


In the last time the problem of calculation of the nucleon singlet axial constant
has intensively been discussed in the literature. On the classical level, this constant
deiermines the value of spin carried by the valence quarks inside the nonrelativistic
nucleon, However, recent experiinental data [1] lead one to the quantity which is
much smaller than the naive theoretical value. The authors of ref. {2] (see also
£1); have firstly pointed out that it is the axial anoma.ly which suffers the naive
interpretation at the quantum level. As a result, the apparent ”spin crisis” was
resolved {4]. : o

In spite of this, the problem of calculation of the nucleon singlet axial constant
is far from being solved successfully. Based on the detailed analysis [5]-[10], one can
conclude that both perturbativé and nonperturbative contributions are essential for
this calculation. . '

In the present paper, we will try to estimate the value of the proton singlet axial
constant taking into account characteristic peculiarities of the singlet axial channel.

Essentially, the problem is as follows: experimental measurements (1] have al-
lowed one to calculate the integral over the Bjorken variable of the first structure
function of polarized deep-inelastic lepton-nucleon scattering {1]. In accordance with
the Ellis-Jaffe sum rule [11], this mtegral is related to the axial constants for the
corresponding nucleon
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Here C’Ns(l @,(@?)) and C%(1, ,(Q?)) are the nonsinglet and singlet operator co-
efficient functions normalized to unity at the tree level. The perturbative expansion
for the nonsinglet coefficient function is known at the nekt—next-t&-leading approxi-
mation of perturbation theory [12] whenever it is known at the next-td—léadhxg order

for the singlet one [13]. The axial constants in eq. (1) are normalized as follows:

< P,S|AQ|P, S >=< P, Sluy.wu — dv1sdl P, S >= g9, (2a)
< P,S|A®|P, S >=< P, Slamuvsu + dvuvsd — 25,95 P, S >= ¢S, (2b)

< P,S|AD|P, S >=< P, Slavapu+ dyurnd + Fpnsl P, S >= g0, (20)
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with S, being the proton spin four-vector . Here the state vectors are normalized in .

the Fock space in accordance with the following condition:

< P(ky)|P(ks) >= (27r)32k$5(3)(1’c’2' - .1?1).

(0} »

The renorma.hzatxon group invariant quantlty: §y’ in eq. (1) can be written through

the scale dependent axml constant g(o) f14]

~(o) _ 0""(“’ 1%4: o
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where fy(::) is the smglet axial current auomalous dimension known at the three-loop

approximation [15] and ﬂ(m) s the QCD A-function detemnned at this order too

[16]. Let us denote the first and second addendum in the r.h.s. of eq.(1) as a¥¥ and
a®, respectively, As a result, Ellis-Jaffe sum rule will take the form
1 :
/ 912, @)z = "7 (1, (@) + 6°(1, (@), (3a)
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In these notations singlet part of the Ellis-Jaffe suin rule in the leadmg order appro-

ximation can be written m the form
a=(1-0. 3333(“’(62 ))) . L (38)

Substituting the numerical values for the integral in the Lh.s., for the coeflicient
function C¥¥(Q?) [12] and also for the nonsinglet axial constants [17], one obtains
a surprisingly small value for the singlet part a¥ ~ 0.02+ 0.01. 1t is easy to see
that the perturbative corrections presented,in {3a} do not save the situation and the
only possibility is to assume (in contrast with the naive expectation) that the proton
singlet axial constant g% itself is a small quantity. In what follows we will try to
estimate the magnitude for g9. .

Let us begin with the consideration of the anomaly equatlon for the ﬂavor singlet

axial current with three active flavors

FAD = 3" 2imegyg + —HLGG (4)

g=u,d,s
Brief mention should be made of an important role of the mass terms in this ex-
pression. At first glance it would seem that these terms are negligibly small due

to the smallness of the corresponding quark masses. Mass terms are often dropped

out in the chiral imit. However, it has been demonstrated in [18] [19] [20] that due
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to the fermionic zero modes over the instanton background the matrix elements of
the operators like §ys¢ have singular behavior in the limit of zero quark mass. So,
only the whole quaniity m,Jysg has a strict sense in the chiral limit; moreover, this
combination gives a nonzero contribution when the quark masses are set to be equal
to zero after all calculations are perfor;ned.

