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CBs3aHHBIE COCTOSIHUSA «ONETRIX» YACTHIL,

IlpennoxeH HOBHI MOAXOA K MnpobsieMe CBI3aHHHX COCTOSHHMN B PENATH-
BHCTCKMX KBAaHTOBHIX TeOpuaX moyig. OH HCMOJB3YET ONEPATOPH POXACHHSI-
YHMUTOXEHMS «ONETHIX» YACTHIL, KOTOPHIE OMPENENSIOTCS NMPONEAYPOH «Oome-
BaHus» QapneeBa (1963). O6cyXaaoTCsS OTAMYHS OT M3BECTHHIX IOIXOMOB:
Bere — Coammrepa, Jlorynopa — Tasxenunse, Kagnmesckoro, TaMma —
Hankosa.

Pa6ora Bhnosnena B JlJaGopaTopuu Teopernueckoi ¢usuku um.H.H.Boro-
mobosa OUSAN.
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Bound States of «Dressed» Particles-

A new approach to the problem of bound states in relativistic quantum field
theories is suggested. It uses the creation-destruction operators of «dressed»
particles which have been granted by Faddeev’s (1963) «dressing» formalism.
Peculiarities of the proposed approach as compared to the known ones are
discussed. :

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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1. INTRODUCTION

We know many approaches to the problem of determining such bound states

as hydrogen atom (pe "), positronium (e*e™), hadrons, etc. Examples are non-
relativistic Breit's approach [1,2]; Tamm — Dankoff approach [3]; Bethe —
Salpeter equation [4]; three-dimensional quasipotential approaches, see refs.
[5,6 ] and references therein. One more approach is suggested here. It is based
on the «dressing» formalism, given by L.Faddeev [7], which introduces Schroe-
dinger creation-destruction operator of «dressed» particles instead of the «bare»
ones. The main properties of the former are: a) the state without «dressed» par-
ticles Q must coincide with the physical vacuum (lowest energy eigenstate of the

total Hamiltonian H); b) «dressed» one-particle states of the kind a;Q also

must be H eigenstates. The Hamiltonian H expression in terms of the «dressed»
operators allows one to define bound states as eigenstates of a part of H which
contains besides the usual «free» part also come potential-like particle-particle
interactions, see below sect.4.

2. TOTAL.HAMILTONIAN IN TERMS
OF «DRESSED»-OPERATORS

«Dressed» particle creation a; and destruction « > operators are determi-
ned as functions of «bare» ones a; and a,, so that a,= Wa wt, where Wis an

isometric transformation W*W = Www" = 1. This allows one to find H(a) asa
function of a:

H(a) = HW'aW) = W H(@) W= K(@). (n

Here K(«) is a different function of its argument as compared to H(a), but K is
the same total Hamiltonian.

I take here as an example the theory of fermions and mesons with the Yuka-
wa interaction ltpyszp(p, see [8]. Let a, bq g, be «bare» destruction operators of

 fermions, antifermions and mesons, respectively. Let as ﬂq, Yk be the respective

«dressed» operators. Interaction terms of the kind at ag, abg, atst +,. .. enter

into H(a, b, g). Due to them the «bare» no-paricle state QOZap'Qo; 0, etc.) and
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one-particle states a; Q,; etc., are not H eigenvectors. W must be such that
K(a, B, 7), see eq.(1), does not contain the above trilinear terms as well as other '
«bad» terms, i.e., those preventing €2 and a;Q from being K eigenstates.

The needed W has been determined for this model in [8 ] under the assump-
tion u < 2m, u and m being the meson and fermion physical masses. As a result,
K becomes an infinite series of the form

- ~qn
K=Ky+ K,+ K;+ K+ ..., K, A%, 2)
_ + + 3 +
K= f ea,a,+ f eqﬂqﬂq+ J &k WYLV
: 3
\/k2+ uo.
Here & is the meson three-momentum p mcludes besides the ferrmon mo-

mentum also its spin projection, so that f is the integration and summation over -
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all p values. K, contains tetralinear terms, see below eq. (4); K, contains penta-

e..\/p+m,

linear terms of the kind a8 afy; K , contains not only sextalinear terms but

also tetralinear ones of the order a4

3. PARTICLE-’PARTICLE EFFECTIVE POTENTIALS
Now let us discuss K2 | '
I + = R A + p+
K2= F(ply pz; Pl, P2) apl p a + F(qlv q29 qlv qz)ﬂplﬂpzﬂpl'ﬂpzr+

+C(p, ki p's k) a;Yk apfy,;ff Clg,k: q's k’)ﬂ+y:ﬂq,yk,+

« 4+ *
kl’ k2)qpﬂqyklyk2+A (P, Q9k )Yk)’ ﬂa +‘
V(p, a5 p',q") ay BB - . 4

The mtegratlon-summatlon is implied over all values of p,.q, k. The term
Fa*tataa leads to fermion-fermion scattering in the first order of the usual
«old» perturbation theory [8). In the coordinate representation F(p,, p,; P{, P3)
may be a nonlocal fermion-fermion potential and, moreover, may depend on
derivatives. So F will be called the quasipotential as well as C and V. Due to these
quasipotentials, two-particle bound states can arise: fermion- fermion, meson-
fermion, etc.

