


1 Introduction

A time-like hyperbola specified as
22—t = const v (1)

describes a world line of an object moving with constant acceleration. Also,
it consitutes an orbit of one-parametric group of Lorentz transformations.
Thus, the world line of a charge moving with constant acceleration pos-
sesses symmetry with respect to the transformations and, since it forms a
source of electromagnetic field produced by the charge, the field also pos-
sesses this symmetry. M.Born used this idea when con'strncting the field of a
charge moving with constant acceleration in 1909 {1]. In our recent work [2]
the symmetry was applied to constructmg a coordinate systern which makes
it possible to separate variables in Maxwell equations and obtain the field
as an exact solution of the equations. In standard Lorentzian coordinates
{t,z,p,4} with ¢ being the time and the reminder meanlng usual coordi-
nates of circular cylinder, the field has the form
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where { = /2% — {2.

‘ This solution describes in fact the field of a pair of charges with world
lines being two conjugated hyperbolas (1). Electromagnetic field produced
by the charge with positive values of z is non-zero only for z-> —t, because
all the rest space-time points have not causal connections with that of the
charge world line. - Correspondingly, electromagnetic field produced by the
charge with negative values of z is non-zero only for z < ¢. Consequently,
both the fields are zero in the domain —t > {z| and non-zero for ¢ > |z|. The
domain z > |t| (—z > |t|) contains only the field produced by the charge
with positive (negative) values of z. \

Consider now the field produced by only one charge, whose world line
has positive 2’s. It is zero for z < —t, and has the form (1) for z > |¢|. Its
form in the domain ¢t > |2| is unknown and does not play any part in further
considerations. In the present work we assume that there presents only one
charge and use the form (2) for the field components only in the domain
z > |t]. The aim of the present work is to study what form of radiation field
emitted under small changes of the charge acceleratlon follows from the Born
solution.
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9 Statement of the problem

Since the Born solution describes a field which does not contain any wave part
[1, 2] the radiation can be emitted only at the moments when the charge ac-
celeration suffers a change. In the simplest case the acceleration is piecewise-
constant with single step-like change. The corresponding world line is smooth
and consists of two halves of different hyperbolas such that the acceleration
suffers a change in the point of the junction. To study the phenomenon it
suffices to consider only infinitesimal changes of the acceleration.

Consider a motion with piecewise-constant acceleration. The world
line of the motion consists of two halves of hyperbolas (1) with different values
of a and lying, in general, in different planes. The fields corresponding to
these motions differ in shape and orientation. The Born solution (2) describes
the field up to the moment of the acceleration change. Applying another
solution to the later moments leads to a wrong result describing a non-smooth
field which suffers an infinitesimal discontinuity whereas the field produced
in reality is smooth. Evidently, the discontinuity is to be erased by adding a
source-free field equal to the difference at the moment of junction and to zero
before it. To see that such a source-free field exists and is unique, consider the
discontinuity in a frame corresponding to zero particle velocity at the moment
of junction. Both the fields have only electric intensities whose divergences
are equal to the charge density. Consequently, their difference constituting
the discontinuity in question, is an electric intensity with zero divergence
and, hence, can be considered as a initial value of some electromagnetic wave.
Now, inserting the electric intensity into Maxwell equations and eliminating
the undefined magnetic intensity leads to a wave equation for the field to
be added. The discontinuity cancels by the only solution. Apparently, the
solution describes some purely radiative field which thus can be considered
as radiation emitted by the charge. In the present work we evaluate the
field differences for an arbitrary infinitesimally small change of the charge
acceleration.

3 The coordinate system

The coordinate sysem in which the uniformly accelerated motion has the
simplest form, is built as follows. Let {t,z, p,»} be a Lorentzian coordinate
system with ¢ being the time and {z,p,¢} forming the standard circular
cylinder coordinate system in the Euclidean 3-space t = const. Then, a
uniformly accelerated frame moving along the z-axis may be introduced as
a foliation of the domain z > 0 by the semispaces ¢t — z = const. The
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accelerated coordinates
t =(sinhé, z={(coshé
C=Vz22—12. € =arctanh(t/z)

form a natural representation of this frame. Now the 3-planes £ = const are
endowed with circular cylinder coordinate system {(.p.}. Any time-like
curve specified by constaut values of the spatial coordinates is a world line
of a point moving with acceleration equal to (7.

