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The strong coupllng reglme and phase structure of. the two- d1mens1onal fteld theory wtth ‘the_
Yukawa coupling and boson self-interaction are 1nvest1gated by means of the methods of canontcal
transformations and renormaltzauon group. The phase dlagram in the (Y, G)-plane is constructed
where Y and G are.Yukawa and self- interaction couphng constants -The Hamiltonians descrlblng
the system in each phase are obtained: Itis shown'that the parity’ is dynamtcally broken and fermion
is massive necessarily, if G >>Y. In the case of the pure Yukawa interaction (G = 0), ‘there are two’
different phases (symmetnc and with broken symmetry) whtch have very close free energy dens1t1es

"However, the symmelric phase is preferable for any 'Y since it has the lower energy. One can conclude
that.in_the model under consxderanon the symmetry breakmg and fermion mass are generated
“dynamically by the boson self-interaction. The relatlonshlp between these results obtalned wtthtn'
the renormahzed formaltsm and the results of latttce calculauons is analyzed L j‘ . i
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Figure 1: Divergent diagrams.

identify a phase structure of the given QFT model with a set of nonequivalent CR
representations realized in this model for different values of dynamical and external
parameters. )

This picture as well as the canonical formalism of QFT in general indicate the
following correct form of the total Hamiltonian:

H=Hy+H+Hy+VE. (1.1)

The standard free part Hy describes a ground state of field system. The interaction
Hamiltonian Hy does not contain terms linear or quadratic in fields and describes
small corrections to Hp if the coupling constants are small. The counter-term oper-
ator H removes all UV divergencies. The form of H is determined by Hy, H; and
renormalization scheme. The renormalization scheme should be fixed. The constant
term E is the vacuum energy density. -

The method we use is based on two ideas. First, the total Hamiltinian of field
system should be written in the correct form in some particular representation
which seems to be suitable for specific values of the dynamical and external parame-
ters (e.g., in the weak coupling regime at zero temperature). Second, the canonical
transformations of the field variables and the requirement that the Hamiltonian
expressed in new ‘variables has the correct form lead to equations defining unitary
nonequivalent CR representations at any values of dynamical and external param-
eters. Each representation is characterized by the effective coupling constants and
vacuum energy density. The system is considered to be in a definite phase if the
effective coupling constants and vacuum energy density in the representation de-
scribing this phase are the smallest ones. The effective coupling constants are used
to control an accuracy of approximation. ‘

‘ We will investigate the phase structure of the Yukawa model supplementcd with
the self-interaction of the pseudoscalar field ¢

L(z) = $(@)id(z) + 59(2) (8 - m3) 9(2) — yo(@)bl)inss(z) — L'(z) (1.9

in space-time R'*! (z = (zg,;)). The fermion field ¢ is massless. The parameters
m}, g and y are positive. The Dirac matrices are related to the Pauli matrices as

Yo=03, M1 =102, 75 =01.

The Lagrangian is invariant under the parity (P) transformation .

P(ro, £1) =.—p(ro, —x1), O(T0.71) = Fov(x0, —29).

Model (1.2) gives a simple but not trivial example for studying the dynamical
P violation and generation of the fermion mass [11]. At the same time. there is a
direct. analogy with the models describing real systems in condensed state ph\ sics
[12]. If the dimensionless coupling constants
2
G = —95— and ¥V = -2
2rmy 2rm}

(1.3)

are small enough, the Lagrangian (1.2) should describe in quantum theory the sys-
tem symmetric under parity transformation. Is this statement really true and what
happens in the strong coupling regime? We formulate the problem as follows:

what representation of CR is suitable for different valiies of G and Y and what
physical picture corresponds to this representation?

The results of the present paper can be summarized as follows. We find the
boson -Mp{G,Y) and fermion Afp(@ Y) masses, effective Couplmg constants

, 9 , y?
)

Gan(G,Y) = 5 =y Yar(GLY) = s
TR R AR

(1)
order paramecter and f{rce encrgy denmty as ful’ICthIlb of (G,Y) for different C'R
representations. The phase diagram in the (¥, G)-plane is constructed. The 1amnil-.
tonians describing systemn (1.2) in each phase are obtained. Two different symmetric
phases and the phase with violated parity occur in the system. The parity breaking
in the strong coupling regime GG > V¥ is conditioned by the boson self-interaction.
This is in accordance with the vacuum structure of pure 992 theory [3, 8].

