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In the last time _the problem of calculation of the nucleon singlet axial constant 

has intensively been discussed in the literature. On the classical level, this constant 

det.ermines t.he value of spin carried by t.he valence quarks inside the nonrelativistic 

nudeon. However, recent, experimental data [IJ lead one to the quantity which is 

much s~allcr than the naive theoretical value. The authors ~f ref .. (2] (see also 

[3]) have firstly pointed out that it is the axial anomaly which suffers the naive 

int.erpretat.ion at the quru1tum level. As a result, the apparent "spin crisis" was 

resolved [4}. 

In spite of this, the problem of calculation of the 'nucleon singlet axial constant 

is far from being solved successfully. Based on the detailed analysis (5}-(10], one can 

condude that both perturbative and nonperturbative contribution's are essential for 

this calculation. 

In the present paper, we will try to estimate the value of the proton singlet axial 

constant taking into account characteristic peculiarities of the singlet axial channel. 

Essentially, the problem is as follows: experimental measurements [1] have al- · 

lowed one to calculate the integral over the Bjorken variable of the first structure 

function of polarized deep-inelastic lepton-nucleon scattering [l]. In accordance with 

the Ellis-Jaffe sum rule [11}, this integral is related to the axial constants for the 

corresponding nucleon 

11 gf(x, Q2)dx = cNs(l, 01,(Q2))[112g~) ~ 316g~>]+ 

+cs(l, a,(Q2))!gf>. 
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Here CN 5 (1, a,(Q2 )) and C 5 (1, a,(Q2 )) are the nonsinglet and singlet operator co-

efficient functions normalized t~ unity at the tree level. The perturbative expansion 

for the nonsinglet coefficient function is known at the next-next-to-leading approxi­

mation of perturbation theory [12] whenever it is known at the next-to-leading order 

for the singlet one (13]. The axial constants in eq. ( 1) are normalized as follows: 

< P, SIA~0)1P, S >=< P, Sju-y,.-y5u + a-y,.-y5d + i-r,.-rsslP, S >= g~) s,., (2c) 
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with Sµ being the proton spin four-vector . Here the state vectors are normalized in 

the Fock space in accordance with the following condition: 

< P(k1)IP(k2) >= (2n-}32k~o<3l(f2 - .k1). 

The renormalization gro1ip invariant quantity g~) in eq. (1) can be written through 

the scale dependent axial constant g~) [14] 

-(o) -J,"''"l ll!ldx (o) ' g A = e o P(•l g A , 

'l 
where 7(x) is the singlet axial current anomalous dimension known at the three-loop 

approximation [15] and f3(x) is the QCD ,8-function determined at this order too 

[16]. Let us denote the first and second addendum in the r.h.s. of cq.(1) as aNs and 

a5 , respectively. As a result, Ellis-Jaffe sum rule will take the form 

11 gf(x,Q2)dx = aNS(1,c.:v,(Q2)) +a.S'(l,c.:v,(Q2)). ' (3a) 

In these notations singlet part of the Ellis-Jaffe sum rule in the leading order appro­

ximation can be written in the form 

a.S = (1 - 0.3333('(Q
2

)))!-(o) 
71" 99A • .(3b) 

Substituting the numerical values for the integral in the 1.h.s., for the coefficient 

function CN5 (Q2 ) [12] and also for the nonsinglet axial constants (17], one obtains 

a surprisingly small value for the singlet part a5 ~ 0.02 ± 0.01. It is easy to see 

that the perturbative corrections presented.in (3a) do not save the situation and the 

only possibility is to assume (in contra.st with the naive expectation} that the proton 

singlet 3:xial constant g~ itself is a small quantity. In what follows we will try to 

estimate the magnitude for g~. 

Let us begin with the com;ideration of the anomaly equation for the flavo_r singlet 

axial current with three active flavors 

8" A~o) = L 2img{j'"M + a,NJ GG. 
471" 

q=u.,d,, 

(4) 

Brief mention should be made of an important role of tl1e mass terms in tl1is ex­

pre.ssion. At first glance it would seem that these terms are negligibly small due 

to the smallness of the corresponding quark masses. Mass terms a.re often dropped 

out in the chiral limit. However, it has been demonstrated in [18] [19] [20] that due 
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to the fermionic zero modes over the instanton background the matrix elements of 

the operators like ij75 q have singular behavior in the limit of zero quark mass. So, 

only the whole quantity mqif")'sq has a strict sense in the chiral limit; moreover, this 

combination gives a nonzero contribut.i?n when the quark masses are set to be equal 

to zero after all calculations are performed. 

