


I INTRODUCTION

The ‘crucial point for understanding the physical content of gauge theories’
consist in the identification of field degrees of freedom with observable quan-
tities. The direct way to achieve this is to handle only with physical degrees
of freedom. To:realize this program at the classical level one can pass to the
theory without:reduan'dant_~variab|es. This elimination of redundant variables
— the reduction of initial theory, can be carried out in the configuration or
phase space. Correspondingly; we have the Lagrangian or Hamiltonian form'
of reduction. In ‘the former we restrict-the configuration space to the con--
sideration of the’ gauge fi fields obeying the Lagranglan ‘constraint equations.’
As a result, nonphy5|cal variables disappear from gauge invariant quantities

and the remaining phy5|cal variables describe a-usual unconstrained system”
admlttlng the Hamiltonian description.” For realization of the Lagranglan re--
duction it’is necessary to’deal with the explicit'solution of- constramts But
it is. not such as a straightforward procedure. In-the fitst place, in’ general it

involves a'solving of complicated differential equations. Secondly, apart from -
these practical ‘difficulties there is a-desire to maintain ‘the’ manlfest covari- -
ance of the initial gauge theory which'is immediately broken*after resolution

of the Lagrangian-constraints:  To'avoid these disadvantages connected,wlth

the resolution of constraints in the Lagrangian reduction scheme, one com-

monly uses the Dirac description for generalized Hamiltonian systems [1] -

[3], based on the notion of weak equations. In this case, the Hamiltonian |
reduction consists in the elimination of these week equations. The elimina-

tion of weak equatqons is achieved by gauge - fixing procedure: introduction -
into the theory of some new “gauge constraints " and replacement of the
Poisson bracket by the Dirac one. According to the Dirac method, the gauge
condition is an arbitrary function of coordinates and momenta alone. This
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gauge type of gauge conditions has been called the unitary gauges [3]. How-
ever, the class of unitary gauges is not sufficiently large. The so - called
covariant gauges (e.g. the Lorentz gauge d,A¥ = 0) containing the veloc-
ities, which are alien to the Hamiltonian description, turned out it. So the
manifest covariance is again unattainable. There are known methods how to
.overcome this difficulty. It has been shown [4] that one can always consider

the gauge with explicit time dependence which is equivalent to the velocity

depending gauge and, thus reduce the.problem to the case of unitary gauges
with explicit time dependence. Another approach has been established in ref.

[5] where with the aim to include this class of gauges in"the consideration

the phase space;of the initial system is extended by introducing the auxiliary
fermionic fields: (ghost fields). - ‘ T
In the. present note we suggest an alternative approach to con5|derat|on

of_covarrant gauges. In_contrast with“the approach. [5], ‘the ;phase spacef

for degenerate theory is constructed without introducing ghost fields, by the

identification: of the initial theory with, the equivalent.theory with-higher .
derivatives-and applying to it the Ostrogradsky method of Hamiltonian de-:
scription [3], [6]...We ,will construct the extended :phase: space (-without

ghosts,) and demonstrate that the gauge fixing conditidn which contains a
velocity and thus is.nonunitary.in ordinary phase space represents a.usual
unitary, gauge in.the obtained extended phase space. . ‘ e

The remamder of this article is organized as foIIows In the next sec-’

tlon, we shall briefly describe the gauge fixing method according to Dirac’s
scheme. Section 3 is devoted to the Ostrogradsky method of construction of

the phase, space for. systems with higher derivatives. .(the Legendre transfor-:

- mation generalization). In section 4 we describe our scheme. And in the last

section we consrder the application of this scheme to the,case of relatrvrstlc »

partlcle

IT ‘DIRAC’S‘ METHOD OF REDUCTION UNI- .
TARY GAUGE FIXING o

Let us recall briefly the main points of/construction of the Dirac Hamiltonian
description for degenerate systems . \ Suppose, that the system with finite
number of degrees of freedom has the following first class cqnst}ra,ints:(a =
¢a(pyq) = 0, {¢a(p, q), ¢ﬂ(pa Q)} =:faﬂ7(p7 Q)¢7(p, Q) il (2 1)
The generallzed Hamrltonlan dynamlcs is descrrbed by the extended Hamll-;
tonian’ T e o
Hy = Hc+ua(t)¢a(p,q) T @y
where the Hc is canonlcal Hamiltonian and u, are the Lagrange multlplrers
. According to the Dirac gauge Fxrng prescrrptlon one fnust introduce the

