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' 1 Introduction . 

Well known solutions of Yang~Mills (YM) equations such as in­
stantons and monopoles are obtained in solving of the famous duality 
equations [1]. One can attempt to generalize the duality equations 
and maybe to find new solutions. · · · 

To motivate suggested approach let us consider a known "toy" 
model: one-dimensional particle with mass m is iri. a two-peak po-
tential 

.. 
In_ this model the nontrivial cl~ssical solution appears in going 

to i~aginary ti~e. It is the instanton [2]. BPST-instanton [1] is 
analogue of this nonrelativistic instanton. In real time there exist, 
in certain sense, similar solutions. Let particle be at the point x = 
0 in the state of unstable balance (by the way it is the simplest 
nonrelativistic sphaleron!). It can remove down from mountain and 
come back, that· is described by solution 

(1) 

One gets from energy integral 

~x2(t) + V(x) = E (2) 
• , ' f .,., • '. ~ • ' • , 

if E = Vx=O and gives a finite action, if potential is evaluated from 
the level Vo = A'fl4• · • 

Is it possible to find similar solutions i~ the YM-theory? 
The basic idea is to generalize duality equations inspecting those 

as analogue of the first integral (2) in the pseudoeuclidean·Minkovsky 
space and using static unstable solutions (sphalerons) [3). Then we, 
have hope to find the analogue of solution (1): 



2 Generalizing of duality equations 

How can we generalize the duality equations? The simplest one 
could look as (indices are missed for simplicity) 

*F±iF.= *:F±i:F. (3) 

Here :f -. is any solution of YM-equations, F - looked for field. Gauge 
group will not be concrete until later. One can consider the equation 
(3) as the analogue .of the first integral of the '' toy" model, and as 
well .as generalization of duality equations. This equation has an 
important property of invariance under dual transformations. 

However, will the solutions of equation (3) be as well ones of YM­
equations? At first glance they will. Let us act to both rhs. and 

. lhs; of (3) by covariant, derivative operator D. Taking into account 
· Bianchi's identity and the fact that :Fis solutions itis easy to get 

DF = O, 

i. e., f).eld ,F is a.solution of YM-equation. In reality this treatment .is 
mistaken. Error is that the operator D contains,.except derivative 
one.also field potentials. And therefore the covariant derivatives are 
different for fields F and :F, <l:nd previous \reatmeht does not pass 
through. 

What can we do? Let us a little modify equations (3) . 
* F + iF = ( *:F + i:F)¢, ( 4) 

where <P - unknown scalar function of x 2• Further we are acting to 
both sjdes of (4) by operator D, associated with field F. Then 

. . iDF ~ D[(*:F + i:F)¢] · 
Require to satisfy condition 

D[( *:F+. i:F)<t>] = 0 .. '' ( 5) 

Then the field F will obey .the YM equations. It will be shown below 
equation (5) wilLreduce to scalar that; as well as equation ( 4). 

Here are a few notes about equations ( 4,5 ). · 
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1. Equations are invariant under the duality transformation. Tech­
nically the dual-invariant equations are easy reduced to scalar 
ones since both sides of such eqs. are proportional Hooft's·ten­
sors T}µv performing as basis. 

2. It would be better to find a real. nonsingular, finite action solu­
tion of eqs. (4,5). However, there are no such solutions in the 
pure Y1vI-theory [4] and therefore probably one must consider 
something as Higgs' model ·in this approach. 

3. Formally one'can substitute in (4) ~s :F any known solution of 
YM equations,e.g: instanton, Wu- Yang solution, etc. But con­
sideration of the toy model prompts that one ·must take as :F 
unstable static sol,ution, i.e. sphal~ron [3].:. 

• • ',, ' ' ' . .1 

Generalization of duality equation (in the euclidean space) was 
c01isidered by Yatsun [5]. Within the framework model with scalar 
fields he received the dual-invariant equation of kind 

*F+F=J('</>)7J· 

where 11-Hooft's tensor, ¢-scalar field. As distinct from th~t our 
equation involve,s known solt~tion :F, that is one of the essential points. 
in our approach. 

3 Choice of gauge group 
We wot1ld not like to use gauge group SU(2) as a ,sim'plest 

case although it is usually accepted because we are working in the 
Minkovsky space. It is convenient to take that connected with mo­
tion space group, namely 5'0(1, 3) group. Below there we'll explain 
motives of this choice. And now it is convenient to begin more sys­
tematic research of eqs. ( 4,5) from the SO( 4)-gauge solution in the 
euclidean space (e.g., look at [6]): · 

' ' . xf3J0t - rOtJ/3. ' . 4.,\2 
Aa/3( ) _ 2 µ • µ,, Fa/3( ) _ - i;:a/3. i;:0tf3 _ i;:a i;:/3 _ i;:0t i;:{3 

µ X - ';r2 + .,\2 ' µv X - (x2 + .,\2)2uµv,vµv - uµuv u,,uµ, 

VµFµ,, = 8µFµv - i[Aµ,F1,vJ = O,Fµv = F;!!Taf3,Tap€S0(4) 
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It is not the instanton solution; instantons appear from here by fac­
torization on SU(2)-group. Going to Minkovsky space R1,a as a base 
let us take as the ga,uge &roup SO(l,3), and we suggest that group 
acts in the intrinsk space. 

