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defines a non-Abelian gauge field. The simplest gauge-invariant equations are
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1 Introduction

As soon as the general relativity was developed, Hermann Weyl
undertook an attempt at unifying the gravity and electromagnetism [1].
Inasmuch as the invariance under the group of general transformations
of coordinates (the group of diffeomorphisms [2]) determines the laws
of gravitational interactions, Weyl suggested that the scale invariance
he introduced should ‘correspond to electromagnetism.  The  Weyl
theory was not further developed because upon the construction of
quantum mechanics it became conventional that just local phase
invariance, rather than the Weyl geometrical invariance, is related to
the electromagnetic field. However, the Weyl’s idea has led to that
what is at present called "the gauge theory”. Besides, in 1921, Weyl
in his book [3] introduced the law of parallel transport, he called the
congruent transference (kongruente Verpflanzung)and, as will be shown
below, he thus introduced a non-Abclian gauge field for-the first time.
In this paper, we will try to show that this important result by Weyl is
of undoubted interest both for the nontrivial unification of space-time
and gauge symmetry and for numerous attempts of giving a physical
interpretation for the Riemann-Cartan geometry.

2 Weyl Connection

The Weyl connection giving the congruent transference is of the form
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where {;k} are Christoffel symbols of the Riemann connection of the
metric g;;:

; 1, ‘ ]
{ix} = 29 (8 grt + Brg;t — Prgjx) (2)

and Fj are components of the third rank tensor that ig bkew—symmetnc
in the last two indices
Fiwi + Fine = 0. (3)

From (1) it follows that the vector componenis under the congruent
transference change according to the law

dv' = ={i } da’ v* + Fiug" da o, S € Y

that consists of the displacement belonging to the Riemann geometry
(the first term in(4)) and rotation deﬁned by the metric g/ and bivector
of rotation Fjy dz’. / .

Congruent transference does not -vary the vector length because
d(gi; v' 1) =.0.in accordance with the law (4). We denote the covariant
derivative with respect to the:connection I‘i- by V. Since

V.y,k = y,k i+ F.,zg gmk + F.ug ym,,

where the senncolon means the covarlant derivative wrth respect to (2),
nsmg (3) we obtam

C Vigg=0. ()

Thls is Just the general characteristics of the Weyl connection. Now we
will analyse the group—theoretlcal meamng of that connection.

3 Gal,ige Group
Let S‘ be components of the tensor field S of type (1,1) obeying the

condrtlou det(S‘) # 0. Then, there exists the tensor field .S ~! with
components T‘ sutnfymg the condition .

vrpk _ gx
RS k‘lJ ——b]. .
The tensor field S can be considered as a linear transformation

7 =5} (6)

in the gpace of vector fields; whereas S™!, as an inverse transformation.
As the length of a vector under the congruent transference remains
constant, of the transformations (6) we pick out those leaving the vector -
length constant. From the condition g;;9'%/ = g,;v't’ it follows that

guSES) = gij. (7)

Transformations of the form (6) and (7) form a group that is defined
by the quadratic form ¢ = g;;v'v’. It is natural to denote this group by
(,(r, 8), where r and # arc indices of the inertia of the quadratic form
@, and r + 38 = n. » o -

We will demonstrate that if the vector v* undergoes the congruent
transference (1), the transformed vector #* will also undergo the
congruent transference. From (4) and (6) we obtain

dit = (dS) v + S;' dv' =

(4’1 S“ rI'J _ Su lm} I vm,) (lt S;(]}‘lpngm) 7}5, d-’fl 't_)k-
Sin_x:é ) 7
i S =0T =S G T
then ~ T ‘

i ——{lk}d:t ¥ + (S ,TJ + 9" Flpmg"” TP) de' v
Therefore, Co :

Cdvt = {,k}da: o+ F:k,ng d.r,' ok,

where

, B = By T + gy m:T’ C(8)
From (6) it follows that the tensor Firem obeyq eqnatlon (3) and,
conzequently, the Weyl connection * : ~