T

new gauge " constraints

' 'Xa(pa q) =0~ : (2;.3'),'
with the reti'uiremént BN R i IR
B T ]
From the marntenance of these auxrllary condltlons (2 3) ln trme it follows',
the set of equatrons :

0= Xo = {xa,Hc} + Z{xa,¢ﬂ}Uﬂ 0 (2 5)
r By e .

wh|ch aIIows determmrng the unknown Lagrange multlphers Formally, the
squtlon can be Wrrtten as i fee Sl v e Tl

where C’ lis the rnverse matrix of

aﬂ —'{th ¢ﬂ}7 . aﬂcﬂ‘f—. 601 ..’

The D|rac eIegant observatron consrsts rn that mstead of the determlnatron in:
such a way the unknown functron ua(t) one can change the Porsson brackets.,
to the new — Drrac one i

(Gl {F G} {an}cap{qsp,a} | @0



Since, all constraints, including gauge one, have zero Dirac’s brackets with
everything, we can consider them as strong equations. This change of brack-
ets reflects the reduction in number of degrees of freedom. It is easy verify
that. '

z{qi’pi}PBx =n. Z{qupl p=n -‘f |

So the Dlrac brackets take lnto ‘account the constramed character of the
ltheory and effectivelly reduce the phase space.

As it has been’ mentloned in‘the introduction, this method works only for,

proceed as foIIows Suppose the gauge condltlon depends on derlvatlves of
the,r_[+l - th order of coordlnates with respect to the time

X (p q(".),q(” q(g)

(r+l)) LVVO, (k) E "—q(t) (2 8)
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The main ldea is to consrder the enlarged conflguratlon space by rlsmg these:

h|gher order derivatives the status of coordinates. This can be achieved
by ldentlfynlng the initial theory with equrvalent theory with higher deriva-
tlves and applylng to it the Ostrogradsky method for construction of the

phase space. More precrsely, suppose that r - is the maxrmum ‘of the or-
der of derlvatlve ‘with respect to the time q(’) enterlng in to the Lagranglan '
".,q")) while the h|ghest order of time derivative in gauge fixing

(T)L(q q(l)
condltlon isT + l:Then, ‘instead of ‘do-the Legendre transformation on the

coordlnates of the conflguratron space of the initial Lagrangian L(g,...,q")

“we suggest dealmg with the. Legendre transformation for. the new Lagrang|an

10

o (D L* defined as a functlon of flctlonal auxrllary varlables q('+1) ., gt

_ by the anzatz

L, q(l) 4’(#155 _ ‘(r)L(q q(l) B (ri) -
: The phase obtained for the new equrvalent theory will be an extended phase
r .space for the initial system And our gauge fxmg condltlons (2.8), nonunltary

" in’ the ordinary phase space, now becomes the usual’ unitary’ gauge in"the

" extended phase space. To prove this, let us briefly-describe the Ostrogradsky

method of the Hamlltonlan formulation of theorles with hlgher denvatlves?

[3]. 6]

III OSTROGRADSKY METHOD FOR THEORIES WITH

HIGHER DERIVATIVES

Let us consider the variational problem for the unconstrained mechanical

system ! .
Slgl = /dtL,

descrbed by the Lagrangian L(q,q(l),q@),...,q(k)) which is a function not
only of coordinate g and velocity ¢ but also of higher derivatives of coordinate
with respect to the time. The Euler - Lagrange equation follows from the
extremum condition 65 =0

.
,d° (L , -
0‘(—1- dts (aq(s‘)> =0 (39)

