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IloKa3aHO, llTO JIHIIIb D-Me3OH, Jiel'KHH KBapK KOToporo SIBJISieTCSI BaJieHT­

HhlM KBapKOM IlHOHa, a oqapoBaHHhlH KBapK po)K'AeH B aHHHI'H.IISl~HH BaJieHT­

HhlX KBapKoB HallaJihHhlx aApoHOB u HMeeT AOCTaTOllHO 6oJihlIIOii HMDYJihc, 
SIBJISieTCSI JiffAHpyiow;uM Me30HOM B peaK~HH Tuna Jt-P ➔ DX. ECJin TaKoiI 

aHHHI'H.IISl~HH BaJieHTHhlX KBapKOB H3 HallaJibHhlX aApoHOB npoH30HTH He MO­

)KeT, TO He AOJI)KHO 6h1Tb H SipKO Bhlpa)KeHHOI'O 3ct><PeKTa JlffAHpoBaHHSI. 

Pa6oTa BhlilOJIHeHa B Jla6opaTOpHH SJAepHbIX npo6JieM 0115111. 
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It is shown that the D-meson, whose light quark is the initial-pion valence 
quark and whose charmed quark is produced in annihilation of valence quarks 
and has got a large enough momentum, is really a leading meson in reactions 
like Jt-p - DX. If such annihilation of valence quarks from initial hadrons is 
impossible, there must be no distinct leading effect. 

The investigation has been performed at the Laboratory of Nuclear 
Problems, JINR. 
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Recently the E769 collaboration [l] has reported confirmation of previously 
obtained [2] enchanced leading production of D±- and D•±-mesons in 250 GeV 
1r±-nucleon interaction. A leading charmed meson is considered to be one with 
the longitudinal momentum fraction xp > 0, whose light quark (or anti-quark) 
is of the same type as one of t.he quarks in the beam particle. At large x F 

significant asymmetry was found: 

( ) _ a(leading) - a(non-leading) 
A xF = o-(leading) + a(non-leading) · (I) 

Such asymmetry for the production of charmed hadrons is not expected in 
perturbative quantum chromodynamics. 

Some years ago a simple non-perturbative mechanism of leading charmed 
mesons production was considered [3] for data analysis of CERN experiment on 
D-mesons production in 1r-p-collisions [4]. It was demonstrated that presence 
of a valence quark from the initial pion (so-called leading quark state) in the 
final charmed meson is a necessary but insuflicient condition for the meson to 
be a leading one. Actually, those D arc leading mesons whose light quarks are 
valence quarks of the pion and charmed quarks are produced in annihilation of 
valence quarks and carry a large momentum Xe. 

The leading effect is a characteristic property of inclusive production of 
charmed hadrons [5]. A hadron ]/ produced in the reaction a + b -t II + ... 
and carrying the largest portion of the momentum, Pu = 0( vs/2), is regarded 
as a leading hadron. The corresponding momentum spectrum dN/dxF usually 
parametrized in the form (1 - xp)n at a large Feynman variable xF = }.Fj1 is 

"hard" for"leading hadrons (0 < n .'.:: 3) and "soft" for non-leading onei> (n;;: 5). 
In the quark-parton approach the leading charmed meson H is a result 

of recombination of the spcct.at.or valence quark <fv with the charmed quark 
produced in a parton subprocess. Owing to the large momentum of the valence 
quark xv H turns to be a h·ading meson, its momentum is large enough x
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X., +Xe> Xv. 
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From this point of view n-(dc) and n°(uc) directly produced in the reaction 
1r-(dii) + p -t n(dc; iic) + X must be both leading mesons, i.e. 1 yields of n-:(dc) 
and n°(uc) have to be practically the same at large momentum (say, xF > 0.5). 

On the other hand, let us assume for a moment that hadrons consist of 
valence quarks alone. This picture takes place, for instance, in· deep inelastic 
phenomena at quite large xF, when all non-singlet parton distribution functions 
vanish. 

In this case n°(uc)-mesons can by no means result form the reaction 1r-(dii)+ 
p( uud) -t n + X because there is no parton subprocess which can ensure c­
quark creation. On the other hand, the c-quark appears due to valence quarks 
annihilation u;ut -t cc, providing the n-(dc)-meson in the final state. It 
is dear that some difference in 7r-~nucleon production of leading D 0(iic) and 
D-(dc)-meson has to take place at sufficiently large xF: To demonstrate this 
feature quantitatively let us follow briefly the work [3]. 

The invariant differential c;ross secti!)n for the process 1r-p -t n X in the 
ccntre-of-ma_ss system at. the energy ,/s and xF > 0 can be_ ~ritten down in 
the form [6]: 

• da · { 2 r:} J ( ·) dxsp dxc{ x:x.Pda } x -d d 2 = exp -2pr/vs R Xsp,XcjX ----. d d d 2 • 
X Pr Xsp Xe Xsp Xe Pr 

(2) 

Here x = xF, Xsv, Xe are the Feynman variables of n-(D0 )-meson, spectator 
d(u)- and produced c(c)-quark; x* = 2Ev/,/s, x; = 2Ec/,/s. 