1t must be pointed out that the 3-planes £ = const play the role of
“space” for an observer whosc world lineis just described. Indeed, usually one
defines the notion of “space” for an inertial observer as a typical IZuclidean
3-plane orthogonal to his world line. However, there is a significant difference
between the notions of “space” for inertial and non-inertial observers because
the 3-planes orthogonal to a straight world line are parallel whereas that to
a curve arc not and, hence, the “spaces” of non-inertial observers intersect.
By definition, the “spaces” should form a chronologically ordered family oth-
crwise the causality principle is broken in his “space”. Threlore, the "S})ace._
of a non-inertial observer is bounded with the 2-plane of intersections. In the
case of uniforinly accelerated frame the “spaces” are bounded with the plane
¢ = 0. More general, if a point-like object moves with acceleration equal to
|£] then its rest frame spreads over a semispace bounded by a plane lying at
the distance |£]~! from the object and orthogonal to the acceleration vector.

The coordinate system in whicli representation of the clectromagnetic
ficld of a charge moving with constant acceleration takes the sinmiplest form.
is obtained from the system {£,(,p, ]} introduced above, by a conformal
transformation in the & = const, ¢ = consl semiplanes. lu terins of complex
variables

a+(+wp=s utw=w . 3
this transformation has the following form:
w =1 (2(1, l 2a |
w=ln|—=1}; s= . :
s 1 4+ e ()

As well-known, this transformation defines the bi-splierical coordinate system
{u,v,} in the £ = const semispaces. The semispace boundary is specified
as v = 0 planc and we asswine that the u coordinate takes only non-negative
values in the semispace [2]. .

The charge world line intersects the 3-planes in the ‘pole of this coor-
dinate system and his coordinates are s = a or u = 0co. When matching two
such systems their foci are to coincide, whereas the planes specified as w = 0
arc different because they constitute boundaries of semispaces concerned to
different uniform accelerated fraines.



4 Matching the coordinate systems

As the field of a charge moving with constant acceleration is found in a spe-
cial coordinate system whose shape depends on the acceleration vector, we
should introduce two such systems for ¢ > 0 and ¢t < 0 domains. Their
foci coincide at ¢ = 0 and constitute a smooth world line of the charge and
the boundaries of their domains at t = 0 are different. Indeed, the perpen-
dicular dropped from the focus to the bounding plane is collinear with the
vector of acceleration and its length is inverse to the value of the accelera-

tion. Therefore, there exist two main cases to be considered. In the first case’

the acceleration changes only in value and in the second case it does only
in direction. Therefore we label the corresponding increments of coordinates
and the field components with subscripts || and L. For infinitesiral changes
of the acceleration all the rest cases are reducible to the two main ones. As
the fields at ¢ > 0 and t < 0 have the same form in both the coordinate
systems it is natural first to match the coordinate systems.

In the first case there are two spatial coordinate systems in the 3-
plane ¢ = 0 specified by the expressions (3) and (4) with different values of
the parameter a. Let &a be the small increment of the parameter caused
by small change of acceleration. This change causes a small deformation of
the coordinate system. Small deformation of the coordinate system causes
a small change of any object considered in the system. As well-known, the
change is equal ot its Lie differential with respect to the deformation [3, 5].
The deformation is expressed in changes of values of coordinates u and v
for any point of the space. Therefore, we start with evaluating changes of
the coordinates and then find out the Lie derivatives of the field. Since Lie
derivatives of the field are different in the first and the second cases we denote
them as L and L, respectively.

Small differences of the values of u and v coordinates at any point
may be obtained from the fact that increment of the s coordinate is zero:

26a + 2ae*bw
I1+ev  (1+4ev)?

