) read- . - .
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The Wl(vhgl) algebras, formlng in themselves a partlcular class of W algebras with
" quadratic nonliniearity, are at the same time universal in the sense that a lot of other
‘W-algebras can be obtained from them via the secondary Hamiltonian reduction
(e.g., Wi algebras, etc.)[13].

I

Let us consider a set of possible secondary reductions of W 1(\/11;1) algebra (3.1).
These are introduced by imposing the constraints’

G1~=1 ,"G2’= —GNZO Sy (3.2)
sl (N (3.3)

where we denoted as sl(V)| the set of, constraints on the si(N) currents, associ-

ated with an arbitrary embedding of sl(2) algebra into sl(/N) subalgebra of W,(Vli’;l).
The main conjecture we will keep to in this Section is as follows e

ﬁnd the linearizing algebra for a given. nonlinear W - algebra related to
N+2l)_ through the Hamiltonian reduction (3 2),(3.3), one should apply

the reduction.(3.3) to the linear algebra QSCA’"‘ (2 9) and then linearize

the resulting algebra. The algebra QSC’A’"‘ ‘1tself is the Iznearzzmg algebra' '
for the reductzon (5. 2) Cals . R

Roughly speakmg, we propose to by Nplace the lmearlzatlon of the algebra W ob-
tained from the nonlinear algebra WN H) ‘through the full set of the Hamiltonian
reduction constraints (3 2) (3.3), by the hnearlzatlon of the algebra W obtained from
the linear algebra QSC’A'"‘ by imposing the relaxed set (3. 3).

At present, we are not aware of the rigorous proof of this statement, but it
works well both in the classical cases (on the level of Poisson brackets) and in many
particular quantum ex: examples. Of course, the secondary Hamlltoman reduction (3 3),
being applied to QSCA’"‘ gives rise to a nonlinear algebra However, the problem
of its linearization can be reduced to the lmearlzatlon of reductlon (3 3) a.pphed to
the affine algebra sli(N) C QSCAI"‘ which was constructed in [14] ‘The resultxng
algebra will be just linear algebra for the nonlinear algebra we started with.

Let us briefly discuss the explicit construction of the linear algebra W™ which
contains the nonlinear algebra W' obtained from WN M via the Hamiltonian reduc-
tion constraints (3.2)-(3.3). S : : ‘

Let J be a current corresponding to the Cartan element to of sl(2) subalgebra
With respect to the adjoint action of ¢y the sl(N ) algebra can-be decornposed into
eigenspaces of ¢, with positive,null and negative eigenvalues h,

S = G- © (UM @ (I, = @ (U, - (30
(In thls subsection, the latin. indices {a, b) Tun over the whole sl(N ). Greek mdlces
(e, 8) run over (sI(N))_ and the barred Greek ones (& ,B) over (si(N)), ® (si(N)),

.) The Hamiltonian reduction assoc1ated w1th the embeddmg (3 4) can be performed
by putting the approprlate constraints

'] —'Xa—'o ) XOEX(JO) ' (3.5)




on the currents J, from (sI(N))_ [2,7). These constraints are the first class for
integral gradings®, which means that BRST formalism can be used. Coe

In order to impose the constraints (3.5) in the framework of BRST approach one

can introduce the fermionic ghost-anti-ghost pairs (ba,c®) with ghost numbers -1
and 1, respectively, for each current with the negative eigenvalues hq:

6!1
ﬂmmm=ﬁ, ' (3.6)

and. the BRST charge.

Qspst = / dz?;;ﬁéf(zl-f / dzv((Ja?X(Ja))e“—%fz,[,b.,c"cﬂ) : 6

Wthh comcndes w1th that g1ven in the paper [14] ‘The currents of the algebra
QSCAN ‘and the ghost fields b,, c” form the BRST complex, graded by the ghost
number. The W algebra is defined in this approach as the algebra of, operators
generating the null cohomology of the BRST charge of this complex o

Followmg [14] let us introduce the ”hatted” currents J '

e='J~ +Zfa,,bcﬂ . R (3.8)