Another representation with the symmetry bre al\mg coursed b\ the Yukawa cou-
pling is not realized, since the vacuum energy in this representation is larger’ than
the energy of symmetric phases for.any Y, (7. There fore the Yukawa interaction does
not lead to an instability of the syminetric phase. At the first glance this contradicts
to the results of lattice calculations [2]). However, statement of the problem of the
phase structure of a ficld system and investigation techuique within the regularized
(lattice) and renormalized (as in our case) formulations of quantum field theorv are
basically different. We ‘analyze this point i in the last section of the paper and show
that the results of [2] and ours ncither-agree nor contradict to cach other.



2 Hamiltonian and Renormalization

The quantized Hamiltonian corresponding to the Lagrangian (1.2) has the following
form:

H = Ho+ Hi+ He O N
1 ) .
Hy, = / dr; {5 : [#*(z) + (hp(2))? + mhp(z)] @ + 1 w(2)imde(x) :} .
y

Hi= /V dry {ye(z) s wle)inb(z) : +5 ()}

. .
H, = / dz; {iﬁm% t?(z) +6E} .
v

Standard equal time canonical relations are postulated:

[7"({50,11),99(‘%71'1)]— = i8(z) — 1),
[ipH (o, 21 ), (0, 21 )4 = 18(2y — 27) . (2.2)

The Hamiltonian (2.1) is constructed in such a way that CR (2.2) are represented
in the Fock space of bosons with the renormalized mass mp and massless fermions.
The Hamiltonian is normally ordered with respect to the vacuum vector |0) of this
Fock space.

The model under consideration is superrenormalizable. Boson mass and vac-
uum energy renormalization comes from the divergent diagrams given in Tig.la
and Fig.1b respectively. lt is convenient to fix the renormallzatxon scheme by the
following.prescription:

e mass renormalization: external momentum in the diagram in Fig.1a is on
the mass shell (p* = m}%);

e vacuum energy renormalization: djagram in Fig.1b is subtracted com-
pletely.

Simple calculation gives the following result for the counter-terms:

du
u+m

2 o0
Yy
dm% = szIreg(mﬂO), §E = —87rreg/(; reg( u|0) ,

P
]Ireg p’l0) = zreg/ o)

where S is the fermion propagator

ms@ pIO)l’VsS(fHO)}

a—

S(glmr) = 1/(mp — § — ic).

An appropriate regularization is 1mp11ed in Eqs.(2.3). Now the S-matrix is defined,
all terms of the perturbation series over Y < 1-and G <« 1 are ultraviolet finite
and can be calculated. The strong coupling regime Y > 1 and (or) G > 1 and
self-consistency oftthis constriction in the weak coupling regime will be investigated
by means of"the canonical ‘_cr'ansforrr_latl%orl met}lrod. ’

e - i

3 Canonical transformatlon

Let us transform the canomcal varlables as
+ + oy L S
(97, 0) — fiwren (<i20), e (:2) 9}
{m, 9} — {11, (I>+B} o ' o 3.1

Here U is the fermion field with a new mass M} = me, d'is the boson field with
the mass MZ = tm%, the angle ais a parameter of chiral transformations and B is
a constant boson condensate. Such a transformation can be realized in terms of the
creation and annihilation operators [10, 13]. Transformation (3.1) is the canonical
one, i. e., the fields (II, ®) and (:*, ¥).obey the same canonjcal relations (2. 2)
New ﬁelds are defined on the Fock space with the vacuum state |0))i This space is
unitary nonequivalent to the initial one with the vacuum |0).
The Hamiltonian takes the following form in the new canonical variables

H< Hy+H+ Hy 4 VE+ 1, 7 e
Hy = / dzl{ [Hz(z +(01<I>(z))2+M§<I>’(z)] : |
FU@) b+ MA@,
H{:/ d:l{yé(i) ¥(z) [sma—ryscosa]lll(:c

~// da:l{ 6MB C[>2(a:) +5E'} o

[cb“ ) +4B0%(z)] -},

! i

Here the sign :: means normal ordermg ‘with Tespect to ]0)) “The counter-terms
H/, are determined by the new Hamiltonians Hy and Hj and correspond to the
renormalization scheme which is equivalent to the initial one: the i inner lines in the
diagram Fig.1a correspond to the new fermion propagator and external momentum
is on the mass shel] p% = M3, the vacuum dlagram Flg 1b w1th the ‘new propagators

s subtracted completely Weiget

SMp = an"ég(MalMF), Gt (33)

6E = 8—reg / s Mz Hfgg( ulMp) o (3.4)



reg(p M) = ire [ 752 )zTr{<sma mcosa)S(q pIMF)
" x(sin @ — i7y5 cos a)S(q]MF)}

The quantity E in Eq.(3.2) is the vacuum energy density and looks hke

E E0+EI+Ect ) Sogh
Eo= —m332 + L(t) + ((Ol‘l’(iam + MF)‘I’IO)) - (Nmamwm)
g 18- GBZD(t) + 3D2(t)] +yBsin a((0|lIllII|0)) (3.5)