§=

with the zero boun!dary conditions for variations 6q(i)]boundary =0 =
0,...,k — 1. Thus, in general the Euler - Lagrange equation has order
2k. The Ostrogradsky theorem stands that there is a generalized Legendre
transformation such that this Euler - Lagrange equations for the non - singular
n - dimensional system (3.9) can be transformed into the equivalent set of
first order equations of the Hamiltonian form on a space of dimension 2kn.
To construct the Legendre transformation, let us introduce 2kn canonical
variables §; and p; 1=1,...,k

& = q"'“’ , (3.10)
d—i (0L ‘
»o= Z(— e (3—q(7)) | (3.11)

s=t

and then set the function
k-1

L+ pii + pkék S (312)
i=1

H(g,€) =
where the Lagrangian L in terms of new variables has the form

L(g,q",¢®,.. (k)) L(&1,&2 - - - ks E1)

'We assume that q is the n - d1mens1ona.l vector




Now, taking into account that'for nonsingular Lagrangian we can express -

~ from (3.10) the velocity & as a function of the remaining r variables

f’c = f(f’p)v

one can, according to Ostrogradsky's theorem [3], [6], rewrite the Euler -

Lagrange equations (3.9) in the Hamiltonian form

él' - {gi,—ﬁ}v
A pi = {p,H}, (3.13)
with the Hamiltonian F (€, p) defined by |

and the Poisson brackets in (3.13) have the form
OF 0G _ OF 9G
{F ¢h= Z <3£s dps  9p, 6&)
IV ,ENLARGED PHASE SPACE FOR COVARIANT
GAUGES

Now we are ready to return to the case of the singular theory with the first
class constraints (2.1) and to consider the covariant gauges of the type (2.8)

Xa(P, 0,4, ¢?, ..., ¢ =0

Let us correlate with the initial singular theory, describing by Lagrangian
L(q,q) the  equivalent theory for which the new Lagrangian is considered
as a function of additional derivatives of the coordinate with respect to the
time variable up to the I-th order ( { is a maximal order of a time derivative
~in the gauge condition ( 2.8))

L(g,qY,.. . =Lig,q)  (415)

The method of construction of phase space picture for non singular La-
grangians described in previous section admit the generalization to the sin-
gular case in Dirac’s sense [3]. ‘Application of the above written procedure to

new Lagrangian L* gives the following. According to the definition of canon-
ical conjugate variables (3.10), for the theory (4.15) we obtain the usual part
of canonical variables q,p

&G = q9=gq,
oL
PL= ST =D - (4.16)

and additional one &/,pf, i=2,...,1+1

& = gy, o -
141 ; '
. s d°7t (OL* .
b, = . 2(—1) dts—t (a(](s)) 3 (417)

From (4.17) it follows that in addition to the old constraints (2.1) we obtain
a new set of [ constraints

p=0, i=2..01+1. (4.18)

Taking into account that the new canonical Hamlltonlan colnCldes with the
initial one

HE(E*P*) = Hc(61,m)
one can verify that there aren’t new secondary constraints, and we obtain the
extended Hamiltonian for the new theory in terms of the old one Hg(&1,p1)

: 1+1 ) )
Hy(&'p") = Hp(Gup) +)_uipl, ~  ° (4.19)

s=2"

with new Lagrangian multipliers u*. Soin the extended phase space (&*p*, &1, p1)

we get the generalized dynamics with the set of constraints -

¢a(th) = 0; a—]- ’mr B i
P = Qbf?Q l+1 . MQW‘

with the de5|red condition (2. 8) that has the form of a unltary gauge de-
pending only on canonical variables ‘ »

Xa(f*vp*1£1>pl) =0. (421)



Now if we wants to reduce the phase space of our theory due to the appear-
ance of new constraints (4.18), we need additional I - gauge conditions

Xa(&1,p1,p5,€) =0, a=2,...,I+1

V  GAUGE z,&* = 0 FOR A RELATIVISTIC PAR-
TICLE |

In this section, we will apply the above described scheme to the simple
example, the relativistic particle with mass m

o T -
Wa] =f—m/dr\/:i:—f‘. E (5.22)
/ R

This action is invariant under reparametrization of time

ToT = S(T),‘

:1:(7') — z(r") = z(7), (5:23)

with ds/dT > 0. Therefore, there is an arbitrary function in the solution
for the equation of motion . As a consequence of this invariance, we have
identically vanishing canonical Hamiltonian and energy shell constraint

=pP—m?=0. _ (5.24)
Thus, the total Hamiltonian is
 Hyp = u(t)(p? — m?).