The phenomenological recombination function [6], [7] R(xsp,xe;x) ~ 8(x -
Xsp·- Xe) provides a probability of producing a n-(D0 )-meson (with the mo­
mentum x) by means of a d(ii)-quark (xsv) and a .c(c)-quark (xe)-

The probability of existence of spectator d(ii)-quark and charmed c(c)-quark 
is determined by the expression: 

x:x.Pda J · '\""" " (, · .' ) P( ) x:da 
d d d 2 = Xsp dxLdXR ~_fd(u)i Xsp,XL J, XR -d d 2 • 

Xsp Xe Pr . ·:... - . , • ·- Xe Pr 
i-q,q,g ' 

(3) 

Here dx~ddq2 is the quantum-chromodynamics cross sectioh for the charm pro-
xc PT , 

duction parton subprocess it -t cc [8]. The single-particle proton distribution 
functions, f[(xR), are extracted from deep inelastic lepton-proton scattering 
[9]. The analytical form of two-particle pion distribution functions, J;:;(xsv, XL), 
is given in the statistical parton model [6], [10]. The free parameters of these 
analytical forms can be fixed via comparison with the data. 

It is clear from relation (3)° that the above-mentioned difference in yields 
of n°(uc) and n-(dc)- mesons mainly arises due to different contributions of 
distribution functions: L, J;:; · J!. 

For a n° -meson the sum is 

:En° =· 1:v . 1: + 1:. . (3ft + 6Jn (4) 

P~I1~:'~!~~l 
~ St~l;~J1!1 tO·r2J-l~\ • ---- ~--



• 
For a n--meson we have 

L n- = 1:v -1: + 1:. -(3J: + 6tn + 21:v -1: = L n° + 21:v . 1:, (5) 

where index v corresponds to valence quarks and s to sea quark. For simplic­
ity flavour symmetric distributions were used and the gluon contribution was 
omitted. 

Therefore the total momentum spectrum of n- and D 0 -meson production 
in 1r-p--collisions can be put down in the form 

da(D- Do)= da(D0 ) da( ) 
d + 2d + d V • 

X · X X 
(6) 

This· formula was used for fixing distribution functions J;;; by means of 
comparison with the data on leading D-meson production in 1r-p--collisions 
at vs= 26 GeV (4]. 

It was obtained that the "valence" component, t(v), due to "hard" shape 
of valence distributions, ensured the non-vanishing total spectrum for :i;F ~ 0.5. 
At low XF the total spectrum was saturated by the other component - ~: ( D0

). 

The term ~;(v) makes no contribution to the spectrum of D 0 -:mesons (sec 
formula (4)), therefore the yield of neutral D 0 -mesons at large xF is small 
enough. 

Figure 1 shows the ratio: 

~(1r-p -4 D 0 X) 
R(xF)= ~;(1r-p-4D-X)' (7) 

which quantitatively illustrates the suppression of the D 0 yield as compared 
with the n- one. The experimental points are recalcul.ated from combined 
data on asymmetry A (1) measured on nuclei [l]., The curves obtained in paper 
[3] and considered as predictions successfully fit the new d~ta [1]. 
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Fig. 1. D 0 -to-D- yield ratios (7) for 1r-p--collisions (lower curve) and 1r-n 

collisions (upper curve). The points are recalculated from the data on asymme­
try A [1] 
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Figure 2 shows two curves for asymmetry A (I). calculated on the basis of 
the ratio (7). The curves also describe the data well. 
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Fig. 2. Asymmetry A (I) on the proton target (upper curve) and the neutron 
target (lower curve) calculated on the basis of the ratio (7). The data from rPf. 
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Thus it. is demonstrated that presence of a valence quark from the initial 
hadron ( as a spectator) in the final charmed meson is a necessary but insutficit>nt 
condition for the meson to have a "hard'' momentum spectrum (i.e., to lw a 
leading meson). 

Actually, the D-meson is a "real" leading meson whose light quark is a sp<'c­
t.ator valence quark and charmed quark (anti-quark) is produced in annihilation· 
of valence quarks from initial hadrons. 

In addition, it is easy to construct. relations like (7) for r<'act.ions similar 
to 1r-p -4 DX. Thus we have for :rp > 0.5 (denominat.ors show the leading 
mesons): 

a(1r+n -4 lJ+ X) . a(1r+7J -4 [JOX) a(1r-ii - D-X) ------- = ------ = ------- = R( r ,-)· 
a(1r+n -4 D0 X) a(1r+p-4 l)+X) a(1r-f1. -4 D 0 X) .. • 

a(}(-p-4 D0 X) - a(l(+p-4 n°X) - l )· 
a(K-p-4 D_-;X) - a(/(+7,-. /J.tX) - /(.r, .. ' 
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a(1r""'~----> n- X) = a(1r+p----> lJ+ X) = a(1r-n----> /JO.~) = '2R(.ri,·l: 
a(1r-p---->D 0 X) a(1r+p·---->D 0 X) a(1r-n---->U-),) · 

a( 1r+n ----> D0 X) = a(I(-n ----> lJ 0 X) = a(I(+;,. ----> !J 0 X) = , ( : ·) 
a(1r+n----> D+ X) a(I(-n----> D; X) a(J(+n----> Dt X) '2R ·11

· . 
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