[N

Eu=6E - 6E’—-—6mBD(t)+ 6m332

de 1 ]. 1 , .
= - =-—Int. 3.6
bit) = / (2r)% [m’B —k*—ie ME-k*- ia] ar (36)

The function L(t)

L(t) = 2O/ + (2:8) +m3@?0) — 5017 + (Bue)* + mbe?l0)
‘ i—ﬂé(t—l-—lnt)
" 8r

comes from the normal reordering of the free Hamiltonian. The last term [/, in

Eq.(3.2) has the form
H, = / dz; {% : 0% : [m} — Mf;, —-3¢D(1) + 3gB2 + ém? — 6M,23]
+® [mBB 3¢BD(t) + gB? + 6mBB ysin oTrS(0|MF))
+[yBsina ~ Mp): 00 : —~yBcosa : ViV : }

To preserve the correct form (1.1) of the total Hamiltonian in the'new répresentation
we demand that H; = 0. This requirement leads to equations for the param(,ters
Mp, Mg, B and « of the canonical transformatlon »

yBsina — MF=0, ; Y ; .

yB cosa=0, : S 3

- M3 —3gD(t) + 3gB2 +émy — 6MB =0,
mBB —3¢gBD(t) + gB® — ysin aTrS(0|MFp) + §myB =0 :

Using Egs.((2.3),(3.3)) and introducing the dimensionless quantities (1.3) and

ME. o, My o,
f mgB’ t sz 7. \/7?

one can rewrite 1gs.(3.7) in the form

V2¥bsina —/f =0, _
Vo¥beosa =0, o - ' i3.8)

1‘—1.—"§Glnt+)f1nf+ Y (1 —4%’) F(%) F6GH =0

b [1 — gGl‘n t+YIn f+ Qsz] =0.

where
[ de ‘ ln PATE) g s < '
I;V(Z) = /___‘.__ V1 1—;;1 4z » 2> 4 I’J())
B - — — . - 1 Y A
] T(l &) v ’ma‘r‘(tg dz-1. i =>4

Using these equations we can réwrifé the cnergy density (3.5) as
comyf g 1 2
‘1',:@ 1b -{-I—-l—}nt-i-2flr1f+(w 46" — 6b° 111i+—-lnf (310)

-—ym L+ Y I(f/f}

ot 2 ]

Fquations (ib) do not mmmnm th( cnergy density (3 10) in tll( variables . [.. b.
These equations do not relate to any variational principle. They follow from the
demand of the correct form of the total Hamiltonian. This demand, combined with
the canonical transformations, provides a regular prcscrlptlon for de almg with the
highest ultraviolet dlvergenmes (like the diagrams.in Fig.1). At the same time. 1h(
results of our-and variational .methods coincide in the case .Y = = 0 (the pure &}
theory) when the variational approach is well-defined [3, 8]. '

4 Phase structure

Different solutions of 1igs.{3.8) define the nonequivalent representations of the CR
or dilferent phases of the model (1.2). The proper Hamniltonians in these phases are
given by [gs.(3.2). It is convenient to formulate the followmg definitions. Let us
suppose that Eqs.(3.8) have N different solutions, which can be denoted .as

Si9,G) = {4(Y,G), £V G). bV, G5V, 6)) (= Lo V).



The effective coupling constants (1.4) and energy density (3.10) corresponding to
the j-th solution are denoted by

Y G

() )y

Y(v,6) = Ta CRY.G) =
E(i;

Ej(Y,G) = E(t;(Y, G), [;(Y,G), b;(Y, G), o;(Y, G), ¥, G) .

We shall say that in the reglon Iy C RZ = {(Y,G):Y >20,G > 0} the Yukawa
system (1.2) exists in the phase described by the solution S¢(Y,G) if for (Y, G) € I';

min EJ(ch) = Ek(Y’G) ) '."1'1)

mmy‘”(y G) =YW(y,q), minGY(Y,G)=6B(v,¢). 12)
2

The regions ['x cover all the space RZ, ie., Ul = R2. 1t is quite possible that some
solutions are not realized as actual phases of the system, since they do not minimize
the effective coupling constants and energy density for any ¥ and G.

Usually, criterion (4.1) based on comparison of the vacuum energy densities is
used in the phase transition theory. Meanwhile, in QFT the demand of the weak
effective coupling (4.2) seems‘to be more suitable. From a physical viewpoint the
quantity F does not play any role, since it does not contribute to the $-matrix
elements. Besides that, the energy density can not be calculated exactly or at least
with similar accuracy in different phases, so that comparison of the energies loses its
meaning. At the same time, it is natural to suppose that large coupling constants
in H mean that representation determined by Hy does not describe real states and
can not be considered as a suitable representation for the total Hamiltonian H.
Nevertheless, our calculations show that both criteria give similar results [8]-[10].

