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I INTRODUCTION 

The crucial point for understanding the physical content of gauge theories 
consist in the identification of field degrees of freedom with observable quan..: 
tities. The direct way to achieve this is to handle only with physical degrees 
offreedom. To,realize this program at the classical level one can pass to the 
theory without redu'ndant variables. This elimination of redundant variables 
- the reduction of initial theory, can be carried out in the ·configuration or 
phase space. Correspondingly;, we have the Lagrangian or Hamiltonian fornf' 
of reduction. ·In 'the former we restrict the configuration-space to the con-· 
sideration of the gauge fields obeying the Lagrangian co'nstra1nt equations. 
As a result, nonphysical variables disappear from gauge invariant quantities 
and the remaining physical variables describe a usual unconstrained system· 
admitting the Hamiltonian description. Forrealization of the Lagrangian re­
duction it'is necessary to·deal with the explidt'solution ofc~hstrairits. But 
it is not such ~s a straightforward procedure. In the first place, in'general it 
involves a·solving of complicated differential equations. Secondly, apart from 
these practical difficulties there is a ·desire to rriaintairi thEtrrianifest ·covari­
ance of the i'nitial gauge theory which is immediately broken:after resolution 
of the l.:agrangian-constraints: To avoid these dis'advahtages connected,w1th 
the resolution of constraints in the Lagrangian reduction scheme, one com­
monly uses the Dirac description for generalized Hamiltonian systems [1] -
[3], based on the notion of weak equations. In this case, the Hamiltonian 
redu'ction consists in the elimination of these week equations. The elimina­
tion of weak equations is achieved by gauge-.:. fixing procedure: introduction 
into the theory 6f some new "gauge constraints " and replacement of the 
Poisson bracket by the Dirac one. Accordipg to the Dirac method, the gauge 
condition is an arbitrary function of coordinates and momenta alone. This 



gauge type of gauge conditions has been called the unitary gauges [3]. How­
ever, the class of unitary gauges is not sufficiently large. The so - called 
covariant gauges ( e.g. the Lorentz gauge oµAµ = 0) containing the veloc­
ities, which are alien to the Hamiltonian description, turned out it. So the 
manifest covariance is again unattainable. There are known methods how to 

. overcome this difficulty. It has been shown [4] that one can always consider 
the gauge with explicit time dependence which is equivalent.to the velocity 
depending gauge and, thus reduce the.problem to the case of unitary gauges 
with explicit time dependence. Another approach has been established in ref. 
[5] where .with the aim to include this class of gauges in·the consideration 
the phase space;of the initial system is extended by introducing the auxiliary 
fermionicfield_s (ghost fields). . 

., In., the present .note we suggest .an alternative approach to consideration 
of covariant gauges. In .contrast. with the, approach, [5], the ,phase space 
for degenerate theory is. constructed without introducing ghost fields, .by the 
identification of the initial theory with, the equivalent. theory with·: higher 
derivatives and applying t~ it the Ostrogradsky method of Hamiltonian de-, 
scr,iption [3], [6] .. We ,will construct the extended phase space ( .without 
ghosts,) an~ demonstrate that the gauge fixing condition, which contains a 
velocity and thus is non unitary in ordinary phase space, .,represents a, usual 
ur1itary, gauge in. the 1obtained extended phase space. 

.. : The remainder of this article is organized as follows; 'In the next sec­
tion; we shal,I briefly .describe .the gauge fixing metho? according to Dirac's 
scheme. ~ecti?n 3 is dev.ot~d to the Ostrogradsky method, of construction of 
the, phase, space for. ~ystems with higher' derivatives. (the Legendre transfor-• 
m.~tion generaliza~io,:i) In .section 4 we describe our. schen:i.e. Ancl in the last 
sec:;tion we consider the application of this.scheme to the,<;:ase of relativistic· 
par!icle.,. 
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II DIRAC'S METHOD OF REDUCTION : UNI..:. 