B RS

where f"ﬂ are structure constants of sl(N) in the bas1s (3 4). As shov&ln in {14],
the W—algebras associated with the reductions of the affine sl(N) can be embedded
into lmear algebras formed by the currents J— In contrast to the- sl(N) algebra,
our algebra QSCA"" contains, besides the sI(N) currents, three additional ones
T, U Ge. Fortunately, the presence of these currents create no new problems while
we construct a linearizing algebra for the reduction of QSCA"" by the BRST charge
(3.7)..Namely, the improved stress-tensor T with respect to which JBRST in n eq. (3 7)
is a spin 1 primary current can be eas1ly constructed

T=T+7+ {-+ ha)boc™ — habl, ) | L (3.9)

and so it belongs, together with U, which commutes with @prsr, to a linear algebra
we are searching for. As regards the current G" one could check that it extends
the complex generated by the currents J,,, b., c® with preserving the structure of the
BRST subcomplexes of the paper [14], and forms, together with non-constrained cur-
rents Jz and c®, a reduced BRST subcomplex and subalgebra which do not contains
the currents with negative ghost numbers. Hence, like in ref. [14], the W algebra

SLet us remind, that the half- mteger gradings can be replaced by integer ones, leading to the
sarne reduction [2].

—

closes not only modulo BRST exact operators, ‘but it also closes in its own right.
So, it is evident that the currents J— also will be present among the currents of the

linearizing algebra in our case, as well as the currents G'.
Thus, the set of currents T,J= (3.8),(3.9) and the currents

g=0 , G=G o - e (310)

form the linear algebra W'" for the nonlinear algebra W obtained from’ W(N+l)

through the secondary Hamiltonian reduct1on associated w1th constramts (3.2)- (3 3)

3.2, Llnearlzmg Wy algebras = e e i

In th1s subsection we apply the general procedure described in the prev1ous ‘subsection
to the case of the principal embedding of ‘sl(2) into sli(N) algebra to construct the
linear algebras Wj* which contain the nonlinear Wy algebras as subalgebras ‘
For the pr1nc1pal embedding of s/(2) into sl(V) with the currents JL(1<ab<
N,Tr(J)=0), the current J is defined tobe . ., .

: ZmJN-x , o L ()

m=1 BE

and the decomposition of affine algebra sl(N ) reads as follows -
N (sI(N))_ o {J2,( 2<b<N1<a<b)}”" R
(sI(N))o ® (sI(N)), x {Jo,(1<a<N-1a 5 b<N)} S, . (312)

i.e. (sl(IN))_ consists of those entries of the N X N current matrix which stand below
the main diagonal, and the remainder just constitutes the subalgebra (sl(N)), @
(sI(N))

Now+ using (2.9),(3.8) - (3.12), we are able to expl1c1tly write the lmear algebra r

W}in, which contains the W42 algebra as a subalgebra: T

W+1) (1= (V + 2V + 3)%;4’—)’,. of PV

L ~

T(zl)ff(h) = ‘ o i +;§—2+;; | ,
(7(z1)l7(z2) (221111{\,) zll;,' R TN «;l Ly
()0 (=) = @@52+%;%§J '

F(21)C (22) (+2)G + G ,
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U(2)G'(z) = -—, jf(zl)Gl(zb) =2 Ner
%12 _ Z12 .
G'(z1)G/(z) = regular; (3.13)

where the indices run over the following ranges: -
T:(1<a<N-1,a<b<N) , G :(1<i<N)

In this non-primary basis the currents G* have the conformal weights 3,4, ..., N + 2,
and the stress-tensor T c01nc1des .with the stress-tensor of Wiy, algebra.
It is also mstructlve to rewrite the. W,'\};‘_z algebra (3.13) in the prlmary basis

