


il Introduction

The electron—positron scattering process (Bhabha process) at small angles was cho-
sen for the mobile precise luminosity measurement at LEP-I [1). The measurement
technique provides the accuracy of the order 0.1%,; or even’better [2]. The adequate
theoretical calculation of the Bhabha cross section was absent up to recent time [3,4].
The radiative correctlons (RC) due to the emission of virtual, soft and real ha.rd pho-
* tons and pairs are to be calculated up to the tree-loop level In our previous paper
3] the program of analytical calculatioris was performed, the leading (~ (aL/7)"*?)
;contributions as well as the next-to-leading (~ a/r, (a/x)?L) ones were calculated
explicitly for the processes with the emission of photons (L'=1n@*/m? , Q* ~ 10
(GeV/c)? is the momentum transferred squared, 8 is the scattéring angle). As for .
‘pair productlon processes the contributions due to the emission of v1rtual soft and
real hard pairs were considered, but the productlon of real hard pa.lrs was calculated
only-in the collinear kinematics (CK). In this paper we give the systematic study-
_ing of the hard pair emission in the semi-collinear kinematics (SCK). We present
also the total contrlbutlon to the observable Bha.bha. cross-sectlon due to the pair
production .
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which takes into account the cuts on the detection of the scattered electron and
positron. We accept the convention [1-3] to consider as an event of the Bhabha
process the one when the angles of the simultaneously reglstered pa.rtlcles hitting
the oppos1te detectors la.y in the range ‘ ~

0m1n <b.< gma.x = pomln’ S pomin <O <m—Opin, (2)

(0min ~ 3° , p 2 1) in respect to the beam dlrectlons The second condition is
imposed on the energy fractions of the scattered electron and positron: -

-

ZeTe > Ze, Tee = 25e,€/\/ga‘ s = 4521 : ‘ (3) )
where ¢ is the energy of the initial electron (or positron), &. (s is the energy of the
scattered electron (positron), the centre—of-mass (CM) reference frame is here and -
further implied. : Sk ' no
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Our method of the real hard pair production cross-section calculation within the
logarithmic accuracy consists in the separation of the contributions of the collinear
"“and semi~collinear kinematical regions [5,6]. In the first one (CK) we suggest that
both electron and positron from the created pair go in the narrow cone along to the
direction of one of the charged part1cles (the projectile (scattered) electron. 5y (1)
or the projectile (scattered) p051tron D2 (qz))

: ﬁ+ﬁ— ~ p_pir~ 17+1_"i < bo <<“1‘. ""590/"1'>> 1, 17 =7y, P2y @i @ (4)

‘The contrlbutlon of the CK contams the terms of the order (aL/x)? and (ar)?L.
In the serm—collmear region only one of condltlons (4) on the angles is fulﬁlled

p+p— < 0o, P:l:P: >00; or pLpi<bo, Pipi>bo; ()
o Fpi> 00, Pabi < fo.

The "c'ontryibution of the SCK contain the terms of the from:
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8= 13'/_?1 is the scattering angle. The auxiliary parameter 8, disappears in the total
sum of the CK and SCK contributions. We systematically omit the terms without
large logarithms, they have the order (a/r)? - Const ~ 10~%.

We restrict ourselves to the case when an.electron-positron pair is created. The ef-
fects due to the other pair creation (p*p~, 7*n~ etc.) are at least one order less and
could be neglected as will be seen from the obtained numbers: All possible mecha-
nisms of the pair creation (the singlet and non-singlet ones) as well as the identity
of the particles in the final state are taken into account. In the case of the small
a.ngle Bhabha scattering only a part from the total 36 Feynman diagrams at the tree

" level is relevant — the scattering-type diagrams. Besides that, we convinced in the

cancella.tlons of the interference between the amplitudes descrxbmg the production
- of pairs moving along the electron direction a.nd the positron one. This fact is known
as the up —-down' cancellation; v

The sum of the contributions due to the virtual pair emission (due to the vacuum
polarization insertions in the virtual photon Green function) and of the ones due

to the real soft pair emission does not contain cubic (~ L?) terms but depends

on the auxiliary parameter A = fefe (m. < 8¢ < ¢, ¢ is the energy sum of
the soft pair components). The A-dependence disappears in the total sum after
adding the contributions due to the real hard pair production. Before summing one

has to integrate the hard pair contributions over the energy fractions of the pair
components as well as over the ones of the scattered electron and positron:
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where ¢ are the energies of the positron and electron from the created pair. We
consider for definiteness the case when the created hard pair moves close to the
direction of the initial (or scattered) electron. -