TARY GAUGE FIXING 

Let us recall briefly the main points of construction of the Dirac Hamiltonian 
: ,· 

description for degenerate systems . Suppose, that the system with finite 
number of degrees of fr~edom has th·e following first class constra,ints (a= 
1, ... ,mf 

<pc,(p, q) = 0, { <pc,(p, q), <pp(P, q)} = Jc,p-y(p, q)</J,(p, q). (2.1) 
The generalized Hamiltonian ·dynamics i; describ'ed by the' extended Hamil~· 

' ~ • ' ' "' i :::: ) 

tonian (. · 

HE= He+ itc,(t)</Jc,(p, g.), (2:2). 

where the He_ is canonical Hamiltonian and uc, are the Lagrange multipliers 
. According to the Dirac gauge fixing prescription one tnust introduce the 
new " gauge '.' c-:onstraints 

xc,(p,q) = o · (2.3) 
with the requirement · 

det{xc,; <pp} lo, (2.4}· 
' " ' I - >. ' • ' • ' ' • •"- '~ J ' • •. ·~ ' ' { I 

From. !he· maintenance of the,se ,au~iliary c_on~itio~s (2.3}in f!me it
1 
foll,ovy:s 

the set of equations · 

, O =Xe,= {xc,, He}+ L {xc,, </Jp}up ~= O, . '(2.5) 
.. I • .P 

which allows determining the unknown Lagrange multipliers. Formally, the 
soluti!)n can be Written as ,,,, 

up= - ,I:{He,x~}c;J</Jp, (2,6) 

where c-1 is th~ inverse matrix of 

Cc,p = {xa';'</Jp}, Cc,pC'j;, ~ '6c,/ • 

The·Dir~c elegant observati~n consists.in' that.ins~ead or'.1:he determination in 

s~ch a way the u~known func,tion,uc,(t)~ qn~ can cha~ge th~ Poi_s~?n brac.kets 
to the new - Dirac one · 

~ • •, j; ~ •· ' ~ . ; ~ I 

{F,G}D = {F,G}- {Fxc,}c;J{</Jp,G}, (2.7) 
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Since, all constraints, including gauge one, have zero Dirac's brackets with 
everything, we can consider them as strong equations. This change of brack­
ets reflects the reduction in number of degrees of freedom. It is easy verify 

that 
n n 

· ,L{%Pi}P.B: = n, L{q;,p;}n = n - m 
. i=l , . . . . . .. . i=l . . ., ~ 

'So the Dirac brackets take into acco~nt the constrain~d character of the 
. theory and effectivelly reduce the phase space . 

/ . 
As it has· been mentioned in the introduction, this method works only for. 

gauges, known. as unitary gauges [3], .To ove~come this restriction one can 
'' ,, ' , • ,,,, \ I ',,, • _, ' 

proceed as follows. Suppose, the gauge condition _depends. on derivatives of 
the 7'.+ [ ,- th order .of coordinates with respect to the time 

l ' •'' ( \ \. ' 

. . 'dk 
. :x~(p,;</o) l q(l) ,q<~):; ·C·.: lr+l)f~ •. ~-' .. q<k).= dt~ q( t) (2.8) 

, ... 1 

Th~ main idea is to consider the enlarged configuration ~pace by rising these 
higher order derivatives the stat.us of coor,dinates. This can be achieved 
by identifyning the initial theory with equivalent theory with higher deriva­
tives, and applyi.ng to it the Ostrogradsky method for ~o~struction of the 
ph~se space. More precisely, suppose ihat r .;. is the maximum of tre or~ 
der•cif d~rivative \vith. r~spect t~ 'the' time q(r). e'ntering in t~ the Lag:r~ngian 
(r)L(q, q<1),: .'., q(r)) while the highest order of time derivati~e

0

iri gauge fixing 
cond_ition is r :+ l_;Then, instead ~f ·~o the· Legendre transformation on the 
cc,~rdin1'ies of the configuration space· of the initial Lagrangian L(q, ... , q(r)) 
we suggest dealing with the:Legendre transformation, for. the new Lagrangian 
(r+I) L * defined as a function of fictional auxiliary variables :q(r+l), ... , qfr+ll) · 

bythe anzatz 

(r+l) L~(q, q(l),. · .. , q(r+/)) = (r) L(q, q(l),.;., q(r)°) 
'' ".•' . '' 

The phase obtained for the new equivalent theory will be an extended phase 
space for the 

0

initial syst~m. And our gauge fixing cond.itions (2.8), non unitary 
irtthJ ordinary ph~se space,· now becomes the usual unitary gauge i~; the 
extended phase 'space. To prove this, let us l:lriefly describe the Ost~ogradsky 
method of the Hamiltonian formulation of theories with higher derivatives • 
[~]. [6]. 
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III OSTROGRADSKY METHOD FOR THEORIES WITH 