By analogy with SO( 4)-solution SO( 1, 3)-solution is given by 
· · x 0 oP - xf16°' · : · 4,\ 2 · 

A°'/J( ) - 2 ,,. ,, F°'/J( ) - ----6°'/J F - 8 A -8 A -µ. X -: -;- x2 + ).2 , . µ.11 X :-- (x2 + ,\2)2 µ.11, µ11 - µ II II µ 

~i(A~;A!'] = Fj/Tap, V,,.F,,. 11 ~ a,,.F1~11-i(A,,.,F;11] = 0,TapESO(l,3); 

[Ta/J T j = ~{co/Jp>..c 6u -ga/Ju>.c 6p }T. . XaERi 3.goo =. co123 = -gii = 1. , 16 . 4 •: 1 >. 1 >. , pu,. , , , •. , 

Here one must be careful with indices place (both'gauge indices and 
Lorents ones) since their position in the formulae is · essential. Fur­
ther we notice that in spite of the Lorents group is not a ·direct 
production SU(2) x SU(2), its Lie algebra has the st~ucture of that. 
And since the fields lie in the Lie algebra then passing over from 
basis T0 /l to another ( with generators Ja, 1a) :' 

Ja = iTOa + !c:oabcTi 
2 

: be, [Ja, Jb] = -l€0ab eJc 

. r = -iTOa +, lc:Oabcnc, [r. lb] = -icOab cl\ [Ja, lb] = 0, 
, . i ! 

we are getting su(2)-solutions in the Minkovsky space correspond-
ingly, self- and anti-self-dual: · ·-

FoB pa ± • pOa 1 Oa pbc 4,\ 
2 

, [± • {Joa 1 Oa {,be] 
µ11 -. µv = l .µv + 2.s be µv = - (.i:2 + ,\2)2 l µ11 + 22 be µ11 = 

= - " X T/µv•' ~-T/µ11 - l~~~ ' 
4 ,2 { a a _ · a 

(,r,2 + ,\2)2 fj~ 11 , · *T/~ 11 = -ZTJµv 
(6) 

where 
a _ :i:Oa + Oa 1Jµv - lvµv € µ11 , T/-a = .:...i{JOa + €0a µ11 µv µv 

are the pseudoeuclidean analogues of Hooft tensors. Solution (6) is 
analogous to BPST-insfanton [1], however it, as-distinct from last, 
has such bad properties as unreality and singularity. 
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4 Reduction of basic equations 

There will be received two scalar equations on two functions from 
two basic tensor equations in this section. First a few formulae to 
use further are given. Let values Cµ 11 and Sµv be defined as 

Cµ11 = ;r,P.-r"[rlJ,p, 1]µcr], Sµ11 = ixP(Xµ1]11p - X11T/µp), T/µ11 = T/;,,Ja. 

Then using explicit expression for symbols T/i,,, one can prove validity 
of formulae 

· Cµ11 = iiT]µi, +s,,.,,, t = x
2 = xPxp 

'* Sµ11 + iSµ11 = fT/µ11 · 

(rather hard to prove). After that trivially to get 
, •" { f •• ' .: ~ ,' ' ' 

* Cµv + iC,,.ii == .:...f'T/µ11,, 

Also it is valid 
(T/pµ, T/P 11 ] = 2iT]µ11 . 

(7) 

(8) 

(9) 

(10) 

Now we can pass over to transform the basic equations ( 4,5) which· 
in ind.ice~ are given by 

, * Fµ 11 + iFµv = ( *:Fµv + i:Fµv )</>(t) 

Dµ[( *:Fµ v + i:Fµ v)<P] = 0: 

(11) 

(12) 

Now there are unknown values ¢(t) and F,,.11(x) in the equations. At 
first we'll engage in equation (12). Let the vector-potential. of known 
field :Fµ.11 is given by Aµ :::: 1/)(t)xPqµp with known function 'lf;(t). By 
means offormulae (7,8,9) we find 

'', 

* :Fµ.11 + i:Fµ 11 = -i(2t'ljJ1 
- t'lf;2 + 4'1/J)TJµv = -iU,pT/µ 11 . (13) 

Then we substitute this expression to equation (12) and have 

TJµvC</>oµU,p + UipOµ<p) = i</)u,p[Aµ, T/µ11]. (14) 
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Now we take into account that the field .rµv obeys YM equations. It 
means that equation Vµ(*Fµ,, + iFµv) = 0 is satisfied. It gives 

rt va,,u,t, = iut1,[Aµ, rt vi· 

Taking into account this relation, equation (14) becomes 

TJµ i,8µ</> = i</>[Aµ - Aµ, rt v] • (15) 