On the other hand, one can assume that the mass term is absent in the Lagrangian
from the very beginning. U so, the derivative of the axial current would be expressed
through the gluon operator only. However, this is the case when the QCD Lagrangian

is chiral invariant and consequently the corresponding generating functional could not

be able to produce a nongzero value for the quark condensate (if the ordinary Feynman

boundary conditions are assumed). The fulfillment of the axial Ward identities in
this case becomes doubtful too (for the detailed discussion see ref. [20]). Another
way of putting 1t is that one must calculate quasiaverages instead of simple averages
[21] going to the limit m, — O after this [22]. Such a procedure allows one to take k
into account consequences of the spontaneous breaking of the chiral symmetry in
the pure QCD. It has been demonstrated in [19] that the contributions coming from
the mass terms in the anomaly equation lead one to the nonrenormalization of the
§-term in QCD. The mass terms play an important role in our calculation too.

Now we are in a position to consider the matrix’ element of the singlet axial

curreni over the proton states

< P(k)IAD|P(k2) >= ¢9(¢")U (k) v U (k2) - tqugp)(qz)U(kl)‘rsU(kz), (5)

where «;v,‘ = ki — koy, U(K) is the proton spinor. It is well known that there are no
massless excitations in the flavor singlet axial channel even in the chiral limit [23].

Consequently, the phenomenological e;(pression for the pseudoscalar constant g% can

B,
TEDD P (6)

= 49

be written in the form

where m2 are the mass squares of the corresponding pseudoscalar i)articles i the
flavor s'mglet case. These quantities are not equal to zero even in the chiral limit.

This is an important point where the smglet and nonsmglet constant calculations
drastically differ from each other. An analogous expressmn for the nonsinglet pseudo-
scalar constant could be presented as a sum of terms containing poles in ¢° and the
terms containing the multiplier of an order of o(m2); as a result, the mixing between

the axial and the pseudoscalar constants will take place within the corresponding
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sum rules. However, as we will see later, this is not true for the flavor singlet case.
Reason is that there are no poles in eq. (6) even in the chiral limit. The coeflicients
B in this expression are determined by the proton-meson interaction vertices. Using
now eq. (4), the matrix element (5) takes the form

P(k1)|0* AQ| P(k;) >= = (~igg 2)2mp + g PN (k) U k),  (7)

where m,, is the proton mass. Our aim will be to estimate the value for ¢ A) by means
of the QCD sum rule method [24]. Following the ideology of this approach consider

the three-point correlation function

Tk, k) = f ehe=iba ¢ O[T r(2) A )7 (4)]0 > dedy =,

= /c""“"" < 0|T"r7“(z/2)AE‘°)(y)ﬁﬂ(—:c/2){D > dzdy, : (8)

" where p = (k1 +k2)/2, and 1*(z) is an interpolating current for the proton stétg [25]
. < 0!7)“(::)[]’(“101») >= AUky).

The phenomenological expression for this correlator can be written in the form

< 0| P(kr) >< P(k)| ALY P(ks) >< P(ka)]]0 > .

£
T8 (ky, ko) = e . (9

where k2 = /{:2 k2 = p® + ¢*/4 and the kinematical condition (pq)=0 is assumed
for sxmphcnty Dots denote here the contributions with the one-pole term and the

terms without poles in (k% ~ mZ2). Multiplying expressnon {9) over ig* and using (7)

we obtain (g 2)
. 29%(*)2midys
it TSP (kyy k) = 294 (7)2m, 0%
g (k? — m2)?
iNg%(7)e?[3/4 + mulys + A2q%9% (62 (ky — my)ys(ke — my,) .
=y 24 (10)

Let us consider now the operator product expansion (OPE) for our lhree—point cor-
relation function. (Hereafter, we will follow the definitions of {26]). The bilocal OPE
for the correlator under mvebtlgatlon looks hke

TP (1, k2| ipajeon = / PRI < 0T 0 (2/2)8* AQ (1) (—2/2)]0 > dzdylips|~co
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= ZCn(p)i J/ e < OI'I"(A),L(O)(')“A(AO)(y)!O > dy + Z R.(p,9) < 0[0.(0)|0 > .