The paper is organized as follows: in the second part we consider the emission of the
hard pair in the collinear kinematics. The results turned out to be very close to the
ones obtained by one of us (N. P. M) in paper [6] for the case of the pair production
in the electron-nuclei scattering and applied to the case of the small angle Bhabha
scattering in [4]. For the completeness we present very briefly the derivation and

. give the result correcting some misprints in [6]. In the third part we consider the

semi~collinear kinematical regions. The differential cross-section is obtained there
and integrated over the angles and the energy fractions of the pair components.
In the fourth part we give the expression of the RC contribution due to the pair
production to the experimental cross-section. The results are illustrated numerically

in tables and discussed in the Conclusions.

2 The Collinear Kinematics

There are four different CK regions: when the created pair goes along the direction

- of the initial (scattered) electron or: positron. We will consider in detail only two

of them corresponding to the initial and the final electron’directions. For the case
of the pair emission along the initial electron it is useful to decompose the particle
momenta into the longitudinal and transverse components:

p+ =710 + 5, p_ = zap1 + pt, ¢ =zp + 47, (8)
z=1-21—-2%, @G~Np,  py+pitg =0,

where p} are the transverse in respect to the initial electron beam direction two
dimensional momenta of the final particles. It is convenient to introduce the dimen-
sionless qua.ntltles for the relevant kinematical mva.rlants
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where ¢ is the azimuthal angle between the planes (pyp;) and (p1pt).

Keeping only the terms from the summed over the spin states matrix element module
squared which give non-zero contributions to the cross-section in the limit 5 — 0
we find that only 8 from the total 36 tree level Feyriman diagrams are essential.
They are drawn in fig. 1. -
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Fig. 1. The Feynman diagram which give logarithmically reinforced contributions in the
kmemahca.l region when the created pair goes along the electron direction. The signs
represent the Fermi- Dirac statistics of the interchanged fermions..

The result has the factorized form (in agreement with the factorization theorem [8]):

E My py.p-llp1 z Mol 27w (10)
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where one of the multipliers corresponds to the matrix element in the Born approx-
imation (without pair production):

sttt 4 ut
Z [Mof? = 2"n%a? (———52t2 - , (11)

spins
s = 2p1p2, t = —Q2I,

u=-—s—t,

and quantity I, which is named as the collinear factor, coincides with the expression
§ for I, obtained in paper [6]. We put it here in terms of our kinematical variables:
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Rearranging the phase volume of the final particles as follows:

g, &
(%)%12 0320(2 T)'8 Pz + P2 — @1 — q2) (13)

d
x m*2 85"z, z,dz, dzodzy dzrib,
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and using the table of integrals over the variables of the created pair, which is gwen
in Appendix A, we obtain :

27 2g 29 .
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Performing the similar manipulations in the case when the pair moves in the direc-
tion of the scattered electron, integrating the obtained sum over the energy fractions
of the pair components, and finally adding the contribution of the two remaining
CK regions (when the pair goes along the positron directions) we obtain:

2

do oy = "C‘;f /_ { (@) (L+21n/\—) (1+6) (15)
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Serﬁe rﬁisprints, which take place in the exp'ressiOﬁs forf(:c) aﬁd fl(z) in [4,6], are
corrected here. ' '

3  The Semi—Collinear Kinematics

We will restrict ourselves again to the case when the created pair goes close to the
electron momentum (the initial or final one) The similar consideration takes place
in the CM system in the case when the pair follows the positron momentum. There
are three different semi-collinear reglons which contribute to the cross-section in
the frame of the required accuracy. The first region includes the events with a very

small invariant mass of the created pair: ;

- 4m? <K (P+ +P4)2 < |q2‘v

and the pair escapes the narrow cones (defined by 0o) along both projectile and
scattered electron momentum directions. We agree to name this SCK region as
7+ || P-- Only the diagrams fig. 1(1) and fig. 1(2) contribute in this region and the
reason is the smallniess of the virtuality of the pair'producing photon.