Right-hand side prompts that it is convenient to _introduce unknown 
function f(t) instead of field Aµ (spherically-symmetrical ansatz) 

Aµ - Aµ= f xPT/µp = aµ . (16) 

After simple transformations. and application. of formula ( 10) we 
· see that the right-hand side of (15) is proportional to 1J {!. Hence we have simpl v 

J' • ... 

scalar equation instead of vector one (12) 

(In <i> )' = - f · (17) 

Now we tum to equation (11). '· . We have known:its rhs, let us 
engage with lhs. By using (16) we find 

Fµv = Fµv + /µv - i{[Aµ,a,,] - [A1,,aµ]}• 

where / 111, = 811 av - 81,a,1 - i[a11 , av]- Then we evaluate *Fµ 1, and 
further by means of formulae (7,8,9,10,13) get 

*Fµv + iFµv = -i{ UJ +u1µ.:... 2tf'lj) }T/µi, · 

Now it is seen that both rhs. and lhs. of (11) are proportional to ' 
T/µv, and finally instead of (11) ,ve have 

2tf' - t/2 + 2/(2 - v,) = (</>- 1)(2tv,' - t?/• 2 + 4¢). (18) 

Thus we have obtained two nonlinear differential equations of the 
first order (17,18) on functions </>(t),J(t). 

Unfortunately, one can get the scalar equations by different ways. 

6 

For example instead of unknown field Fµv (or A11 ) one ~an ·introduce 
another unknown function J(t) not so as in (16), but other-wise, e.g. 

Aµ= J.1~PT/µp. (19) 

Then eqs. (11,12) ,..,.m be reduc.ed to those on functions/,</> 

2t/' - t/2 + 4/ = (2ti// - tl/;2 + 4¢ )</> ! .• (20) 

(In¢)'=~'-'-/· (21) 

Maybe, these equations are a little m~re simple than (17,18). 

5 · Discussion· 

The obtained equations appeared to be rather complicated. Are 
there any nontrivial solutions.? •It .is riot quite clear. One can try by 
substituting here known solutions ( e.g. instanton, monopole.etc.) to 
look for integrable case .. Unfortunately, at first glance there are no 
such cases .. Really it has been told above one must take the sphaleron 
as .rµv (in the suitable model) that maybe exactly corresponds tb in­
tegrable occurrence. The only argument for that is the analogy with 
nonrelativistic model. Again, unfortunately th~ analytical sphaleron . 
solutions are absent. Sinc.e in this approach w~ a1:e· itttempting to ex­
ploit classical unstability (it is being. found ,time-dependent ,solution 
by w~y ~f decay of unstable static s~lution) pr~b~~ly it is,~r'inte~est 
to discuss from topological point of view . 

One may of course take the instanton as the known solution;, In 
this case for example the system of eqs. (20,21) has a trivial solution 
¢ = 1, f = 1/'in3 t, And are there another solutions?, It is not clear. 
For system ( 17,18) even it is not clear about trivial solution, since 
u~known fi~ld is being looked for on the "b~ckground'' of known one: 
Let us write the systems of equations for case 1j, ~ 1Pinat = 2/(t + c). 

. Eqs.(17,18) are given by (In¢)'= -I 

2t / 1 
- t / 2 + 2/ t + c - l = ( </J - 1) ~ 

t+c (t+c)2 

7 



And (20,21) are 

. 8c <i> 
Uj = (t + c)2. 2 f· (In <P )' = t + C -

The real finite action solutions in the Minkovsky space require 
to modify the path Integral method in quasi-classical approximation 
[7]. If those solutions really exist they could be used to evaluate high 
energy amplitudes as well as widely applied there instantons and 
sphalerons. . 
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KomKapoB A.JL 
0 IlOHCKe HeBaKyyMHhIX HecaMOAYaJihHhIX pemeHHii 
ypaBHeHHii SlHra -:- MHJIJica 

E2-94-530 

Ha OCHOBe o6o6m;eHIDiypaBHeHHH ~a.TlhHOCTH B nceBAOe]!~OBOM npo­
CTpaHCTBe BhIB0AHTC.sr CHCTeMa ABYX ypaBHeHHii Ha ABe. cKa.n:.srpHhle q>yHK~H. 
O6cy~ae-rc.sr B03MO::>KHOCTh cym;eCTBoBaHH.sr 11eBaKyyMHhIX, HecaMOAYa.TihHhlx, 

' : ~' 
Bem;eCTBeHHhIX, C KOHetIHhIM AeHCTBHeM, 3aBHC511Il;HX OT BpeMeHH pemeHHii 
ypaBHeHHH SlHra ~ MHJIJica. ' ' 

Pa6oTa BhIIlOJIHeHa B Jla6opaTOpHH TeopeTH'IeCKOH qnr311KH HM. H.H.Boro-; 
'mo6oBa OH.sIIL · · · · ' 
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