4.1 The pure Yukawa interaction

First of all, let us study the case G = 0, i.e., the pure Yukawa model. We will show
that for any coupling constant Y the Yukawa interaction does not-lead dynamnical
generation of the fermion mass and parity violation. -

For G = 0 equations (3.8) are reduced to the form

\/Q_Ybsina=\/f, \/?bcosa:O,
1—t+§lnf+Y(l—4f) F(f/t) = (4.3)
b1+ YInf]=0.

Ivnergy density (3.10) locks in this case like
2 Y
’=—8—B{4b2+t—1—lnt——lnt+2flnf+YJt/f} (4.4)
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Figure 2: Boson mass for different phases of the ‘i‘)ure Yukawa model.
Equations (4.3) has three different solutions.

I bl = O,l 21 E,l, fl EO, sinal —0 )/e(flj)' = Y, E1 = 0.
This is the initial representation (2.1). B

IL b, =0, &,(Y), f2=0, sinay =0, YENY), Ex(Y).

Equation for the boson mass can be represented in the form:

ta —1
s, (4.5)
Using this equation one can represent energy density (4.4) as
_m} 1 ‘
Ez— 87r {tz—' 1——2'(t2+1)111t2} B E ‘ (46)

The functions ¢;(Y') and E3(Y') are plotted in Figs.2,3 by the short-dashed lines. In

the strong coupling regime Y 3> 1 we get from Eqs.(4.5) and (4.6)

3 ' 1
“(Y)->Yhy, YOr) - <1,

Ey(Y) —._8—-3/1 n’Yy . (4.7)
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Figure 3: Energy density for different phases of the pure Yukawa model.

Neither Eq.(4.5) for boson mass ¢ nor the energy density (4.6) depends on the angle
. We have a family of degenerate (in the masses and energy density) vacua enumer-
ated by the angle a. Representations with sina # 0 correspond to the symmetry
broken by the interaction of the pseudoscalar field ® with the scalar fermion current
(see the interaction Hamiltonian H} (3.2)). Below we will consider for definiteness
only the symmetric representation with sina = 0.

TILby = £ exp{—1/2Y}, ta(Y), fo = exp{—1/Y}, sinaz = £1, YY), L4(Y).
The sign ”+” corresponds to two degenerate vacua connected by parity transforma-
tion. In this case an equation for the boson mass has the form

t3—Y(1—4é)F(—f—3(—Y—)):O. ' (4.8)

i3 t3

The energy density (4.4):tékes the form:

2

P Y .0 :
E3=—7;—:?{t3—1—lnt3—51n2t3+YJ(t3/f3)} . . (49)

The function ¢3(Y) is plotted in Fig.2 by the solid line. One can see that the lollowing
relation takes place
t3(Y) < max(l, t2(Y)], VY >0. (-1.10)

10

0.0 0.5 1.0 1.5 2.0
Y ;
Figure 4: Phase diagram in the plane (¥, ). The dashed lines restrict the region 1)
where Eqgs.(1.20) have three solutions.

As a consequence of this relation, the effective coupling constant YP(,?) is larger
in the broken symmetry representation II1 than in the symmetric ones '

Y. > min [Y, ng’(y)] , VY > 0. 1)
The energy density E3(Y) (the solid line in Fig.3) is positive or larger i.han (YY)
owing to inequality (4.10) and presence of the positive term Y J(1/ f) in Eq.(1.9)

E3(Y) > min 0, E5(Y)], VY >0. (1.12)

An asymptotic behavior of all functions in the weak (Y < 1) and st.rm;g (Y>>0
coupling regimes can be found from ¥gs.({4.8),(4.9)).
lFor Y — 0 we get:

(YY) —1 —2(:xp{—}7} , L S (1.13)

Y 1 "o !1'
= Y 2¢exp{ —— Ey(Y)— —E-——expd—=1% .
() (l“”‘p{ }}) » Bs(Y) = 2)"“’{ y’}

The asymptotic expression for the energy density originates from the term Y J(t/f)
in £q.(4.9), i.c., it is conditioned by contribution of the diagram in ¥Fig.tb. Onc can
sce that the energy density is non-analytic at ¥ = 0.