On the other hand, one can assume that_ the mass term is absent in the Lagrangian 

from the very beginning. If so, t.he derivative of the axial current would be expressed 

through the gluon opera.tor only. However, this is the case when the QCD Lagrangian 

is chiral invariant and consequently the corresponding generating functional could not 

be able to produce a. nonzero value for the quark condensate (if the ordinary Feynman 

boundary conditions are assumed). The fulfillment of the axial Ward identities in 

this case .becouies doubtful too (for the detailed discussion see ref. [20]). Another 

way of putting it is that one must calculate quasia.verages instead of simple averages 

[21] going to the limit mq -+ 0 after this [22]. Such a procedure allows one to take 

into account consequences of the spontaneous breaking of the chiral symmetry in 

the pure QCD. It has been demonstrated in (19] that the contributions coming from 

the mass terms in the anomaly equation lead one to the nonrenormalization of the 

0-term in QCD. The mass terms play an important role in our calculation too. 

Now we are in a position to consider the matrix' element of the singlet axial 

current, over the proton states 

< P(ki)IA~0ljP(k2 ) >= g~)(q2 )U(k1h,..1sU(k2) - iq,..g~)(q2)U(k1)"Y5U(k2), (5) 

wh~re qµ = k1µ - k2µ, U(k) is the proton spinor. It is well known that there are no 

massless excitations in the flavor singlet axial channel even i1,1 the chiral limit (23]. 

Consequently, the phenomenological expression for the pseudoscalar constant gi can 

be written in the form 

L B,. 
0 ~~ ) 

gp= q2-m; ,. 
(6) 

where m! are the mass squares of the corresponding pseudoscalar particles in the 

flavor singlet case. These quantities are not equal to zero even in the chiral limit. 

This is an important point where the singlet and nonsinglet constant calculations 

drastically · differ from each other. An analogous expression for the nonsinglet pseudo­

scalar constant could be presented as a sum ~f terms containing poles in q2 and the 

terms containing the multiplier of an order of o( m~); as a result, the mixing between 

the axial and the pseudoscalar constants will take place within the corresponding 
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sum rules. However, il8 we will see later, this is not true for the flavor singlet case. 

Reason is that there are no poles in eq. (6) even in the chiral limit. The coefficients 

B,. in this expression are determined by the proton-meson interaction vertices. U;;ing 

now eq. (4), the matrix element (5) takes the form 

< P(ki)lo,. A~0l!P(k2) >= ( .=ig~>(q2)2~p + q2g~\q2)}tJ(k1h0U(k2), (7) 

where mp is the proton mass. Our aim will be to estimate the value for g~) by means 

of the QCD sum rule method [21]. Following the ideology of t.his approach consider 

the three-point correlation function 

r;/J(k1,k2) = I eik,x-ilcw < 01r11"(x)A~0)(o)if(y)IO > dxdy =' 

= I e•px+iqy < 01r11"(x/2)A~l(y)r;P(-x/2)IO > dxdy; (8) 

where p = (k1 +k2)/2, and 17"(x) is an interpolating current fort.he proton state [25] 

. < OlrJ"'(x)IP(ki) >= >.pU"(ki). 

The phenomenological expression for t.his correl~tor can be written in the form 

rf!(k k ) = < Olri
0

IP(k1) >< P(ki)IA~
0
)1P(k2) >< P(k2)l1l10 > ' . (9) 

,. 1, 2 (k2 - m;)2 T .. 

where k2 = ki = ~ = p2 + q2 /4 and the kinematicaJ condition (pq)=0 is assumed 

for simplicity. Dots denote here the contributions with the one-pole term and the 

terms without poles in (k2 - m;). Multiplying expression (9) over iql' and using (7) 

we obtain 
").. 2 0 ( 2)2 2 A 

. l'rc'fJ(k k-) = t p9A q mpq"f5 + 
iq ,. 1, 2 (k2 _ m;)2 

i,\~g~(q2 )q2 [q/4 + mphs + ,\~q2gi(q2)(k1 - mphs(k2 - mp) 
(k2 - m;)2 · + ... (10) 

Let us consider now the operator product expansion (OPE) for our three-point cor­

relation function. (Hereafter, we will follow the definitions of [26]). The bilocal OPE 

for the correlator under investigation looks like 

i<fr::/J(k1, k2)lw•1-oo = I eipz+i,n, < 01r11°(:r./2)«':Y' A~0l(y)ry.8(-:z:/2)IO > dxdyllP'l-oo 
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y 

= L Cn(p)i r eiqy < 01r6n(O)oµ.i1~0)(11)IO > rl.y + L 14,,(p, q) < OIOn(O)IO > . 
. J 

n n 

( 11) 

The first sum in the r.h.s. of this expansion is determined by the vacuum expectation 

values of some bilocal operators and the second one gives the contributions of the 

local operator vacuum expectation values. The operators (J,.(O) are generated within 

the OP~; for the proton interpolating currents 

i J e'P'"'f*rt'(x/'2)r/3(-x/2)r/,x = L Cn(p)O,.(O) 
'I 

It is worthwhile to point out here that the bilocal VEVs play the crucial role in 

this approac:h, in fact, they give the dominant contribution in the case of the sum 

rules for the proton pseudosc.alar constants (for a detailed discussion see ref, [26]). 