HIGHER DERIVATIVES 

Let us consider the variational problem for the unconstrained mechanical 
system 1 

S[q]= j dtL, 

descrbed by the Lagrangian L( q, q(l), q<2), ••. , q(k)) which is a function not 
only of coordinate q and velocity q but also of higher derivatives of coordinate 
with respect to the time. The Euler - Lagrange equation follows from the 
extremum condition 8S = 0 

k" ds ( 8L ) 
I:(-lf dts 8q(s) = 0 
s=O 

(3.9) 

with the zero boun'dary conditions for variations 8q(i)lbaundary = 0 i 
0, ... , k - l. Thus, in general the Euler - Lagrange equation has order 
2k. The Ostrogradsky theorem stands that there is a gener_alized Legendre 
transformation such that this Euler - Lagrange equations for the non - singular 
n - dimensional system (3.9) can be transformed into the equivalent set of 
first order equations of the Hamiltonian form on a space of dimension 2kn. 
To construct the Legendre transformation, let us introduce 2kn canonical 
variables ~i and Pi i = 1, ... , k 

C. _ q(i-1) 
~i - ' 

k . ds-i ·( 8L ) 
Pi = ~(-l)s-1 dts-i 8q(s) . 

s=i 

and then set the function 
k-1 

H(~,~) = -L + LPi~i+l + Pk~k 
i=l 

where the Lagrangian L in terms of new variables has the form 

L( (1) (2) (k)) · L(C C C i ) q,q ,q , ... ,q = <,,1,<,,2,··•,<,,k,<,,k 

1We assume that q is the n - dimensional vector 

5 

(3.10) 

(3.11) 

(3.12) 



Now, taking into account that' for nonsingular Lagrangian we can express 
from (3.10) the velocity ~k as a function of the remaining r variables 

~k = f(f,,p), 

one can, according to Ostrogradsky's theorem (3), (6), rewrite the Euler -
Lagrange equations (3.9) in the Hamiltonian form 

C,i 

Pi 

{f,;, H}, 

{p;,H}, 

with the Hamiltonian H(E,,p) defined by, 

H(E,,p) = Hkk=f({,p)' 

and the Poisson brackets in (3.13) have the form 

k 

{F,G} = L (aFac _ aFac) 
s=l 81:,s 8ps 8ps 81:,s 

(3.13) 

(3.14) 

IV . ENLARGED PHASE SPACE FOR COVARIANT 

GAUGES 

Now we are ready to return to the case of the singular theory with the first 
class constraints (2.1) and to consider the covariant gauges of the type (2.8) 

Xa(P, q, q(I), q<2>, ... , q(/+l)) = 0 

Let us correlate with the initial singular theory, describing by Lagrangian 
L(q, q) the equivalent theory for which the new Lagrangian is considered 
as a function of additional derivatives of the coordinate with respect to the 
time variable up to the I-th order ( l is a maximal order of a ti~ derivative 
in the gauge condition ( 2.?)) 

L*( (1) . (!)) - L( .) q,q ,, ... ,q - q,q (4.15) 

The method of construction of phase space picture for non singular La­
grangians described in previous section admit the generalization to the sin­
gular case in Dirac's sense (3). Application of the above written procedure to 
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new Lagrangian L* gives the following. According to the definition of canon­
ical conjugate variables (3.10), for the theory (4.15) we obtain the usual part 
of canonical variables q,p 

t,i = q(O) = q, 
8L 

PI= -·-=p, 
8ql 

and additional one c,;, p';, i = 2, ... , l + 1 

C = q(i-1), 

i+1 .ds-i (8L*). 
Pi =. ~(-1y-1 dts-i 8q(s) ' 

s=1 

(4.16) 

( 4.17) 

From (4.17) it follows that in addition to the old constraints (2.1) we obtain 
a new set of l constraints 

Pi = 0, i = 2, ... l + 1. ( 4.18) 

Taking into account that the new canonical Hamiltonian coincides with the 
initial one 

Hc(E,*p*) = Hc(6,P1) 

one can verify that there aren't new secondary constraints, and we obtain the 
extended Hamiltonian for the new theory in terms of the old one HE(6,p1) 