{T U, J G’ } where a new stress tensor T is deﬁned as

BT K Wt

"N-1

’“'_A (oK -5 KN
T=T S Uty m;m(J iy (3.14)
and the OPE’s have the followlng form -
_ ONFU=sEE gp om0 Nk 1
Tsz=——————K—’+—-——,U(U=—————
_ l‘) (2):,; L 22, o z32+z12 W=7 w) 7
e e -—-a-b K o
T = LR R
z12 1:?12 ‘ '
oo
T(zl)U(zg)H-' S
7 2
! 3 1+2¢ i . .
+ G rail; P o
(zl)G’ 22) ( 2 ) + G , S ‘ -
212 AR 212 ‘
§dgb.— 5b5dA 61,’?1_ d Tb
BT = xS whE | Rl -8 '
izd, : Z12° »
12 12
PP ﬁ ' §G 161’:‘
D)) =~ R(an)T(em) = s el
z :..» ~ : . A2
| . G‘(zl)GJ(22) .= regular - o , (3.15)
|

In this bas1s the ”chaln :structure of the algebras whn becomes most transparent.
Namely, if we redeﬁne the currents of Wz’ﬂz as :

10

(N+2)(N-1)5

u = N(N +1) N+1Z m

N +2 N +2
T + 121‘N2(N+1)UI’ (OI‘ T 21"N2(N+1)(UIUI)),

b - o~

Tt o= R T 1SasN-20<bSN-1),

m:l X - »,} i - .
S, = AN’(1<a<N—1), :
,_g—i = G' (1<Z<N—1) )
g =av, : ' (3.16)

then the subset 7,4, J?,G' generates the algebra W}, in the form (3. 15) Thus,
the Wgn, algebras constructed have the following structure

l‘z’lz Wi U, 8., Q) ) (3.17)
and therefore there exists.the following chain of embeddings .. . oo
CLWERCWER Wi, S (3.18)

Let us stress that the nonlinear Wy, algebras do not possess the chain structure
like (3.18), this property is inherent only to their linearizing algebras W,’\}';_2

By this we finished the construction of linear algebras Wn %, which contain Wiz
as subalgebras in a nonlinear basis: . Let us repeat once more that the explicit ex-
pression for the transformations from the currents of W,'\}’_;_z algebra to those forming
W2 algebra is a matter of stralghtforward calculation -once we know: the exact
structure of the linear algebra. o

Finally, let us stress that knowing the structure of the lmearlzed algebras W,’\','j,2

- helps us to reveal some interesting properties of the WN+2 algebras and their repre—

sentations. : :
. First of all each reahzatlon of W,’\};‘_2 algebra gives rise to a reallzatlon of WN+2
Hence the relation between linear and nonlinear algebras opens a way to find new
non-standard reahzat1ons of Wiy algebras. As was shown in [5] for the partlcu-
lar case of W, these new realizations 13] can be useful for solvmg the problem of
embedding Virasoro string into the W3 one.

Among many 1nterest1ng realizations of W}\;’;z there is one very simple partlcular
realization which can be described as follows A careful 1nspect10n of the OPE’s
(3.15) shows that the currents v

5‘ (1<a<N—1a<b<N) o (319)

are null ﬁelds and S0 they can be consrstently put equal to zero. In thls case
the algebra W,’(,iz will contain only Virasoro stress tensor T and N U(1)-currents

11



ﬁ,fll,. .. j}vv:; . Of course, there exists.the basis, where all these currents com-

mute with each other. The currents of Wy, algebra are realized in this basis in
terms of arbitrary stress tensor Ty;, with the central charge cvir

(K —1)?

= (3.20)

cvir,=1-6
and N decoupled cornmuting U(l) currents. Surprisingly, the values of ey, corre-
sponding to the minimal models of Virasoro algebra [15} at -

—a)? , ’
K=2oc,=1- _6(—’LL) (3.21)
q rq :

induce the central charge Wiy of the minimal models for Wi, algebra [10}.

CWN+2 = (N'l' 1) ( (1Y+2)(N+3)(pj(£) ’ o (322)

(let us remind that the stress tensor of Wx,, coincides with the stress tensor T in
the non-primary basis (3.13)). For the W algebra this property has been discussed

in [3]

3 3 Lmearlzmg W4 algebra

ln this subsection, as -an example of our.construction, we would hke to present the
explicit formulas concerning the linearization of W, algebra. ; e

The structure of the linear algebra W™ in the primary basis can be 1mrned1ately
read off from the OPE’s (3.15) by putting N = 2. So, the algebra W}i" contains the

currents {T U, J,,JI,G1 Gz} w1th the conformal werghts {2,1,1,&,45&,—2}—'}'—

respectively.”