The second SCK region includes the events when the invariant mass of the created
positron and the scattered electron is small: 4m? < (py + @1)® < |¢°|, with the
restriction that the positron should escape the narrow cone along the initial electron
momentum direction. We name it as gy || §; and note that only two dlagrams fig. 1(3)
and fig. 1(4) contribute here. .

The third SCK region includes the events when the created electron goes inside the
narrow cone along the initial electron momentum d1rect10n but the created positron
does not. We name it as p_ || p1. Only the diagrams ﬁg 1(7) and fig. 1(8) are
relevant there.

The differential cross-section has the following form: .

ot |MP? dz,dz,dz L
do = . d2 L d2 1 d2 1 d2
8ris? ¢t T1T2T P+ P-4

q'zL(S(l - I —IQ—I) ' (16)

x 6O(pt +pt + ¢t +q5),  |MI* = ~Ls,paap2e



where z; (z3), = and pf (pl), ¢i are the energy fractions and the perpendicular
momenta of the created positron (electron) and the scattered electron respectively;
s = (p1 + p2)? and ¢ = —Q?* = (p2 — q2)® = —€%0? are the centre-of-mass energy
squared and the momentum transferred squared; the leptonic tensor Ly, has different
forms for different SCK regions. ‘

3.1 Py || p- region

For thg region of small (p; + p-)? we can use the leptonic tensor obtained in paper
[6]. Keeping only the relevant terms we present it in the form:

=T )~ (s ¢ (ro) e ()
—4(p+p-)ro (1—%) (i)[ (Pra1)3s — 2(p1p+)(@1P- )20

4
Tov [Pz(Plfh)/\p

(P QI)(P1P+)AP] - g(’nlz—;))g(?ﬂ(qlql)ip - :jg(q—llg))*——g((hm(mpl)/\p

—2pip-)(@Pi)a] = — 2(p+q1)(P1p-) s

+ (qul),\f [Pz(p1<I1) (p1P+)(P @) - (P1P—)(41P+)],

(1)(2)

where

P=p+ +p-, (aa)/\p = a/\rap', B (ab)/\p = a/\bp + b;bA)
g=p~a-P, ()= —13)2—7712 2) = (p — g’ - m®

After some a.lgebra.lc transformations the expressmn for |M|2 entering the cross—
section could be put in: the form

[(1=2:)" + (1 - 22)7 L - (18)

R
aMr= q4P4{ 0]

+ % [(a1p) (p+7’f) ~ () (q1p+)Jf},

where p = p_ — x2p+/:c1, (¢7)* = —q* In the considered region we can use the
relations '

1—-z

(1)=-=

2Amps)s (2) = o Aarp) (19)

It is useful to represent all invariants in the terms of the Sudakov variables (energy
fractions and perpendicular momenta), namely

R R (B PN TR et )

1 2 , 2 . .
2(pips) = ;(mﬁ)ﬂ 2(pp) = ;plpi, - 2qp) = p(p* [zpy — z141]),
1 1

pt = z1pt — 2opy -

The large logarithm appears in the cross-section after the integration over pt. In

‘order to carry out this integration we can use the relation

§® d?py d’pt = d’p*, (2
. Py (1 1:)2 ) o (21)
which is valid in the region 7, || p-. After the integration we derive the contribution
to the cross-section of the first SCK region:

of gty d(g)? . gy
e R e . @
d¢ 1

L
27 (g +zq7)?

dzrz,749

(1—z1)*+(1 - z2)? — i=o7)

where 4 is the angle between the two dimensional vectors ¢i" and g5

At this sta.ge it is necessary to use the restrictions on the two dimensional momenta
gt and g5 . They appear when the contribution of CK region (which in this case rep-
resents the narrow cones with the opening angle 8y along the momentum directions
of both initial and the scattered electron) is excluded.
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Fig. 2. The kinematics of an event in the angular perpendicular plane corresponding to
the SCK region 7 || p—.

