


1 Intyroductiiovn,. :

Vell known solutions of Yang-Mills (YM) equations suchas in-
stantons and monopoles are obtained in solving of the famous duality
equations [1]. One can attempt to generahze the duallty equatlons
and maybe to find new solutions. "

To motivate suggested approach let us consider a known ”tOy ‘
model: one-dimensional partlcle w1th mass m is 1n a two—peak po-
tential

‘ | V(z) = /\(»”0 - n’)%

In this model the nontr1v1al classical solution appears in gomg
to 1mag1nary tlme It is the instanton 2. BPST—lnstanton (1] is
analogue of this nonrelativistic 1nstanton In real time there exist,
in certain sense, similar solutions. Let particle be at the point z =
0 in the state of unstable balance (by the way it is the simplest
nonrelativistic sphaleron!). It can remove down from mountaln and
come back, that is descrlbed by solution : '
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One gets from energy 1ntegral
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if E'= V,— and glves a ﬁnlte actlon, if potentlal is eva.luated from
the level Vy = Apt. ’

Is it possible to find similar solutions in the YM-theory;? '

The basic idea is to generalize duality equations inspecting those
as analogue of the first integral (2) in the pseudoeuclidean-Minkovsky
space and using static unstable solutions (spha.lerons) [3] Then we:
have hope to find the analogue of solutlon ( 1) 2
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2 Generalizing of duality equations

How can we generalize the duality equations? The simplest one
could look as (indices are missed for simplicity) '

*F:!:zF_*.F:tzf : (3)

Here F-is any solutlon of YM-equations, F looked for field. Gauge
group will not be concrete until later. One can consider the equation
(3) as the analogue.of the first integral of the "toy” model, and as
well as generallzatlon of duahty equations. This equation has an
important property of invariance under dual transformations.
However, will the solutions of equation (3) be as well ones of YM-
equations? - At first glance they will. Let us act to both rhs. and
_Ihs: of (3) by covariant derivative operator D. Takmg into account
'. Blanchl s ldentlty and the fact that f is solutlons 1t 1s easy to get

BEEEIVES o DF—O,
e ﬁeld F is a solution of YM- equatlon In reahty thls treatment is
mlstaken Error is that the operator - D contains;except derivative
one,also field potentials. And therefore the covariant derivatives are
different for fields F* and F, and previous tredtment does not pass
through.
What can we do? Let us a little modlfy equatlonb (3)

*F+zF=(*]—"+L]—')¢, (4)
where ¢ - unknown scalar function of z?.. Further we are acting to
both sides of (4) by operator D associated with field F. Then

iDF = D[(*f—i- iF)g| -
Require to satlsfy condltlon ) c ‘
S D[(*.?-"-i—z]-")qﬁ}._O P 2 7(5)
Then the field F will obey the YM equations. It will be shown below

equation (5) will:reduce to scalar that; as well as- equatlon (4)
Here are a few notes about equations (4,5).

1. Equations are invariant under the duality transformation. Tech--
nically the dual-invariant equations are easy reduced to scalar
ones since both sides of such eqs. are proportlonal Hooft s‘ten-

- sors 1, performing as basis. :

. It would be better to ﬁnd a real nonsmgular, finite actlon solu-
tion of eqs. (4,5). However there are no such solutions in the
pure YM-theory [4] and therefore probably one must c0n51der
something as Higgs’ model in this approach. '

[ S]

3. Formally one’can substitute in (4) as F any known.solution of
YM equations.e.g- instanton, Wu-Yang solution, etc. But con--
sideration of the toy .model prompts-that one must take as F
unstable static solution, i.e: sphaleron [3].::

Generahzatlon of duahtv equatlon (ln the euclldean space) was,'
considered by Yatsun [5]. Within the framework model with scalar
fields he received the dual-invariant equatlon of kind

«F+F = f(e).

where 7- Hooft's tensor, o-scalar field. As distinct from that our
equation involves known SOlllthIl f that is one of the essential points
in our approach.