]k = Jk} [:iklg '

defines the congrnent transference, as well.
The transformation (8) can be written as a relation between the. .
connections % and I, in the followmg form '
y I_‘;'\ : . 5 [;m I*'n + Sl' ., ] P'L + Sl VJ'I?:' » (9)
Indeed,
‘ SiV, T = Si Ty, = St (Fimpd™ ) IT + Fikm g™
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Introducing the matrix notation I'; = (T%), S =(S}), §' =
('I;‘), we can write the relation (9) in the conventional form

[ =ST;S7'+585". A (10)
Let B;; = (B.ﬂk) be the’ Riemann tensor of the connection (1)
B.] = O.I‘J' - OJ'F,' + [[“', [‘]] ‘ (ll)

and B,; = ( _,11") be the Riemann tensor of the connection [';. Then
from (10) and (11) it follows that the tensors B;; and B;; are comlected
by a homogeneous transformation

B, =SB,S™. ' . (12)
From (1) and (11) it follows ihat th‘e"Rie‘mé‘nn:tensor can be written in

the form : ,
IJkI R‘]kl + H;_ykla (13)

whue Rijuis the tensor of’ Rlemann curvature of the meiric gU, and

Hiju = Fiug — Fir; +;,F.'mk_szpy .

Note that in a flat space-tiine the tensor of Riemann curvature equals.

zero, and in this case in Cartesian c’\o‘ordinates/ we have
B, = H., = 0F - O;Fi + [F, F),
where F; = (F'.Jk_q"‘) c |

Thus, the tensor ﬁeld Fi;x entering into the Weyl connection is a .

gauge field, whereas the tensor Ik 18 the tensor of strength of that

field. It is to be stressed that the:gauge group in the case under

consideration is defined by the metric, whereas the gauge field has a
geometrical meaning (the Weyl congruent transference) and no extra
internal or isotopic space is to be introduced.

4 Field Equations

The field Fjx can be described by gauge-invariant equations derived
by the variational method from the conventional Lagrangian

L= _,i-Tr(B.-jB‘i); (15)

RRINEV Sshaigeanscl poraie

By variation we obtain the following equations
D;(v—gB"j) =0, , (16)

where g is the determinant of the metric tensor and

L pi(v=5BY) = (\/'” B.,) + {F., B.,]

\/_ \/_E

The gau ge—‘invérimt tensor of the energy—mom'éh'fﬁIﬁ'éo}respohdihg :
to the Lagrangian (15) can easy be obtamed by the method proposed
in ref. [5]. So, we‘have

Tq TT(BJ:BJI g ) + gt] (17)

If equations (16) hold va.lid T;; obeys the equationT*;; = 0. Varying
the action A = [y/=gLd*z with respect to the metric g¥ we obtain
the tensor ©;; = 6A/6g"” that is not gauge-invariant. Therefore,
the equations ©;; = 0 can be considered as equations fixing the
gauge. The reason for ©;; being not gauge invariant is as follows:
When varying in g* we change the metric, and because the groups
Oy(r, 8). and Oyys4(r, 8) do not coincide, the variation in metric is not :
a gauge-invariant operation.

5 Conclusion

The interpretation given here for the Weyl congruent transference
actually leads to the Lagrangian (15) quadratic in the strength tensor
and, consequently, to equations (168) for the non-Abelian gauge field.
determining this transference. It is to be stressed that in the case
under consideration, no abstract gauge space is to be introduced. '

As it is known, the attempts of physical interpretation of the

Riemann- Cartan geometry run into problems (6] that can, probably,

be overcome in the Weyl approach that opens new possibilities for.
studies because the geometry and gauge principle are there related
in a natural way. And finally we note that the connection can be
established between the Weyl non—Abelian gauge field and torsion that
ie the ceniral object of study in the Riemann-Cartan geometry, however,
this connection is not gauge-invariant.
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