The kinematics of an event in the perpendicular plane is shown in fig. 2. The circles
of the radius 6, represent the forbidden collinear regions. The elimination of that
regions gives the following restrictions:

1 L
i |>ao, I L (WP (23)
€4 (0]

" where €, and ¢; are the energies of the created positron and the scattered electron
respectively. In order to exclude p; from the above equation we use the conservation
of the perpendicular ‘momentum in the region py || p_:

l—=z k
a +a+ I—Pi =0 (24)
1

It is useful to introduce dimensionless variables z12 = (qi,)?/(€0min)*> Where Onin
is the minimal- angle at which the scattered particles (electron and positron) are
recorded by the detector. Here we consider only the symmetrical circular detectors.
The conditions (23).can be rewritten as follows

1> cosg > —1 4 RODCAVEE ) 5 /) < M1 -2),
1>cos¢ > —1, lvz1 — Z2| > A1 — z), A = 00/0min»

(25)
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1>cos¢ > —1 ERP € ) e VT RLVZ21 L |V/Z1 — T+/Z2] < Az(l —z),

: =vamE (26)
1>cosé > -1, I\/z_,—z\/z_2|>/\z(1—x).

Restriction (26) excludes the phase space, corresponding to the narrow cone along
the direction of the initial electron, while eq. (26) — along the scattered electron.

The conditions of the LEP I experiment are:

bo> TR107 and i~ 107 SR (@)

That is the reason for considering A < 1. The procedure of the integration of
the differential cross-section over regions (26) and (26) is described in detail in
Appendix B. Here we give the contribution of the SCK region p, || p- to the
cross—section provided that only the scattered electrons with the energy fraction z
exceeded T, could be recorded. '

L ORI = Qzﬁ/dz /dz /dzg[ 1_11)12_ 25)12_?2)2, ‘ ‘ ‘ (28)

drz,7,

T (1-ap

]{(1+e)1n—+®1

(z )P —2)(z 1) €*0min

1 = |p ——1Nin

e e | T T
where Q? = 292 in P = amax/amm (Gma,x is the maximal angle of the final
partlcle reglstratlon), = @( z%p? - 2), z = 2,. ‘Auxiliary parameter A entermg

eq. (28) defines the minimal energy of the created hard pair: 2m/e < A < 1. Note'
that we replaced L by £ because we do not differ them at the one-logarithmic level. -

[

3.2 7. || §1 region

As was a.}rea.dy mentloned in the SCK regxon p+ || Q only dla.gra.ms ﬁg 1(3) and‘
fig. 1(4) contribute. The leptonic tensor in this case could be derived from eq. (17)
by the substitution p_ « ¢;, and the matrix element squared could be written as:

S w1 L
|Mhmﬁ:“;z§'aﬂ5{0—rﬁ-fU—rﬁ e T (29)
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32 ) 1
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[(p1p4)(p-7') — zz(p-p+)(p1p’)]2},

where

¢’ = (g +p4)%

P'=q — pyz/T1,
(1) = =2(p1p4)(1 — z2) /1.

(2) = 2(p4p-)(1 — z2)/21,

‘The integration of the matrix element over (pi)? and (p%)? could be carried out

analogously to the previous case, and the contribution of the p, || ¢ region could
be presented in the following form:

(g5 d(gf)?
S o ] (30)
. % 1 _ z? 1-z)4+ (1 —x,)? 4zx T4
2r (g +zq3 7)? (1—=z2)? T (1 - za)? (1 —z,)?

The restriction on the phase space, coming from the exclusion of the collinear region
when the created pair flies inside the narrow cone along the scattered electron, leads
to the relation:

PZ_ @

o. v . \ A 1
E_ %] > Yo (3)

In eq. (31) we have to exclude p% using the conservation of the perpendicular mo-
mentum in the case under consideration: pZ + g5 + ¢ (1 —z2)/z = 0. In the terms
of dimensionless variables z1, 2z and the angle ¢ €q. (31) could be rewritten as:

N2 (Ja-o/E) U o
1 > COS¢ > -1 + me Ty |\/—Z—1—‘ ‘T\/—z—2| < AI‘T% ‘ (32)

[\/Z1 — z4/Z2| > Azza.

1>cos¢d>—1,

The integration of the differential cross-: ~section (30) over the reglon defined in
(32) leads to the following result for the contribution of the p} || 1 SCK region:

ol = jdz /da: /d [ 1;—:5)12_ 0521)2— z,)? ) (33)
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(1 —z2)* 2P
3.3 p. || p1 region

In the SCK region p- || /1 only dlagrams ﬁg 1(7) and fig. 1(8) contrlbute to the
cross-section’ within the requlred accuracy. The leptomc tensor in this case could
be derived from eq. (17) by the substitution p; < —py, and the matrix element
squared has the form: '

|M|,,|.,7,=.W-(—l)—(z—,){(l_—z)m—zl)v @
+;% : aﬁA[wl(plﬁ)(plm) + x(mﬁ)(qlp\x)]z}, :

where
FP‘EJ ;7712[’1,‘
(2 )= _Q(Plfh)(l — T3),

= -pl)
(1) ‘=. —2(p1p+)(1 — T3).