There is some freedom in the definition of dynamics in the reparametrized
invariant theory. This fact is reflected in the gauge fixing procedure. It is
known that in this case the gauge fixing condition with necessity explicitly
depends on the time parameter. For example, the proper time fixing

zo(T) = T

" corresponds to the instant form of dynamics for relativistic particle . In this

gauge, one can according to (2.6), fix the function u(t)

1

W)= s (5.25
O = e (5.25)
and get the usual equations of motion

im

gotrerned by the reduced Hamiltonian HRed = \'/p2kv+ m? [7]. How cfn one

can get - this results in a gauge with the dependence onthe velocrty a#, for

~ example, of a foIIowmg type:: o ¢

f=dte,=0 . (5.27)

To do this, we will act in the spirit of the previoussection.A/Let,us pass from,
the initial singular theory, described by the action (5. 22) to the eqtriv'ale'nt:’
theory for which the new Lagranglan is consrdered asa functron of -a first
and second order der|vat|ves of. coordlnates w1th respect to the tlme After
the transformatlon to the enlarged conflguratlon space with the coordlnates

R R e

E = :1:,,, ' fﬂ = :1:,,,

e )= —m / dn/g*,,, Y
we see that in addltron to the old constralnts (5:24) there are new ones

oLt o - -
=0 o oo (5.29)

*u‘

Py 65*

Taking into account that new secondary constralnts do not arlse we obtarn
the extended Hamiltonian for the new theory

4H (t)(p —m )+u,,pu, '_: | | (5.30)

with the new Lagranglan mu|t|p||ers u . The gauge conditioniii:"a;,,: 0in
the enIarged phase space has now the form of unltary gauge

5,,5"—0 " S (5.31)



Let us choose additional gauge conditions for elimination of new constraints’
© (5.29) ‘ BTN :

o =& -a(r)=0

with some functions a,(7). With the help of these gauge conditions one
can find the Lagrange multipliers and verify that the choice of this vector
leads to one or another form of dynamlcs The choice a,,( ) = (a(7),0,0, O)
corresponds to the instant form of dynamics with the'time variable zo = a(T)
while for the light - like vector a,(7 7) = (a(7),0,0,a(r)) we get the light
cone. formulatron for the:relativistic: partrcle dynamrcs wrth the hght cone

timez, =z + T3 = 2a(t). ,
. The authors would like to thank A. N ernrkhrdze V V Nesterenko and
Yu.S. Surovtsev for helpful comments and discussions.

REF"ERIEN‘,CES

[1] P.AM. Dlrac Lectures on Quantum Mechanzcs BelfervGraduate
School of Scrence (Yeshrve Umversrty, New York 1964)

[2] K Sundermeyer Constrained Dynamics, Lecture Notes in Physics N
169 Sprmger Verlag, Berlin - Heldelberg - New York, 1982.

[3] D. M Gitman, L.V. Tyutrn Quantization of erlds Wzth Constmznts
Spnnger Verlag, Bonn, 1990

[4] L.G. Yaffe, Lett. Nuovo. Cim. 18,(1977),'561
[5] E.S. Fradkin, G.A: Vilkovisky, CERN Preprint Ref. TH.2332 (1977).

[6] B.A. Dubrovin. S.P. Novikov, A.T. Fomenko, Modern Geometry —
" Methods and Aplzcatzons Part II, The Geometry and Topology of
Manzfold Sprmger Verlag , New York 11984,

[7] AJ. Hanson T. Regge, C. Teltelborm Constmzned Hamzltoman Sys-
. tems, , Accademra Nazmnale de meer 1976 B

Recelved by Publlshmg Department
on March 21, 1995.

10