11°



In the strong coupling regime Y >> 1 one gets:

[Q(Y) - t3(Y) d ylnY > 0 s
; 1
YR = YRP) - 5 <0, (1.14)
2
Ey(Y)—Es(Y) - —=2hY <0 ..

s

Comparing the energy densities and effective coupling constants we get the following
relations

Y Y <1
in|Y,Y2(r), ¥R(v)| = =
min Y, Yg'(Y), Yo ( )] Yc(f?)(y) Y >, (1.15)
.
: 0 ifY<1 _
mm[O,Ez(Y):,Eg(Y)} = { Ey(Y) qy s (1.16)

Equations (4.15) and (4.16) show that according to both definitions {4.2) and (4.1)
a kind of phase transition between the phases I and II occurs at ¥ = 1. The phase
III with broken symmetry is not realized for any ¥ > 0.

Thus we conclude that parity is not violated dynamically in the two-dimensional
Yukawa model. The fermion is massless for any values of the coupling constant Y.
This conclusion differs from the results of the lattice calculations [2]. We discuss an
origin of this difference in the last section of the paper.

The effects described in this subsection are determined by non-analyticity of the
physical parameters of the system (like the masses and boson condensate) at ¥ = 0.
Such a non-analytical behavior can be obtained neither in perturbation theory nor
within the variational approach like the Gaussmn effective potential which does not
take into account a major contribution of the dwergent diagrams given in Fig.1.

4.2 . Yukawa model with boson self-interaction

The main effect of boson self-interaction is that the parity is dynamically violated
and the fermion gets a nonzero mass in the strong coupling regime G > Y. This is
illustrated by the phase diagram shown in Fig.4. The solid lines correspond to the
phase boundaries. In the regime G 3> Y the broken symmetry phase conditioned by
the boson self-interaction exists, while for Y 3> G the nontrivial symmetric phase
caused by the Yukawa coupling is realized.

In the general case Lgs.(3.8) have five different solutions.

Lb=0,t=1, fi =0, sina =0, ¥P =
This is the initial representation (2.1).

Y, GS,) =G, Ey=0.
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Figure 5: Boson mass for the phases III, IV and V with broken symmetry.

IL b, = 0, t,(Y,G), f2 =0, siney =0, YA(Y,G), GA(Y,G), EAY,G) .
For b = 0 and f = 0 the equation for the boson mass can be written in the followmg
form (see the third equation (3.8))

tg‘—-l

3 SRR
=Y -3G. e (4.17)”

This eyquatidn has a unique solution for all Y and G obeying the condition
3
Yy — 2
: 2G >0

and does not have solutions for other values of (Y, G). Using Eq.(4.17).in Eq.(3.10)
one can reduce the energy density to the form ’ A y

‘ ) L _
E, = T;’: {tz —1-3(t+ 1)lnt2} , : (4. 18)

which coincides with Eq (4.6). In the strong couplmg reglme Y>> G one ﬁnds
Ct(Y,G) - YnY | ‘ o
1
Ya (%,6) - wy <1 GR(Y,6) -

G <1
YhhY ’

Ez(Y,G)-»—T—le L o (4.19)
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Figure 6: Fermion mass for the phases III, IV and V. ’

Using the formulas (4.18) and (1.4) we get the inequalities
B <0, G2<G, YO<Y for t>1.

Equation (4.17) indicates that ¢z > 1 iy — 3/2G > 1. Thus, according to both
criteria (4.2) and (4.1) the phase transition from the first symmetric phases I to the
second symmetric phase II takes place on the curve Y — 3/2G = 1 shown in Fig.4
by the solid line starting at the point (Y =1,G = 0). :

Solutions III, IV and V with nonzero boson condensate:

bi(Y,G) = £/ LE9 1.(Y,G), £;(Y,G), sina; = £1°(j = 3,4,5).

The sign ”+” corresponds to two degenerate vacua connected by the P-transformation.

The P-symmetry breaking is provided by two reasons. These are the terms : o3 :
and @ : YU : in the interaction Hamiltonian Hj (3.2). The energy density for the

broken symmetry representations is defined in Eq.(3.10). For description of these

solutions it is convenient to introduce the variable s = f/t, to subtract the last
equation (3.8) from the third one and to rewrite Eqs.(3.8) in the form (f = st)

t (‘1 - 253) =Y(1 - 4s)F(s),

G
1+(y—gG)1nt+Y1ns+73t=o. ' (4.20)
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The function I"(s) is defined by Eq.(3.9).