The mtegratlon of the matrlx element over (p+)2 and (pt)? leédé to the differential
cross section: - '

L d(gs)* d(gt)* o
daﬁ—|lﬁl = Z;F.L dz d.T2 (qé‘)"’ (q‘lL)2 (35)
1-z2+(Q1- .7:1)2“_ dzzizy |

(1 —z5)? (1==z)* ]

L 4o 1
21 (g +47)?

The restriction due to the exclusion of the collinear regien,when the created pair
flies inside a narrow cone along the initial electron has the form: .

lp : '
6T|>00, pi+qll_+q2l=0, ) e (36)

or

l>cos¢>—1+—f—’%\/:—,2——‘/_)—, V71 — V72| < Az, . (37)

V71 — /72| > Az

1>cos¢p>—1,

13



\

The integration of the dxfferentlal cross— sectlon (35) over the reglon deﬁned in
q. (37) leads to the following result: -

2 2 5\ . .
—ﬁ’iﬂ]{eln—+eln( r z) +In }

(1 —=z3)? zizipt -
The total contribution of the sem1‘ —collinear kmematlcs to the cross—section is the
sumn of eqs. (28), (33), and (38):

pr(z = %)
z — z%p?

Ts-coll = T3slip- + Oplla + Onlim D (39)

4 The Total Contribution Due to the Real and Virtual Pair Production

In‘order to obtain the finite expression for the cross-section we have to add to
€ (39) the,contrxbutlon of the collinear kinematical region (eq. (15)) as well as
'the ones due to ‘the’ production of virtual and soft pairs. Taking into account the
leading and next~to—leadmg terms we can write the full hard palr contribution in
the followmg form:
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%hard = Q2! (40)
o [ o] o : (=) = 2)(z = )27
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fooy N B AV Ny b= e < 1
e {
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+ ——(4-{-71:-{-4:1:2)-{-(1 +z)Inz.

Integrating over x, in the right side of eq. (40) we obtain the final expression for the
cross—section of hard pair production at the small angle electron-positron scattering:

#

Chard = W%? ]% lf;x{y(l + ©)R(z) N LIOF\(z) + Fg(:c)]}, (41)

Fy(z)=d(z) + Ci(z),  Falz) = d(z) + Ca(a),

de) = (G- - 2).
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ﬁ(z)ln\( —z*)(p’ —Z)z—l) , ﬁ:ZR(x)—§-1+I.

z?p? — 2 11—z

Formula (41) describes the small angle high energy cross-section of process (1)
provided that the created hard (with the energy more than A) pair flies along the
direction of the initial electron 3-momentum, and we hiave now to double oy to take
into account the production of a hard pair flying along the direction of the initial
positron beam.

1 order to pick out the depcndonce on the parameter A in oy; we will use the following
rclation:



]Lz /dx@(” L ]dz[ /dx_' /dxe] o )

@:1—@(a:p - z).
‘Therefore

/dz[lnl—Aa:c_/l’ldjx(I)], | - (43)

Tc

/‘ [ 1n2(1—z)—-1n A= /ld l“gl 2o ] (44)

/dz
/ /d eln(l

The contribution to the cross—section of the small angle Bhabha scattering connected
with the real soft (with the energy less than A - ¢) and the virtual pair production
is defined {2] by the formula: .

Te

dz 17 4 )
Osoft4virt = Ql /z { ( lnA + ) +C(—-é~ + 31 A (45)
S

—391nA— fl-(,)}.

Using eqs. (43) and (44) it is easy to check that the auxiliary parameter A is canceled
in the sum oyt = 20154 +Usoft+v1rt’ and we can write the total contribution aynt
as follows:

Ttot = =73 Qz /dZ{L2(1+-ln(1 zo) = g/lld_xx [—%Z (46)
,—gcz—%lg(l. xc)+§ln2(1—xc)+/ 6 (———1 (l—x))]

Te

1

+ /da:[L’(l + ©)R(z) + L(OC1(z) + Ca(2))] }

R(z)= R(z) — W%—T) S \
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The right side of eq. (46) is the master expression.for the small angle Bhabha
scattering cross-section connected with the pair production. It is finite and could
be used for numerical estimations. Note that the leading term is described by the -
electron structure function Df(x) which represents the probability to find a positron
inside an electron with virtuality @* provided that the electron loses' the energy pa.rt

(1-2)[9).