The first sum in the r.h.s. of this expansion is determined by the vacuum expectation
values of some bilocal operators and the second one gives the contributions of the
local operator vacuum expectation values. The operators O,,(0) are generated within

the OPY for the proton interpolating currents
i / P 0 (2 2)7 (2 /2)de = Z cﬂ(p)(‘),;(t))

It is worthwhile to point out here that the bilocal VEVs play the crucml role in
this approach, in fact, they give the ‘dominant contnbutron in the case of the sum
rules for the proton pseudoscalar constants (for a detailed discussion sec ref, [26]).
However, we will demonstrate that the bilocal VEVs cancel cach other in the singlet
case and only the local part of the OPE deterinines the value for the proto‘n singlei
axial constant. Let us turn to the consideration of the correlators presented in the

r.hs of eq. (11)
Pe) =i [ 7 <OT"0,0)0 AV W0 > dy
The dispersion relation for'tlklis"cjl“xantity/looks hike

P,,.(Qz = _q-z) = %/{l‘:%%}é + subtractions.

Somne remarks concerning the peculiarities of this expression are in order here. It is
well known that the correlator for two singlet axial currents < A&,O)AS,O) > contbai_ns
the so-called Kogut-Susskind pole.[27] beyond the intermediate physical particle
contributions.. This pole term is produced by the collective excitations over the com-
plicated vacuum [28]. Within the inoentum representation for < A&O)AS,O) > the
Kogut-Susskind pole gives an additional term proportional to (q,‘q,)/qz.‘ Duc to sin-
gularities in ¢°, the exisience of such a contribution makes it difficult to use the sum
rule formalism. However, in our case, after multiplication of the corresponding corre-
lator over ¢* the Kogut-Susskind contribution becomes the polynomial in momenta
and, consequently, could be absorbed in the subtractional pari of the dispersion re-
lation. Then, using the Borel transformation this polynomié.l disappears from the

sum rales under investigation. Later on, we shall follow this way. -



On the other hand, the phenomenological cxpression for the imaginary part of

\ . . .
the correlator under consideration looks like

ImP,(s) = 7A(s) < ogo,.[o >< 0] E 2im,Jyng + —L Ny G’G[O >+

=u,d,s

+7r26(s -m?) < OIO 1P >< Py z 2m,gysq + ————f—GC’IO >,

g=u,d,s

where A(s) determines the complicated vacuum contribution. ‘I'he second addendum

in the r.h.s. of this relation gives the contribution only to the proton pseudoscalar’

constant g and it is the first term in the r.h.s. which is responsible for ¢3. However,
following [18] [20] this last is equal to zero. Indeed, let us integrate over the fermionic
fields in the path integral representation for < 0/§y,¢{0 > with the following calcu-
lation of the corresponding determinant in terms of the g\luon fields. As an answer

one can obtain [18] [20]
. Xy GG

181 ™My,

< 0]gY:9/0 >= —

Consequently
<0 Y 2imgye

q=t,d,s

N L
221 GéGo >= 0.
4T ;

We can conclude that the bilocal operator VEVs do not affect the sum rule for the
proton singlet axial constant, It is important to point out that this statement is based
on the assumption of absence of the massless excitations in the singlet channel in the
chiral limit (relation with the /(1) problem, see ref. [29]). Now it is evident that the
proton sipglet‘axfal constant must be small in comparison with the nonsinglet one.
The point is that the local part of the OPE determining the value for ¢5 gives the
contnbutxom of the order o only. Let us turn to the consideration of these terms.
For practlcal calculations of the local part it is convenient to introduce the following
quantity .
D2 =[5

T lg=0 =
_1A29%(0)2my, s + Cvrys * )

T (pP-ma) (p? — m2) (1)
v P A P

where C is some unknown constant. The leading contributions to the sum rule for

g4 come from the three-loop perturbative diagram and the one-loop diagram with
the four-fermion condensate. Our main assumption is that the perturbative three-

loop contribution is suppressed by the loop-factor 1/(47%)° and could be neglected in
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the case of rough estimation. The only thing we have done is the calculation of the
four-fermion condensate contributions. In such an approximation, the corresponding
sum rule takes the form