Passing to the currents of Ws, goes over two steps.

Firstly, we must write down most general nonlinear in the currents of W}™,
invertible expressrons for the currents Tw, W,V w1th the desired conforrnal weights
(2,3 and 4). Tt can be easily done in the nonprrma.ry basis (3. 13), where the stress
tensor T coincides with the stress tensor of W, algebra.

Secondly, we should calculate the OPE’s between the constructed expressrons and
demand them to form a closed set. )

" This procedure completely fixes all coefficients in the expressrons for the currents
of W; algebra in the primary basis in terms of currents of W’”‘ (up to unessential
rescalings). Let us stress that we do not need to know the explicit structure of
W, algebra By performrng the second step, we a.utomatrcally reconstruct the Wy
algebra : 2
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Let us present here the results of our calculations for the W; algebra.

2K —1

wo=T+=% )6';K1;1j31’,
W= BTy + (@ -m0) - K- L),
V= BT g (BB ¢
£ (0-209) - (0-19%) - 35 (27) +

1
ok (=BT =) + o (T + )2k - )0+ (UU)))
K-1 1) ' ,
o K2 ((Tl + Tz) U) (_E-Kz_)(Tl + T2 " -
(K —1)(2K - 3)(3K —2)~,, =~ =
. 3K3 - ; +
(3 —2K)(3K —2) 5 16(6 — 13K + 6K?2) :
y U”U — —
4K>3 (") K(300 — 637K + 3001(2)(7”7”)
3(60 — 121K + 60K2)(—6 + 13K — 6K?) :
4(300 — 637K + 300K2) wo , (3723)
where the auxiliary currents T} and 7} are defined as
T = T——(J )— (1717),
. 1 :
T, = E(Jlﬂ) - N R X

For the W} algebra (3.15) the currents G, G2 and J? are null-fields. So we can
consistently put them equal to zero. In this case the expressions (3.23) provide us
with the Miura realization of W algebra in terms of two currents with conformal
spins 2 (T3, Tz) and with the same central charges, and one current with spin 1 (U )
which commute with each other. :

4 Conclusion , oo

In this letter we have constructed the linear (super)conforma.l a.lgebras with finite
numbers of generatmg currents which contain in some nonhnear basis a wide class of
W-(super)algebras, mcludmg W,l, U (N)- superconforma.l as well as Wy nonlinear
algebras. For the Wy algebras we do not have a rigorous proof of our conjecture
about the general structure of the linearizing algebras, but we have shown that it
works both for classical algebras (on the level of Poisson brackets) and some simplest
exa.rnples of quantum algebras (e.g., for W3, W, ). The explicit construction of the

13



linearizing algebras Wi, for Whs reveals their many interesting properties: they
have a ”chain” structure (i.e. the linear algebras with a given N are subalgebras of
those with a higher N ), the central charge ‘of the Virasoro subsector of these linear
algebras in the parametrization corresponding to the Virasoro minimal models, while
putting the null-fields ‘equal to zero, induces the central charge for the minimal models
of Wy, etc. This is the reasons.why we believe that our conjecture is true.

It is interesting to note that, as we have explicitly demonstrated in the case
of W, algebra, we do not.need to know beforehand the structure relations of the
nonlinear algebras; which rapidly become very complicated with growth of spins of
the involved currents. Once we have constructed the linearizing algebra, we could
algorithinically reproduce the structure of the corresponding nonlinear one. So, one
of the main open questions now is how much information about the properties of a
given nonlinear algebra we can extract from its linearizing algebra. The answer to
this question could be important for applications of linearizing algebras to W-strings,
integrable systems with W-type symmetry, etc. A detailed discussion of this issue
will be given elsewhere. ’ -

Note Added.