=65 = —

Thus, increment of the w coordinate is equal to

1+e™ a
bw = —+—E—6a =22
a da
Apparently, the differences of u and v coordinates constitute the real and
imaginary parts of éw respectively. Finally, one can rewrite the results in

the following form:
Lypu=a (1l + e ¥cosv); Lyjv=a"le ¥sin v. (5)
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To match the coordinate systems in; the second case we introduce
Cartesian coordinates {z,y,n} o )

asin v sin @

Y= (6)

coshu + cosv’ coshu + cosv’

sinh u I
=qf e —
K coshu + cosv

and the vector @ with components (0,0, a) in these coordinates. The charge
world line intersects the space in the point ¥ = 0 where 7 has components
(z,y,n) and it is easy to check out that
2u_]7'~'-i~2('i|2; v——(i+2§).f‘, 1%
12 |7 + 24]|7
The vector @ is collinear to the charge acceleration and has the length equal to
the power minus one of the acceleration. As was pointed out above, the vector
a represents the perpendicular dropped from the focus to the bounding plane
and its increment is orthogonal to it. Let the small change of the vector 4 is
denoted as §a@. For any given vector éd orthogonal to @ the ¢ coordinate may
be established such that the 6@ vector has only one Cartesian component:

§i = (6,a,0,0)

As follows from the formulas (6), the expression of 7 2in terms of bi-spherical
coordinates has the form

asin v cos @

L2 2a%e™"
" coshu 4 cosv’
Now, evaluating the increments of the expressions (7) with 67 = 0 leads to
the following results: :
2x .
—2¢” % Liu= — = 2a""e"sinv cos y;
T .

—sinvL, v =sinv-ae—1(1 4 e ™ cos v) cos ¢,

- Extracting the Lie derivatives from the last two expressions one finds that

they and the formulas (5) form Cauchy-Riemann-like equations for Lie deriva-
tives of the coordinates: o

Lyw=a'(1+e cosv); Ljp=—a""e"sinv (8)

-1

Liu=—ale*sinvcosy; Lyv=—a"1(1+ e cosv)cose.

These relations make it possible to find out the Lie derivatives of 1-
forms like du. Indeed, since the operation of Lie derivation commutates with
that of exterior derivation [5], the explicit form of Ldu is

Lydu = a7'd(1 + e™¥ cos v); Lydu = —a"'d(e™™sinvcos ). (9)
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5 Matching the fields

As was shown in the work [2], the electric intensity produced by a charge
moving with constant acceleration can be expressed in its rest frame as the
following 1-form: :

E = Edz' = g—(coshu + cos v)du (10)

where q denotes the charge value. Increments of the intensitics are Lie deriva-
tives LyE and L, E of the 1-form E on the deformation of the coordinate
system. As was pointed out above, both the expressions to be constructed
represent sourceless electromagnetic fields. Consequently, they are to satisfy
the equation

d*(LE‘):O : (11

i.e., div E = 0 in the.standard denotions. Below this equation will be used
when checking the results out.

When evaluating the expression Lj£ one must take into account the
explicit. dependence of the intensity on the parameter a (10), i.e. to add the
usual partial derivative JE/Ja to the expression. Derivating the 1-form F
(10) and substituting the Lie derivatives (8) and (9) one obtains

LyE = qa”*{[—(coshu + cosv) 4+ (1 + ¢™ cosv) sinhu + ¢™* sin” v~

—e ¥ cos v(cosh u + cos v)]du — e~ sin v(cosh u + cos v)dv].

This result can be simplified by the following identity:
(1 + e “cosv)sinhu + e *sin? vv = (1 — e “cosv)(cosh u + cos v)
After that the result takes the following form:
LyE = —qa™%e™¥(cosh u + cos v)(2 cos vdu +.sin vdv) (12)
The analogous evaluation in the second case yields
L\ E= - (13)

= ga~%e™*(cosh u + cos v)(2 sin v cos pdu + cos v cos pdv + sin vsin pdyp).

6 Checking out and the final form of the re-
sults "

As was bointed out above, the results may be checked out by inserting themn
into the equation (11). To do this, we start with constructing the conju-
gated 1-forms *(LjE) and *(L E). The Levi-Civita symbol components
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corresponding to the three-dimensional bi-spherical metric (4]

ds? — du? 4 dv? + sin® vdp®
2

(coshu + cosv)

have the following form:

asinv w a

—_—, E‘U.‘U .
coshu + cosv’ sin v(cosh u + cos v)

U v
& vtp“‘euv“‘

Now, transforming the components of the 1-forms (12) and (13) one obtains
the following 2-forms: ' :

(L)L) = ga~%e™*(—sin’ vdu A dip + 2sin v cos vdv A dyp)

*(Ly E) = ga~%e ¥(sin pdu A dv + sin v cos v cos pdu A dp
+2sin® v cos pdv A dp).