+ A(p, g,




4. EQUATIONS FOR BOUND STATES.

The perturbation theory uses usually eigenstates of the «free» part of the
total Hamiltonian as the zero approximation. One can use instead the eigen-
states of K + K, under the 1mportant condition that one is able to find them

nonperturbatlvely (see [3], ch.40.3). Let us define the bound state as the
K0+ K, cigenstate (I>E, (K0+ Kz) CDE ED 5, corresponding to a discrete value

of the state mass (i.e., its energy in the c.m.s.).
Consider the case of a meson—fermion bound state. The operator K0+ K,

transforms « ,yk,Q to states of the same kind « yZ'Q only. This suggests that
there ex1sts such an elgenstate (I>mf of K,+ K, whlch can be expanded in states
a+y;§2 V P Vk only without an admlxture of other two- partlcle states

a ,B Q,ryQ, etc.,

CDm‘f f{‘bE(p k)a,yk, . SN )
p ’

Only the term Ca* y ay from K, contributes to the ‘equation
(Kyt+ K) (I>;:"f = E<I);:"f . Taking the scalar products of both parts of this equation

with (a;y;'Q I, one gets the integral equation for the coefficients ® .(p, k)

(e, t 0~ Ey®p(p, k)= [ [ Clp, k; p', k') Dy(p', k') 6
. N pl k' :

The quasipotential C(p, k; p’, k') has been written in ref. [8], egs.(20) and
(A.7). Another variant for C (corresponding to a different choice of «dressed»
operators) has been described in sect.4 of ref. [8 ]. :

The two-fermion bound state can be treated in.an analogous manner.

A different situation arises in the case of the bound state CD% such that

_ \ 0 S +
N, Nf)(DE—O,Nf—fapap
states o ,B+Q not only to themselves but also to two-meson y k y , +Q, see terms

ActBtyyin eq (4). So one may suppose that ,
=ffp(p',q)a +Q+ffM(kl,k2)y,:'ly;;Q
rq

l 2

)

N7= f ,B;'ﬂq. The operatoer2 ‘transforms ff
q.
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Taking the scalar products of (K,+ K,) (I>g:= E(Dg: with (a;'ﬂ;'Ql and

(y;é y; Q1, one gets a system of two coupled equations for P and M. So (I>g: must
1 2

not be called the ffbound state. We have no separate ff and meson-meson bound
states but only one state (I>g:, see eq.(7).

5. COMPARISON WITH OTHER APPROACHES

The proposed approach differs in many respects from the four-dimensional
Bethe — Salpeter approach [4]. Not only the relative energy'or time but also
any time variables are absent Our bound state vectors (I> or their components,

e.g., CD'" (p, k), have the usual probablllty mterpretatlon

In distinction to the three-dimensional approaches by Logunov and Tavk-
helidze et al. (see e.g. [5,6] and references therein) our equation is obtained
without the intervention of the Bethe — Salpeter equation BSE. Our quasmo—
tentials are hermitian and only a stable bound state can be considered.

Kadyshevsky’s equation, see, e.g., €q.(2.28) in ref. [6],is derlved without
using the BSE, but its quasipotential has been determined by means of a modi-
fied technique of Feynman’s dlagrams Meanwhlle our quasipotentials follow
from the «dressing» procedure.

Unlike the Tamm — Dankoff approach TDA [3], the «dressed» states are
used here instead of «bare» ones and, moreover, bound states are defined as
eigenvectors of a part K+ K, of the total Hamilton_ian and not as eigenvectors

of the latter as in the TDA. Due to these circumstances one needs not neglect
Fock’s amplitudes with increasing numbers of particles: the TDA becomes exact
in our case.

6. GENERALIZATION

Of course, using K0+ K, instead of K in our bound state equation is an
approximation which is reminescent of the ladder approximation in the BSE.

If one adds to Kyt K, tetralinear terms which are present in X fad }.4, see
€q.(2), then no additional difficulties arise.

If pentalinear terms of K,~ 13 of the kind ataty*aa are accounted for,

then all Fock’s amplitudes (corresponding to an infinitely increasing number of
particles) would enter into the equation (K,+ K,+ K;) ®,= E®, and one
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would need approxnmatlons of the TDA But one can show that the ensuring

contributions to the quasipotentials would be of the order A5.

When considering three-particle bound states, one can take into account

sextalinear terms of K, of the kind a *a%ataaa. They describe three-particle

interactions irreducible to the two-particle ones.
I thank R.Mir-Kasimov and N.Skachkov for discussions.
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