However, we will demonstrate that the bilocal VEVs cancel each other in the. singlet 

case and only the local part of the OPE determines the value for the proton singlet 

axial constant. Let us turn to the consideration of the correlators presented in the 

r.h.s. of eq. ( 11) 

Pn(q2
) = i I e•qy < 01r6n(O)oµ. A~1(y)IO > dy. 

The dispersion rela.tio~ for this quantity looks like 

( 
2 2 ) 1 / ImPn(s)ds . 

P.,_ Q = -q = - QZ + subtractions. 
7r s + 

Some remarks concerning the peculiarities of this expression are in order here. It is 

well known that the correlator for two singlet axial currents < A~o) AS0
l > contai_ns 

the .. so-called Kogut-Susskind pole (27] beyond the intermediate physical particle 

contributions .. This pole term is produced by the collective excitations over the com­

plicated vacuum [28]. Within the momentum representation for < A~o) A~o) > the 

Kogut-Susskind pole gives an additional term proportional to ( qµ.q.,) / q2 • Due to sin­

gularities in q2
, the existence of such a contribution makes it difficult to use the sum 

rule formalism. However, in our case, after multiplication of the corresponding corre­

lator over qµ. the Kogut-Susskind contribution becomes the polynomial in momenta 

and, consequently, could be absorbed in the subtractional part of the dispersion re. 

lation. Then, using'the Borel transformation this polynomial disappears from the 

sum ruleR under inveRtigation. Later on, we shall follow this way. 
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On the other hand, the phenomenological expression for the imaginary part of 

the correlator ~nder consideration looks like 

I~Pn(s) = ,rb.(s) < OI0,.10 >< OI ~ 2imqif''M + cr,Ni GGIO > + 
L,, 4,r 

q=u.,d,J 

+,r L o(s - mD < OIOnlP.r, >< Al L 2imqif''M + U!~:f GG'IO >, 
k q=u.,d,J 

where b.(.q) determines the complicated vacuum contribution. The second addendum 

in the r.h.s. of this relation gives the contribution only to the proton pseudoscalar · 

constant gi and it is the first term in the r.h.s. which is responsible for Yi- However, 

following [18] [20] this last. is equal to zero. Indeed, let us integrate over the fermionic 

fields in the path integral representation for < O!q--y~q!O > with the following ca.ku­

lation of the corresponding determinant in terms of the gluon fields. As an answer 

one can obtain [18] [20] 

Consequently 

< 0lq--y5ql0 >= _2 GG 
i8,r-;:;- · q 

~ . a,N1 - · 
< Oj L,, 2imqq--y5q + --GGIO >= 0. 4,r 

q=u,d1 s 

We can conclude that t.he bilocal operator VEVs do not. affect. t.he sum rule for t,he 

proton singlet axial constant. It is important to point out that this statement is based 

on t,he assuinption of absence of the massless excitations in the singlet channel in the 

chiral limit (relation with the U(l) problem, see ref. [29]). Now it is evident that the 

proton singlet,altial canst.ant. must be small in comparison with the nonsinglet one. 

The point i.-i that the local part of the OPE determining the value for g~ gives the 

contributions of the order er; only. Let us tum to the consideration of these terms. 

For practical calculations of the local part, it is convenient t.o introduce the following 

quantity 

nafJ = [J:._(iqµTafJ)Jlq=O = 
.,. {)q-r µ • 

. I 2 0 (0)2 2 C • 
_ Mpg A mp'Yr'Yo -1- 'Y-r"'/5 + ... , 
- (p2 _ m;)2 · (p2 - m;) (12) 

where C is some unknown constant. The leading contributions to the sum rule for 

gi come from the three-loop pcrturbative diagram and the one-loop diagram with 

the four-fermion condensate. Our main assumption is that the perturbative three­

loop contribution is suppressed by the loop-factor 1/(4,r2 ) 3 and could be neglected in 
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the case of rough estimation. The only thing we have done is the calculation of the 

four-fermion condensate contributions. In such au approximation, the corresponding 

sum rule takes the form 

\ z o (0)2 2 ·a i - z 
'pgA mp, i _ 0 2(0!')2 <uu> l (P.2/ 2) 