3 Choice of gauge group

We would not like to use gauge group S(f (2) as a SImplest k
case although it is usually accepted because we are worklng in the
Mmkovsky space. It is convenient to take that connected with mo-
tion space group, namely SO(1,3) group. Below there we’ll explain
motives of this choice. And now it is convenient to begin more sys-
tematic research of egs. (4,5) from the SO(4)-gauge solution in the
euchdean space (e g., look at [6] l

N /360' 0’6/3 N 4A
Uﬂ — z B pap af. aﬂ s ﬁ oo
A% (q) = - S ) = EESo: 2+/\2)26W,6W - 088 — 6267,

DuFu = 0,F — i[Au, Fu) = 0, F,, = FoT,p, TageSO.(4')
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It is not the instanton solution; instantons appear from here by fac-
torization on SU(2)-group. Going to Minkovsky space R 3 as a base
let us take as the gauge group SO(1,3), and we suggest that group
acts in the 1ntr1n51c space.

By analogy with SO(4)-solution SO(1, 3)- solutlon is glven b\

:c“ ‘3 ~ zPs° 5 ' 4\?
Aaﬁ(z) 2+A2 B Fﬁ( )—- —(—vz—-*-——w ‘“/,F“y-—aAy aA“
‘—'i["A',;;A;] BT, DyF*, =9, F“ —i{Ay, F%] = 0,TugeSO(1,3);

(TP, Ty] = Z{a"pv"':a.,yg"x—e“"” 616”,\};1‘,,;‘:1:"'.6}21,3;9 0= =g = 1.

Here one must be careful with indices place (both'gauge indices and
Lorents ones) since their position in the formulae is ' essential. Fur-
ther we notice that in spite of the Lorents group is not a ‘direct
production SU(2) x SU(2), its Lie algebra has the structure of that.
And since the fields lie in the Lie algebra then passrng over from
basis Top to another (w1th generators Je, I “)

i

. 1 _
J® = zTO" + 550%07}70 [Ja,Jb] — —lanchc

1
— _iTUq + anabchCs [Ia,Ib] — f—ié'oabclf, [JaIb] =0,

we are getting su(2)-solutions in the Minkovsky space correspond-
ingly, self- and anti-self-dual:

Faﬁ Fa ﬂ:lFO“ + lan Fbc - 4’\2
- 9 pr (z2 + Az)z

[£i 60“ ,+ =€ O“ 5Zf] =
,\2 ?‘ a‘: u’:‘a"

—ﬁéﬁnx{ﬂw,ﬁ%r%za (6)
- (‘E + A ) ' r’;u/‘ *n,ul/ _‘_Zn;w' ) )
where o ' o
‘ nlw - 600. 4 e av s n#u - _zéoa } £la ”u |

are the pseudoeuclidean analogues of Hooft tensors. Solution (6) is
analogous to BPST-instanton 1], however it, as: distinct from last,

has such bad properties as unreality and singularity.

4 Reduction of basic equations

There will be received two scalar eQuations on two functions from
two basic tensor equations in this section. First a few formulae to
use further are given. Let values C,,, and Suv be defined as

.

Cuv = 227 [Nps Muols S;w = 2'.1:”(:1:,,7),,,, —TuMup)s  NMuw = nqua’

Then using explicit e\rpressmn for symbols Tjy» ONE Can prove validity
of formulae , : " : 4
G = z'tnm;'+‘5u,,, t=2l=zz, = (7)
o xSutiSu =t (®)
(rather hard to prove). After that trivially to get

T o Cay' iC,,,,‘:"_'t'nu,,',), B o (9)

Also it is valid | | )
[Tops 7] = 2itpys . (10)

Now we can pass over to transform the basrc equatlons (4 5) whlch ”
in lndlces are glven by A .

kP +iF,, = (xFu + iFu)o(t) (11)

D,[(xF*, +iF*)¢gl=0. - . (12)

Now there are unknown values ¢(t) and F,(z) in the equatlons At
first we’ll engage in equation (12). Let the vector—potentla.l of known
field F,, is given by A, = ¥(t )z”n,,p with known functlon 1[J(t y
means of: formulae (7,8 9) we find B oo

Preogaty CR!