In table 1 we present the ratio of the RC contribution due to the pair production
Otot, (eq. (46)) to the normalization cross—section oo,

dra®

€ min

Og =

)

Table 1. The ratio § = "tot/”}J in percents;‘es a function of z., for NN (pli 1.74,
Opnin = 1.61 rad) and WW (p = 2.10, 8,5, = 1.50 rad) counters, /s = 2¢ = Mz = 91.187
z. | 02| 03 | 04 [T05 | 06 |07 |08
Snn, % | -0.018 | -0.022 | -0.026 | -0.029 | -0.033 -0.038 -0.046_/
Sww, % | -0.013 | -0.019 | -0.024 | -0.029 | -0.035 | -0.042 -0.052 |

In table 2 we illustrate the comparison between the non-leading contribution in
eq. (46) (containing £ = In @3/m?) and the total one (containing L% and L),

\‘Table 2. Values of Ry and Rww as functions of z., where R represents the ratio of the

non-leading contrlbutlon in eq. (46) in respect to the total one, for NN and WW counters

. | 02| 03 | 04 | 05 | 06 | 07 | 08
Ry | 0.036 [-0:122 | -0.194 | -0.238 | -0.268 | -0.335 | -0.465
Rww | 0179 | -0.021 | -0.088 | -0.120 | -0.179 | -0.271 | -0.415 | .

5 Conclusions

Thus the result derived in this paper combined together with. the results derived
earlier in [1,2] give the full and successive analytical description of the small angle
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electron—pomtron sca.ttermg cross—sectlon at LEP I energles a.ccompa.med by the one
and two photon radiation as well as by the’ pair productlon The description takes
into account the lea.dlng and next—to—lea.dlng logarithmic approximations and glves
the poss1b111ty to ﬁnd the cross—sectlon with the accuracy not worse than 0. 1% pro-
vided that the scattered electron and positron’ are recorded by symmetrical circular
detectors. Using the above derivation it is possible to carry out the calculations also
for. non-symmetrical detectors.

Numerical calculations of the virtual and real pa.i‘r production RC contributions
shows their compensation at the level of 10~2 percents for the given angular aper-
tures and z. range. Table 2 shows that the next-to-leading contribution could be
comparable with the leading one. Their.ratio is sensitive to z. and angle ranges.
The similar situation for the leading and next-to-léading contributions to the small
angle Bhabha cross—section takes place in the case of the double bremsstrahlung
process e~ + e’r —e + e’r Ft (4]

We have to note tha.t in a realistic case one has to ta.ke 1nto account that detectors
can not distinguish a smgle particle event from the event. when two or more particles
hit the same point of the detector simultaneously. In that case the obtained results
could be cha.nged starting from the presented differential cross-sectlons one has to
integrate 1mposmg the needed experlmenta.l restrlctlons .

We want to empha.s1ze a.lso tha.t the method of calculations and alot of the derived

results could be used for the calculations of the radiative corrections to the small z
~deep inelastic scattering as well as to the normalization processes cross—sections at
HERA. We hope to consider these questions in next pubhca.tlons
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Appendix A

We give here the list of the relevant integrals for the collinear kinematical region,
* calculated within the logarithmical accuracy. The definitions of eq. (9) are used. We
" imply in the left side of the relations below the general operation: :
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(.. = 7dzl ]od22 7%? s (A.1)

and suggest zop = (efp/m)* > 1, Lo = lnzp > 1. The details of the calculations
could be found in Appendix of paper {5]. The results are:

-

IgD + (1 d .’L‘g)A 2 L I]Ig '
1~z 2 — Tq 2 ' 1z
+( .’ZI(:L‘Q ) }’ (515> I].’L'Q(IIJ - .’L‘g) [2L0 + In 172] !