It is easy to check out that both of them satisfy the equation (11), for exam-

ple:
d * (L_LE) =

. - d
= qa~%¢7*[—2sin*v — E—(sin veosv) + 1] cos pdu A dv A dy
v

By definition, the vector @ is related to the acceleration vector & as
follows:
R=a"%d
Denoting increments of the charge acceleration components as iy and dwy
one can derive the following relations for their increments:

suy = —a._26a||; §w, = —a " %bay.

Now it is possible to {ind out the strength increment related to that of accel-

eration. Denoting thermn as ¢ and €, respectively onc obtains the final result
in the forin

g = qéwye™(cosh u + cos v)(2 cos vdu + sin vdv)

g1 = géwye”*(cosh u + cos v)(2sin v cos pdu — cos v cos pdv + sin vsin pdp).

Apparently, for an arbitrary change of the charge acceleratrion the intensity
2

increment is sum of €’s. It is seen thal the radiation field grows as % ncar

the charge. This means that in a small enough neighbourhood of the charge
the radiation ficld is negligibly small and cannot yicld large corrections for
the charge self-cnergy.
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Kaxoe OIHCAHHE nanyqermn cnezryer H3 pememm M. BopHa 1909 mna"

Toqnoe pemerme yPaBHEHHH MaKcBeJma IJIs 0SS sapﬂna manxymerocx
C TOCTOSIHHEIM yCKOpEHHEM, HaineHHoe Bnepsue  M.Boprom B 1909 rony,
oTaMYaercs o norenuanos Jinenapa-Buxepra IUISL TOTO K€ MCTOYHHKA NOJISL.

‘I'nasHoe pasnuuue MexXay ¢uzryeckuMu peaynbra-raMu c.nezxyroummn H3 3THX
ABYX BHIDAXXEHHMH NOJs, COCTOMT B TOM, YTO pemenue Bopua He 'CONEPXHAT

BOJIHOBOH uac'm XOTSI 3’1‘0 pememle ONHUCHIBAET orcyrcrnne nanyuemm B JaH-

"HOM KOHKDETHOM Clyuae YCKOPEHHOTO IBHXEHHS [ 1], OHO MPMBOAMT K HEKOTO-

PHIM’ HOBHIM pesynb'raTaM B KJI&CCH‘ICCKOH TCOpPIPI Hsnyuemm B HHCTOHII[CH

‘pabore paccmaTpHBaeTCs cnyqau ABMXEHHS C° KYCOUHO-TIOCTOSHHEIM YCKO- |
" | pernem. ITokasaso, uto cmusxa T0JIEH, COOTBETCTBYIOIIMX PA3HHEIM 3HAUEHHAM
fycxopemm TIOPOXIAET HEKOTOPOE HOBOE noxe, nonycxaromee nmepnpe—
TaLuio, KaK 1oje chymemroro nsnyqemm S

B Pa60'ra maomleaa B .IIa60paTopm1 csepxnmcoxnx anepruit OUSU. .

. IIpenpust Oﬁenu[uek;{'om,uﬂcmryra SANEPHBIX MCCITEROBAHMIL. Ily6ua, 1994 S
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What Descnptlon of Radlatlon Follows fmm M Bom Solutlon of 1909"

Exact solutlon of the Maxwell equatlons for electromagnetlc f1e1d of a charge"
movmg with constant acceleratlon found first by M. Born in 1909 differs from

‘Lienard-Wiechert potential of the same source. The main difference betweent o o

physxcal results obtained from these two expresslons for the field is that the Born

.| solution does not contain any wave part. Although the solution displays absence
.| of radiation in this special case of accelerated motion [1] it leads to some new

results in the class1cal theory of radiation. ‘In this work the case of motlon

; ‘with | plecew1se constant acceleration is consldered It is shown that matchmg
{-the fields corresponding to different values of acceleratlon y1elds some new f1eld :
: ,whlch can be mterpreted as that of radlatlon emltted L
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