/+1 

HE(f,*p*) = HE(6,P1) + L u;p;, (4.19) 
s=2 

'with new Lagrangian multipliers u*. So in the extended phase space (E,*p*, 6,P1) 
we get the generalized dynamics with the set of constraints 

ef>a(P, q) = 0, a = 1, ... , m, 

Pt = O, i =;:: 2, ... , l { 1, (4.20). 

with the desired condition (2.8), that has the form of a unitary gauge de­
pending only on canonical variables 

Xa(E,*,p*, t,I,PI) = 0. (4.21) 
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Now if we wants to reduce the phase space of our theory due to the appear­

ance of new constraints ( 4.18), we need additional l - gauge conditions 

x:(6,P1,p*,t)=0, a=2, ... ,l+l. 

V GAUGE XµXµ 

TICLE 

0 FOR A RELATIVISTIC PAR-

In this section, we will apply the above described scheme to the simple 

example, the relativistic particle with mass m 

. T 

W[x] =•-m j dr~. (5.22) 

0 

This action is invariant under reparametrization of time 

T--+T1 = s(r), 

x(r)--+ x(r1Y = x(r), (5:23) 

with ds/dr > 0. Therefore, there is an arbitrary function in the solution 

for the equation of motion . As a consequence of this invariance, we have 

identically vanishing canonical Hamiltonian and energy sheli constraint 

cpl = p2 _ m2 = Q. (5.24) 

Thus, the total Hamiltonian is 

Hr= u(t)(p2 - m2
). 

There is some free~om in the definition of dynamics in the reparametrized 

invariant theory. This fact is reflected in the gauge fixing procedure. It is 

known that in this case. the gauge fixing condition with necessity explicitly 

depends on the time parameter. For example, the proper time fixing 

xo(r)=r 

8 

· corresponds to the instant form of dynamics for relativistic particle . In this 

gauge,_one can according to (2.6), fix the function u(t) 

1 
u(t)=-=== 2Jp~ + m2 

and get.the usual equations of motion 

. • Pi 
x·=·-:-;:=== 

I Jp; +m2 

(5.25) 

,. ( 5.26) 

go~erned by the reduced Hamiltonian Hned = VP!+ m 2 (7). How cfn one 

can get this results in a gauge with the d,ependence onthe velocity :i:µ, for 

example, of a following type: • 

C ·µ .... 0 
<,, :=X x 1, = (5.27) 

To do this, we will act in the spirit of the previous section. Letus pass from. 

the in_itial singular theory, descri_bed by the action (5.22) to the eq~i~al~nt 

theory for which the ·new Lagrangian is considered as a function of a first 

and second order derivatives of .coordinate~ ~ith respe~t to ~he time. After 

the transformation t:o the ~nlarged configu;ation space ~i~h 'the coo.rdinates 

,Jµ = Xµ, ~/: = x1,,, 

T 

L*(~,~*,~*) = -m J dr·~, (5.28) 
0 

we see that in addition to the old constraints (5:24) the~e are new ones 

. fJL* - 0. * -· -- -P,,- a~; (5.29) 

Taking into account that n~w secondary c~~~traintsdo not arise we-~btain 
the extended Hamiito~ian fot the. ne~ theory . . ,. . 

Hi= u(t)(p2 
- m 2

) + u:p:, (5.30) 

with the new Lagrangian multipliers u:. The gauge condition i:l'x1, = 0 in 

the enlarged phase space has now the form of unitary gauge 

X ='~1:e· = 0 (5.31) 
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Let us choose additional gauge condit1on"s for elimina~ion of new constraints 
(5.29) 

xi=C-av(r)=O 

with some functions av(r). With the help of these gauge conditions one 
can find the Lagrange multipliers and verify that t_he choice of this vector 
leads to one or another form of dynamics. The choice aµ(r) = (a(r),0,0,0) 
corresponds to the instant form of dynamics with the time variable x0 = a( r) 
while for the light - like vector aµ(r) = (a(r),0,0,a(r)) we get the light 
cone formulation for the relativistic particle dynamics with the light cone 

time x+ = xo + x3 .=. 2a(t). 
. The authors would like to thank A.N. Kvinikhidze, V.V. Nesterenko and 
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