-r- ( + ... - F n µ ' 
(P-1 + m~)2 P2 + m~) ,r 2 P2 

where CF is the Casimir operator of the fu~damental representation of SU(3),, group 

(CF = 4/3) and P2 = -p2• Multiplying this expression over the quantity P2 + m; 

and using then the Borel transformation, we obtain the following sum rule for the 
. . 

proton singlet axial constant 

0 . l 20! l. 
2.\~gA(0)e-~ ~ C . .,( ,r')22 < uu >2 (r2 

- r), (13) 

where r = M 2/m; and M 2 is. the Borel parameter. Substituting the known values 

for the quark condensate a.ud all para.meters in eq. (13) [25] we obtain the following 

result 

g~(O)l,..=weve-; ~ 0.025(r2 
- r). 

The relative stability in these sum rules is reached when r ~ 1.3 --1.5 and conse­

quently 

g~(O)jµ=lGeV ~ 0.02 - 0.03. 

So our crude estimation leads to the .value for the proton singlet axial constant which 

is sufficiently small in comparison with unity and the nonsinglet constants. 

In conclusion, let us make some remarks concerning our consideration. First of all, 

it is necessary to point out that the result obtained here is qualitative in its essence 

and could be considered as some crude approximation only.' For a more precise 

calculation of the value for the proton singlet axial constant it is necessary to take 

into account both the three-loop perturbative contribution-and the dimension-seven 

quark-gluon operator contribution within the QCD sum rule approach. However, one 

could not expect that these contributions will lead to sufficient increasing in the value 

for the proton singlet axial constant. Missing contributions are of an order of a: only. 

We have demonstrated that correct treatment of the anomalous contributions leads · 

to sufficient numerical suppression for the value of the proton singlet axial constant 

(in terms of sum rules the cancellation of the bilocal contributions takes place). This 
I . 

statement is based on the assumption that there are no massless excitations in the 

flavor singlet channel even in the chiral limit. 

7 



The second 1emark concerns:the physical interpretation of the matrix clement of 

the singlet axial current over the proton states. This constant does uot determine 

the fraction of the spin carried by quarks inside the proton. There are t.wo rea.~ons of 

numerical deviation of gl from t.he value of spin carried by valence quarks. The fir~t. 

one is the existence of contributions comming from the axial anomaly and the second 

is the peiturbative corrections wl1ich can be summed up in the leading logarithmic 

approximation and could produce substantial suppression at. the low normalization 

points where the nonrela.t.ivistic t.reatment for g~ as spin is valid. 

Finally, let us compare the value for g1 obtained here with the results of some 

other calculations. It is often ai,sumed that the proton singlet axial constant, is 

totally deter~ined by the matrix element < Pl ~GCijP >. The a.nalytica.J [:.lO] and 

the lattice (31] calculations of this matrix clement lead to the value for g~1 which 

is ten times higher than our result. This deviation is well understandable in terms 

of sum rules; The point is tl1at in the case of pure gluonic definition for y~ the 

· cancellation of bilocal contributions does not take place. As a consequence, the 

dominant contribution in g1 is due to the vacuum expectation values of bilocal 

operators. All local contributions give just small corrections to thu; quantity. As we 

have shown, correct treatment.of the mass terms leads to the cancellation of large 

bilocal contributions. 

So, we ha.ve estimated the value for the proton singlet a.xia.l constant. This value 

is. sufficiently sUp!)ressed in comparison with the naively expected one. 

The aut,hor is grateful to S.A. Larin, A.A. Pivovarov and A.N. Tavkhelidze for 

useful conversations. The work is partly supported by the Russian Fund of the 

Fundamental Research, Grants N 94-02-04548a, N 94-02-14428. 
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ra6aAaA3e r. T. E2-94-518 
On;eHKa CHHI'A:eTHOH ai<cmlJihHOH KOHCTaHThl npoTOHa 

.II:aHa on;eHKa Be.n:HqHHhl CHHrJieTHOH aKCHaJihHOH KOHCTaH;hl npoToHa. 
IIoKa3aHO, qTo aKCHaJihHaH aHOMaJIHH HrpaeT -_ KJIIOqeByro POJih. AJIH AaHHOro 

. . 

Pa6oTa B-hlnOJIHeHa B Jia6opaTOp~H TeopeTHqecKoH qJH3HKii HM.H.H.Boro-, 
mo6oBa 0115111. · 1 · --. '· 
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The value of the proton singlet axial consta~t is .estimated. It has been shown 
that the axial anomaly plays a_ crucfal role in _this calculation; . 
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