The analysis of the Eqgs.(4.20) shows that there are two qualitatively different
regions in the (Y, Q) plane. There are three solutions inside the region I restricted
by the G-axis and dashed lines in Fig.4, while outside this region only one solution
exists. All solutions are equal to cach other at the point C in Fig.4 whiclh corresponds
to Yo = .341... and G¢ = 1.12... Comparing the limit G — 0 of Egs.(1:20) and
Eq.(4. 8) for the pure Yukawa rnode] we see that onc of the three different solutions
of Bqs.(4.20) is a continuation of the pure Yukawa solution HI (see subsection-1.1)
on the (¥,G) plane. This solution describes the Yukawa-type phase with broken
symmetry The existence of this phase is conditioned by the divergent diagrams
(Fig.1) appearing due to the Yukawa coup]mg

In the sirong (ouplmg regime Y 2> G, we get from Eqs.((41,20). ( .8)) the f()Ho\\-:
ing dsymploh( Ioldtl()ns .

1
[2()/1(;) - 13(},7 G) - _/—7 >0,
: YinyY

Yw,6) - YP(r,6) = _]—1)- <0.
) n

Ay, oy - ¥, 0y > - ( - <0
¢ Ynd
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Figure 8: Boson self-coupling effective constant for the phases III, [V and V.

1 [
Y,G) — =4 SR
fS(a ) exP{ Y} g bs__":t\/Q_Y,

Ey(Y,G) - E5(Y,G) —» ——2 lnY < 0

which are exactly the same as Eqs.(4.14). The boson mass {3 approaches £, from
below. At the same time, the divergence between energy densities E3 and E, grows
due to the contribution of the term Y J(f/t) in Eq.(3.8).

When Y < Y and G grows two additional solutions of Eqs.(4.20) appear at the
lower dashed line restricting the region D in Flg 4. This solutions are of the pi-type
since they are a continuation of the pure 3 broken symmetry representations [8]
on the (Y, G) plane. The ¢3-type phases originate from the divergences caused by
the boson self-interaction (the bubble diagrams). On the upper dashed line in I% ig.4
solutions III and IV terminate and above this line we have only the w3 type phase
V with broken symmetry.

The following asymptotic solutions can be obtained from Egs.(4.20) for G > Y

ts(Y,G) - 3GIn G , (4.21)

5(Y,G) — gYInG, by — i,/glnc,
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2
Es(Y,G) > _-’"—B§Gln20

The asymptotlc behavior of the boson mass and energy density is the same as in
the.pure 3 theory [8].

The point C in Fig.4 is qulte analogous to a critical pomt known in the classu:al
thermodynamical systems like gas-liquid [14]. Different phases do not exist and the
system is always homogeneous outside the region D. One can say that at the critical
point (Y, Gc) the difference between phases disappears (solutions of Eqs.(4.20) are
equal to each other at the critical point C). As soon as the critical point exists,

'a continuous transition between the phases III and V is possxble, in which the

separation into phases does not occur at any point. To do this, the change of
coupling constants must take place along some curve in the (Y, G) plane nowhere
cutting the lower dashed line i in Fig.4. ThlS curve may pass through the critical
point C.

Boson and fermion masses as the functions of G for a ﬁxed value of Y are shown
in Figs.5,6 for two different paths in the (Y,G) plane. The solid line represents the
case Y < Yo: the path cuts the region D and we see the separation into the phases
I11, IV and V. The dashed line corresponds to Y > Yi: the path does not cut
the region D, the separation does not occur and a continuous. transition from the
Yukawa-type pha.se III to the 3-type phase V takes place. The difference between
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Figure 10: Order parameter for the phases I1I, IV and V.

these two phases is purely quantitative. Strictly speaking, one can speak of two
phases only in the case when they exist at the same tire touching each other, i.e.,
for points (Y, G) situated inside the region D. , _

In order to find the phase boundaries in the (Y, G) plane we have to compare the
effective coupling constants and the energy densities of all the possible phases of the
system. The energy densities and effective coupling bonstants for the phases with
violated parity ‘are shown in Figs.7-9. Thé solid lines correspond to'Y =2 < Ye,
the dashed lines represent the case Y =35 > Y¢. Following the definition (4.2) we
get the phase diagram given in Fig.4 by thé solid lines. On’ the right hand side from
the boundary starting at the point (Y’ = 1,G = 0) the nontrivial symmetric phasé

Iis realized, while the @j-type phase V with ‘violated parity océurs above the linc
starting at the G-axis. The transition from the initial phase I to the phase V is 6f
the first order since the order parametc; (see Fig.10) has'a jump at the boundary."’

" Asymptotic relations (4.19) and (4.21) shows that the description of the phases
is quite accurate outside the critical regions, since the effective coupling constants
are'small and tend to zero when the coupling constant G or Y grows. ‘At the ’S"qmc
time or description of the phase boundaries and'the region in Fig.4 whcre' the phase
Lis realized is very approximate, the effective céupling constdhts are large enough
as can be seen from Figs: 8, 9. R B SRS
*"Inany cdse, we can cconichide’ that ™ parity

o i

is violdted and"thé fermion lias a
T AR o2 BTNt
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dynamical mass in the strong coupling regime G >> Y owing to the seli.'-interactior} of -
the pseudoscalar field. The Yukawa coupling does not lcad to dynamical ge.nerntlon
of the fermion mass and parity violation but only courses the phase transition 1—11

without syminetry rearrangement.