NGOmE e ol <27

(]”+m§)2-r(1”+m) CA (= 7 —— " In(P?*/1?),

where Cr 18 the Casimir operator of the fugdameuta] representation of SU(3). group
{Cr = 4/3) and P? = —p®. Multiplying this expressioﬁ over the quantity P? + mg
and using then the Borel transformation, we obtain the following sum rule for the
proton siuglet axial constant ‘ '

.1

2225 (0)e™ 7 = C“*’( )? 3 < tu>? (7%~ 1), (13)

where 7 = M ’/mﬁ and M? is.the Borcl parameter. Substituting the known values
for the quark condensate and all parameters in eq. (13) [25] we obtain the following

result

-1
95 (0)|u=rgeve™7 =~ 0.025(7% — 7).
The relative stability in these sum rules is reached when 7 ~ 1.3 —.1.5 and conse-

quently
95(0)|u=1ev = 0.02 — 0.03.

So our crude estimation leads to the value for the proton singlet axial constant which
is sufficiently small in comparison with unity and the nonsinélet constants.

In conclusion, let us make some remarks concerning our consideration. First of all,
it is necessary to point out that the result obtained here is qualitative in its essence
and could be considered as some crude approximation only. For a more precise
calculation of the value for the proton singlet axial constant it is necessary to take
into account both the three-loop perturbative contribution.and the dimension-seven
quark-gluon operator contribution within the QCD sum rule approach. However, one
could not expect that these contributions will lead to sufficient increasing in the value
for the proton singlet axial constant. Missing contributions are of an order of o only.
We have demonstrated that correct treatment of the anomalous contributions leads -
to sufficient numerical suppression for the value of the proton singlet axial constant
{(in terms of sum rules the cancellation of the bilocal contributions takes place). This
statement is based on the assumption that there are no massless excitations in the

flavor singlet channel even in the chiral limit.
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The second remark concerns, the physical 'mterﬁrctation of the atrix clement of
the singlet axial current over the proton states. This constant does not determine
the fraction of the épin carried by quarks inside the proton. There are two reasons of
numerical deviation of g9 from the value of spin carried by valence quarks. The first
one is the existence of contributions comming from the axial anonialy and the second
is the perturbative corrections which can be summed up in the leading logarithmic
approximation and could produce substaniial sﬁppressﬁon at the low normalization
points where the nonrelativistic treatiment for g% as spin is valid.

Fina.lly,‘ let us compare the value for g9 obtained here with the results of some
other calculations. It is often assumed that the proton singlet axial constant is
totally determined by the matrix element < P|Z:GG|P >. The analytical [30] and
the lattice [3’1] calculations of this matrix clement lead to the value for 4% which
is ten times higher than our result. This deviation is well understandable in terms
of sum rulés. The ‘point is that in the case of pure gluonic definition for ¢9 the

- cancellation of bilocal -contributions does not take place. As a'consequence, the
dominant contribution in g% 15 due to the vacuum expectation values of bilocal
operators. All local contributions give just small corrections to this quantity. As we
have shown, correct treatment.of the mass terms leads to the cancellation of large
bilocal contributions.

So, we have estimated the value for the proton singlet axial constant. This value
is'sufﬁciently suppressed in comparison with the naively expected one.

The ‘;m_t-\hor is‘grateful to S.A. Larin, A.A. Pivovarov ‘and,A.N. Tavkhelidze for
useful converéations. The work is partly supported by the Russian Fund of the
Fundamental Research, Grants N 94—02—045485, N 94-02-14423.
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Ilana OIICHKa BCJXPI‘“IHH CPIHI‘J]CTHOPI aKCﬂaJIbHOPI KOHCTaHThI HpOTOHa
I'onaaaHo, ‘{TO axcna.nbﬂan aHoma.mm nrpaeT KJIIO‘ICB}’IO pOJIb ZUISI I(aHHOI"O
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’An Estlmate of the Proton Slnglet Ax1al Constant L U
e The value of the proton s1ng1et ax1a1 constant is estlmated It has been shown
that the ax1al anomaly plays a cmc1al role in thls calculatlon. e

“

The 1nvest1gatlon has been performed at the Bogollubov Laboratory
_of Theoretlcal Physms JINR o , :

4 B
o 4
. .
i g : i
L* -
re S
e - g
: ER . W
2 ¥
i S 5 [ERT: gl
e ' e e A - N IS