After this paper was completed, we learned of a paper by J.0. Madsén’ and E.
Ragoucy [16}, which has some overlap with our work. They showed that the wide
class of W-algebras (including W, ones) can be finearized in the framework of the
secondary hamiltonian reduction. However, they did not obtain the explicit ex-
pressions for the linearizing algebras (excepting Wi case). The linearization of the

(quasi)superconformal algebras was not considered, because their method does not
. allow fields with negative conformal weights.

‘Acknowledgments = | ‘
It is a pleasure for us to thank S. Bellucci, L. Bonora, K. Hornfeck, E. Ivanov, V.
Ogievetsky, S. Sciuto, A.. Semikhatov, F. Toppan and D. Volkov for many interesting
and clarifying discussions. S .
One of us (A.S.) is also indebt to G. Zinovjev for his interest in this work and
useful discussions. = ... : ' : k

. kWevare grateful to Eva.nov f(r).r‘cav’rlefu‘l reading of'vvthe manus'cri[')_t.r o g
.. This investigatigp has. been supported. in- part by the Russian Foundation.of
‘Fundamental Research, grant 93-02-03821, and the International Scierice Foundation,

: grraynt{ MQTOOO.

14 -

References

(1] A.B. Zamolodchikov, Theor. Math. Phys. 63 (1985) 347.

(2] L. Feher, L. O'Raifeartaigh, P. Ruelle, L Tsutsui and A. Wi N “

H < ) - y A . f

(1992) 1; . » P Ruelle, . Tsutsui and A. Wipf, Phys. Rep. 222
P. Bouwknegt and K. Schoutens, Phys. Rep. 223 (1993) 183.

[3] S. Krivonos and A. Sorin, Phys. Lett. B335 (1994) 45,

[

[4] S: Bel.luécii S. Krivbnqs and’A. Sorin; “Linearizing W; 4 and W B, A4lgebra.s”
Prepl;mt JINR E-2-94-440, LNF-94/069(P), hep-th/9411168, Phys. Lett. B (u;
press). . , v ‘

(5] SIS{t. L, C.N.W Pope, K.S. Stelle and K.W. Xu, .“Embedding of the Bosonic
ring into W3 String”, Preprint CTP TAMU:5 95. Imberial oL
hep-th/9502108; RIS IR E IR PR ( o mperla /TP/94 95/217
F. Bastianelli and N. Ohta, “Note on W; Realizations of th ; ;
: i the Bosonic St ”
preprint NBI-HE-94-51, OU-HET 203, hep-th/9411156_‘ c Strings”,

‘[6] V. Knizhnik, Theor. Math. Phys. 66 (1986) 68;
M. Bershadsky, Phys. Lett. B174 (1986) 285. " . "+ ' : -

{[7] F.A. Bais, T. Tjin and P. van Driel, Nucl. Phys. B357(1991) 632.
8] L. Romang, Nucl. Phys. B352 (1991) 829. - l

[9] J. Fuchs, Phys. Lett. B262 (1991) 249.
[10] V. Fz.xteev and S. ‘Lyukyanov, Int. J Mod. Phys. A3 (1988) 507; ,
A. Bilal and J.-L. Gervais, Nucl. Phys. B314 (1989) 646; B318 (1989) 579.

[11] ‘A. Polyakoyv, Int. J. Mod. Pflyé. A5 (1996) 833;:: B
.M. Bershadsky, Commun. Math.. Phys. 139 (1991) 71s -, L

(12] M. Ademollo et al., Phys. Lett. B62'(1976) 105;
Nucl. Phys. B111 (1976) 77; B114 (1976) 207. ~. =

[13] F. Delduc, L. Frappat, R. Ragoucy andP. Sorba, Phys.'-Léft." i3335 (1994) 151."
[14] J. de Boer and T. Tjin, Commun. Math'.‘.Phys. 160 ((1994)*"3‘17.» :
[15] A. Belavin, A. Polyakov and A. Zamolodchikov, Nucl. Phys. B241 (1984) 333.

[16] J.0. Madser and E. Ragoucy, “Secondary n iltoni - :
s y Quantum Hamilt »
Preprint. ENSLAPP-A-507-05, hep-th/9503042. onian Reductions”

Received by Publishing Depanme}lt
on April 3, 1995. ’

15