* f,,y + zf,,,, = —z(2tw - t1/)2 + 4¢)n,w = iUy - (13)
Then we substltute this expressron to equation ( 12) and have
n u(¢6ﬂu¢' + uwm)

Sl (9



Now we take into account that the field F,, obeys YM equations. It
means that equatlon D,,(*]-"‘l, + z]—"" ) = 0 is satisfied. It glves :

n*, 04ty _zu‘z,[Ap, e

Taking into account this relation, equatio_n (14) becomes
n* 6,‘¢> iglA, — u-»” o] (15)

nght -hand Slde prompts that it is convenlent to mtroduce unknown
function f(t) instead of field A, (spherically-symmetrical ansatz)

A —Ay=fafn,=a,. (16)

After s1mple transformatlons and ‘application.  of formula (10) we
- see that the right-hand side of (15) is proportlonal to 7 4. Hence we have simply
scalar equation instead of vector one (12)

oy =—f. o

Now, -we turn to equation (11)..*: .. - We have knownits rhs, let us
engage with lhs. By using (16) we find :

Fuw = Fu + fur — i{[ A @] = [As, ]}

where f,, = 8,a, — 8,0, — ila,,a). Then we evaluate xF,, and
further by means of formulae (7,8,9,10,_13)‘ get

*Fw, + zF,,,, = -z{uf +uy —'2tfz,)}nu.,

Now it is seen that both rhs. and lhs. of (11) are: proportlonal to
Mo and ﬁnally instead of (11) we have

2tf' —tf2+2f(2—d’) (¢—1)(2t1/* —td’ +4w) - (18)

Thus we have obtained two nonlmear differential equatlons of the

first order (17,18) on functions ¢(t), f(t)."
Unfortunately, one can get the scalar equations by different ways.

6

. Eqs.(17,18) are given by

For example instead of unknown field F,, (or 4,) one can ln‘tfodﬂce
another unknown function f(t) not so as in (16), but other-wise, e.g.
Ay = faPny, - | (19)

Then eqgs. (11,12) will he reduced. to those on functions f,‘qb
ztf tf2 +4f = (2t — ty® +4¢)¢> L (20)

CtneY=w-f-
Maybe, these equations are a little more simple than (17,18).

5 ‘Discussion

The obtained equations appeared to be rather complicated. Are
there any nontrivial solutions ? ‘It is not quite clear. One can try by
substituting here known solutions (e.g. instanton, monopole.etc.) to
look for integrable case.. Unfortunately, at first glance there are no
such cases. Really it has been told above one must take the sphaleron
as F,, (in the suitable model) that maybe exactly corresponds to in-
tegrable occurrence. The only argument for that is the analogy with
nonrelativistic model. Agam unfortunately the analytlcal sphaleron ,
solutions are absent. Since in this approach we are attelnptlng to ex-
ploit cla551cal unstability (it is being, found tune-dependent solution
by way of decay of unstable static solutlou) probably it is of mterest
to discuss from topological point of view. o

One may of course take the instanton as the known solutlon In
this case for example the system of egs. (20,21) has a trivial solution
¢ = 1, f = tinst. And are there another solutions? It is not clear.
For system (17,18) even it is not clear about trivial solution, since

unknown field is being looked for on the ”background” of l\nown one.
Let us write the systems of equations for case i) = gb,n,, = 2/(t +¢).

(Ing) = —f
B -af ”ftii*l a2
7 ' '



And (20,21) are

8
up=——06 , (Ing) =

(t+c)? __—f

The real finite action solutions in the Minkovsky space require

to modify the path integral method in quasi-classical approximation

[7]. If those solutions really exist they could be used to evaluate high

energy amplitudes as well as widely applied there instantons and

sphalerons
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