((nglA—DJ:IA2)2> - f )2{L0+21 xf, _gy =2l 40 —x)},

TT1Zy T
(IlAg _ IgAl _ ( - IZ)LO ( 1 Lo
’ AD? a::l:la:z(l -z)’ D? .1:.1:112 >

1 ) L T1X9 1 —L
—) = ————|zLo +! = 0
(AD> J:la:g(1—~:z:)[ otin J (C2D> z,(1 ~ z5)3’

1 z zz ' 1 " —L
(—=) = 172 +21 2 ey 0
ac! z “(1—3;)(1—;2)]’ (‘Zp) = o
( A ) _ $2L0 ( C ) _ _$2L0
c2p? (1 — .1:2)4’ ArD? T (1 - z)t’

A —~Lg IT1T2 T — T

= Lo+1n Ly—-2_~1

(CD2> 11(1_ [ o+ In }+ 03:-7513:2(1_3:2)2"

C . —Ly 1T Ty —Z 1
= Lo+1 L 2
i )2[ ot In ==~ Lo (:r,lxg(l — 27 a1 = .1:)) ‘

Appendix B

Here we .deri.ve eq. (28) starting from eq. (38) by integration over regions (26) and
(26), taking into account the aperture of the detectors. Let us note at first that

d(ez)?  d(qr)? dg _ 1 day dz d¢

@) e Tt - @ m Bl O
1 . 1

- : + — .
2+ 22+ 2\ /z123¢c08¢  (21/T) + 222 + 2, /2125 c0o5 ¢
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Integrating the right side of eq. (B.1) we have to keep in mind that the first term in
the brackets is sensitive to region (26) and the second to region (26). The aperture

of the symmetrical circular detector is shown in fig. 3.
[ ]

21 2] = T2

Z1 = 22

2zé

26

22

Fig. 3. The aperture of the symmetrical circular detector for the integration over z1
and z in the case when only the initial electron loses energy for the pair creation; § =

2/z3M(1 - z).

We present in detail only the integration of the first term in the brackets in the right
side of eq. (B.1). If |/z1 — v/Z2| < A(1 — ) then the angular integration gives

¢max

1 __d¢ _2 dé (B2)
I Jz1 + 23+ 2\/Z123¢c08¢ T 21 + 29 + 24 /z122 cos ¢
' 0

9 $max

tan (22 tan 2)
= an | —F/———— o )
T a2—b2a Va2 — b? 2%

where
A1 —z)? — (21 — y72)°
émax = acos(—1 + N ),
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a=2z, + 23, b=2\/z12,.

Because of the smallness of the values XA2(1 — z)? and |\/z1 — /7] in comparison
with z; and z, we can rewrite the last term in eq. (B.2) in the following form:

—1-- 1 atan— |\/El—” \/Zl - (B-3)
T \/ZI\/Z—\/EH \/)‘2(1__1)2_(\/51‘_\/5;)2

Let z3 > z1, than in the region under consideration we have \/z1 > /zz — A(1 —z),
and we can carry out the subsequent integration over z; in eq. (B.1) by taking z; = 2
in the factor (zz; — z1)~! and introducing new variable t = A(1 — z)(y/Zz2 — 4/z1) in
J. Thus we obtain: ‘ ’

J =

=2In2, oo : (B4)

where the additional factor 2 is due to the contribution when 2z; > z;. From ﬁg. 3
we see that the region |\/z; — /2] < A(1 — z) contributes only if z; < z?p%. That
is why we have to write the contribution corresponding |\/z1 — /22| < A1 —z) in
eq. (B.1) as: ' '

o2

1 [d=z 1 ' ' - :
@ [Fapenn  e-eE@d-a. (B3
1y . . B :

If now |\/z1 — +/zz| > A(1 — z) the angular integration is trivial and the subsequent
integration over z; and z; is reduced to the integration of the function {(z1—z23)|z1—

22]}™" over the rectangle 1 < z; < p?, z* < 2 < z2p? without the narrow strip of

the width 26 (6 = 2,/22A(1 — x)). The result reads:

f (21 — 2°)(zp? - z2)

1 d22 1
Q_/ Fae e
+IHM)}.

(zp? — 2)%z?

+é(—21n2 (B9

It easy to see that the full contribution of the first term in the brackets in eq. (B.1)
is reduced to eq. (B.6) without ~201In2 in the latter.
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The integration of the second term in the brackets in eq. (B.1) can be done in the
full analogy. The result could be written as follows:

p? )
1 ng 1
'@?/zz a-ar {lnrz“

and fqrrmila. (28) becomes obvious. -

(P’ = z2)(% — 1)
(z = z2)(22 — zp?)

} :  (BY)
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