5. Discussion

At the first glance above conclusion disagrees with the r‘e‘s.qu of the lattice calcu-
lations [2] which claims that even very smi}l} nga'\\fa cou'pll.ng ge.nerat.es a nonsero
fermion mass. In this section we would like to clarify a relationship betwe.en r(—.‘sul!s
of the lattice approach and the present paper. The central poi'n.t llef?‘ls a basic
difference between the renormalized and regularized (like the lattice QFT) formula--
tions of the quantuin field theory. In order to e_xplain whalt, we mean let us compare
the main ideas of calculations in thes¢ two formulations of QFT for the simplest
Yukawa model with the classical Lagrangian :

1(x) = B)id(a) + 3ola) (O = ) ol) + yola) e

2

in the two-dimensional space-time. For this purpose it is more convenient to deal
with the functional integral approach.

5.1 The Renormalized Formulation

First of all let us reformulate our method of description of the phase structure i}l
application to the functiorial integral. We will do this quite schematically that is
sufficient for above mentioned comparison. The vacnum amplittﬁldc for the model
(5.1) can be written in the form o C

Z = lim reg N’/&/}&})&pcxp {iAnlv, ¥, 0]}, i5.1)

where the action Ar corresponds to the renormalized Lagrangian
3 ! y 4 > ) = =&t () — A
L(z) = P(2)iod(z) + ;)—cp(a:) (o- mlv) g(;zf) + Yo(r)y(a )1/"(.1) zbm A Y O
in which the mass and vacuun energy counter-terms (:erespondi“ng l‘,o-l‘.h(‘ divergent
dia.grams’ in Fig.1 arc incorporated. The quantity m is the rcnorma!lé(‘d mass of
the scalar field ¢ within the on-shell renormalization scheme. Definition (5.1) of

the functional integral implics some appropriate ultraviolet' regularization with a
parameter A and definite rule for removing this regularization at the ﬁqal stage
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of calculations. ~These. two poirits ‘are :denoted in (5.1) by the sign dima_,, reg.i

Integrating out. the fermion f'elds we can represent the vacuum amplitude.Z as .

Plee oo T !

.;Azg_ s

Z = hm reg N 6cpexp{1Af§“[<,9]} . SRR

Aeﬂ[PJ /d2 [ o(z) (0 —m?) p(z) - —6m @ (z)] + Toln (13-{- ),Y) () 2)‘
\ow we look for a constant f'eld conﬁguratlon <,9(z) = d)g _const whl(h mmlrm/ols/
the actlon (3 2) \Ve, have to solvc the equation . .,

dAflleo] = IV e
—_— = ¢p + 6m ¢o - y'Ir—— 0. . 5.3
ddo T i0tyee co e

i

This equatlon is d1vergence-free since the ultrawolet dlvergences in thc last two-terms -

eliminate each other. Formally equation. (5.3) coincides with the last équation{3.7)-
for ¢ = 0. Equation (5.3) has two solutions for all y:

- o 2 Ty o

¢o=0 and ég:%exp{ 27;7271} . (5.4)
\ow we have to study whlch of the solutlons {(5.4) pr0v1des a minimum of the lfxec
energy density. In order to do this self-consistently we should change the integration
variable'in the functional integral (5.2) ¢ — @ + ¢o and at the same time, take:
into account the quantum corrections to the boson mass. In other words we have to
find how the boson mass depends.on the coupling constant, y in the representations
with ¢o = 0 and ¢ # 0. This dependence can be calculated approximately - (taking:
into account leading corrections) by the use of demand of the correct form of the-
total ‘Lagranglan In the simple case under consideration this demand results in the
equation

m* — M* 4 ém(m,y) = $M*(M?,y, o) = 0, (5.5)

where M is the renormalized boson mass and §M? is the counter-term corresponding
to the diagram in Fig.la in which the fermion propagators contam ‘the'mass term
y#o and the external momentum is subjected to the condition p? = M2, Equation
(5.5) is dlvergence free and is equivalent to the third equation (3.7) for g = 0 The.
general form of the vacuum amplitude Z can be written as

» 4.‘Z-~— exp{—lTV E(y)} hm reg N'/J\P6\I/5‘Dexp {JA""[\I/ \I/ ‘D]}
,L"R"‘”(:c),— \I/(z) (z(') M;) (:1:) i+ ‘D(z) (El Mz) (a:) + y(P(:z:)\I/(:z:)\Il(z)w:
I&M?@ 2(z) — y®Tr— L _5"E*. T e

I3 —MF
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In this representation the fermion mass Mr is

2 =2z ] O for 90=0, }‘ 57)
FEY b= m2exp{-2’;—’,"2} for ¢o#0. , (5.7)

The free energy density E(y) in Eq.(5.6) is ultraviolet finite, can be computed and
looks like the energy density in the subsection 4.1. Different solutions of the coupled
system of equations (5.3) and (5.5) give'physically different representations for Z
and describe possible phases of the system. Comparing the energy densities E(y)
corresponding to the solutions of (5 3) and (5.5) we choose the phase which has
minimal energy and, hence, is realized for given value of y. Even for ¢ = 0 equation
(5.5) can have several solutions. In the case under consideration two such solutions
exist for all y and they have the lower energy than the phase with ¢, # 0 (like
solutions I and II in sect. 4.1). .

Thus, solving equation (5.5) for ¢ = 0 and @ # 0 and comparing the free
energy densities for different solutions we see that the phase with massive fermion
has larger free energy than the symmetric phases and, hence, is not realized for all
y. the phase with massive fermion is not realized in the system. L '

The following should be stressed here.

o We have two coupled equations (5.3) and (5.5) describing different phases of
the system. This equations take into account leading quantum contributions
both to the fermion and boson masses.

e The phase structure of the system is described in terms of the renormal-
ized (physical) parameters. In partiqular, the fermion mass (5.7) is expréessed
through renormalized mass of the scalar field.

e The fermion is massles for any y.

Now let us consider the regularized formulation.

5.2 The Regularized Formulation

The vacuum‘am‘plitud‘e for the model (5.1) in the regularized formalizm can be
represented in the form '

Z =reg N/&,b&zﬁ&pexp {iA[‘(,b,l/j, (p]} , : ' (5.8)
where the action A corresponds to the Lagrangian

L(e) = B@)id(z) + 5o(e) (0 - m) ola) + yo()Pla)b(z)
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with the bare boson mass mg. Some regularization is implied in (5.8) but the rule for
its removing is not defined. For example, the lattice approximation of the integral
can be used, that is equivalent, roughly speaking, to cutofl of the integrals in the
momentum space. An integration over the fermion fields leads to the expression

= reg N/&,aexp {iA*T] c,a]}

)= [ [wm ) m] rln (laﬂ?)}» K0

Lookmg for a constant ﬁeld w(z) = ¢o —const whlch mmlmlzes ‘the action (5 9)’ one’

has to solve the,equatlon .

AT L
i0+y¢o

Tdge - o¢ yTr—* 0. ' (5.10)

It is easy to check that Eq (5 10) has two solutlons for all y:"¢p = 0 and -

o A% 27rm
bo= y P {_ y? U}

Here we used the regularization by cutoff of the:momentum integrals at the scale A
As the next step one shifts the field . — ® + ¢q and gets the fermion mass in th(

form : 2 SO
wm,
'MZF_AeXp{ y20}’

which is analogous to correspondmg expression ‘written i in the paper [2] In the new
representation the vacuum functional Z takes the form

(5.11)

Z =reg N'exp {-iTV - Eo(y)}/ﬁ\llﬁ\iw(baxp v{iA“e“"[\IJ,\i)l CD]} | ‘(5’.1‘2)
L*"(z) = U(z) (18 MOF) lII(z) + ‘I>(z (m mo) <I>(z) + y(I)(a:)\II (=)0 7).

The vacuum energy den51ty Eo(y) in Eq (5 12) is a bare quantlty dependmg on th(
regularization parameter A. We see that

e only one equation (5.10) describes different phases of the systern. This equa-
tion takes into account quantum contrlbutlons to the fermion mass but the
boson mass my is fixed;

e the phase structure of the system is 'déescribed in terfiid 6f the Bale mass ing of
the scalar field and ultraviolet cutoff parameter A; in partiqular, the fermion
mass (5.11) is expressed through the bare mass mg and parameterA;

22

e the fermion is massive for all v.

Jomparing the content of the current and previous subsections (espccial.l)' the con-

cluding remarks) one could get a'quite definite impression that comparison of the
results obtained within the renormalized and regularized formulations of QFT is
a subtle thing. In these two cases we have qualitatively different sets of possible
phases. “After all this is explaned by the basic difference in definitions (5.1) and
(5.8) of the vacuum amplitude Z. Thus we can finish the paper by a conclusion that
our results and the results of the lattice approach [2] neither agree nor contradict to
cach other.
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