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The NJL model in the leading 1/N, approximation, Hartree approx-
imation, allows us to obtain a relatively complete picture of low-energy
meson physics [1-5] (N, is the number of quark colors). However, in
the last time, there have been undertaken some attempts to describe
next to the leading 1/N, approximation in the NJL model and to con-
sider mesons not in the tree diagrams only but also in the loop diagrams
[6-12]. Interesting results have been obtained in this direction for the
description of the behaviour of the thermodynamical potential and the
bulk of thermodynamical quantities in the vicinity of the critical tem-
perature. It has been shown that mesonic degrees of freedom play the
dominant role at low T, and the quark degrees of freedom are most
relevant at high T'.

Thus, it seems to be very useful to continue these investigations,
to study more carefully the 1/N, approximation in the NJL model by
using different methods. Here, we consider the perturbation theory and
calculate 1/N, corrections to the gap equation. We will show how to
correctly use the perturbation theory for the description of constituent
quark mass in the 1/N, approximation. Our results are remarkably
different from those obtained in the series of previous papers (see e.g.
[7]). It will be shown that the inclusion of scalar isovector mesons ag(980)
plays an important role in the description of the 1/N, approximation.

We consider the NJL model for the U(2) x U(2) chirally symmetric
case [1-2]

L(3,) = 300 - m)q + S{(@0)? + (@insr*0)?), (1
where ¢ are the fields of u and d quarks, m? is the current quark mass,
A0 =1 is the unique matrix and A* = 7% (a = 1,2,3) are the Pauli
matrices. ’

After the introduction of meson fields by using the technique of gen-
erating functional [1-3] and performing the integration over quark fields
in the functional integral, we come to the Lagrangian

LG¢)=-2t% imisieoy, (@)

where 6o and ¢, are the scalar and pseudoscalar meson fields, respec-
tively, 5p = 0g-m+mqg , 6, =0, (a=1,2,3),( <09 >¢=0)
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S~Yz,y) = [0 — m + 0a XS + s X%a) 64 (z - )

To get the o-model, it is enough to consider the divergent quark
loops, depicted in Fig.1, and to perform the renormalization of meson
fields [1-3]

As a result, we obtain the meson Lagrangian of the following type:

L'(0,¢) = }L-Tr {(8:3)2 + (8,8)? +29 (2 - 8m Iy (m, A))a-

- _‘92 (-C]:?_ ~8I1(m,A)) (52 +($2) _g2

2
&?—2%’—6+<§2] }—

—iTr ln{l + 3 I+ i75¢]} y (4)
Z p—
where the prime in the last term means that we heve here the convergent
quark loop diagrams, g = [4I4(m,A)]"12, & = 0%),;, ¢ = ¢°A,, and
I;(m,A) and Iy(m, A) are divergent integrals (A is the cut-off parameter)
. N, & d%
“ies | Ry ©)
From (5) we can see that the coupling constant g2 has the order 1/N..
Remind that the coupling constant G also has the order 1/N..
From the condition_%"—‘mm%ﬁ:o =0 (absence of linear in ¢ terms in
L"(g,¢)) we obtain the gap equation :

IL(m,A) =

m =m®+8mGI(m,A) . , (6)

How does the gap equation change, if we permit the existence of meson
propagators inside the quark loops? (1/N. approximation). From Fig.1
one can easily see that in this case, in addition to the tadpole 1a there
appear complementary terms (lmear in o) from the diagram 1lc which

lead to the appearance of additional terms in the gap equation (6) (see
Fig.2)

m=m°+8mGIl(m A)+A=

iNe o A dik
it o

S(k) e+ ...

-m Ek-m

=ml +2G

(

The last two terms in (7) can be written in the form of one tadpole with
the modified quark mass:

iN, d*k

m= m+2G( )Tr/m, (7a)
where X(k) is the quark self-energy
£(K) = 35 (k) + Soy(k) + 3Tan(h) , ®)
Se(k) =i [ a i (9)
@y m =) (M- (F =9y

2 A j+m

So, (k) = i(2£;)4 /A d4q(m2 - q2)(‘1]\}‘3i = (=t (10)

Here M, and My, are the masses of pions and o-particles (a; = g, ad, af, a7),

respectively. !

The gap equation (7a) can be written in the form of the Schwinger
- Dyson equation for the new quark mass m(p) =m + X(p). For this
purpose, we add the term X (p) to both the sides of equation (7a) and
write it in the form

N iN, A dik
m(p)—m +2G(2W)4Tr/ m+2(p). (11)
The gap equation (7) and the Schwinger - Dyson equation (11) noticeably
differ from each other. Indeed, the equation (7) contains (k) inside of
the quark loop ( see Fig.2 ) and the equation (11) contains' X(p) as
a quark-loop-independent term. However, in order to prove the low-
energy theorems in the 1/N. approximation ( the Goldstone theorem,
the Goldberger- Treiman relation, the conservation of the quark axial
current ) we have to use the gap equation (7) rather than the equation
(11).

From equation (7) we can find the correction ém to the quark mass
my, obtained in the Hartree approximation, after taking account of the
first order in 1/N, expansion. That is why we write the mass m in the
form

1In the general case the cut-off parameters A and A are not equal to each other
.Here, we assume that A = A = 1.2GeV.



m=myg+ém (12)

and expand the second term in the r.h.s. of (7) over ém, conserving the
terms of first order over 1/N,

mpy +6m = my+(my +6m)8G [I1(my,A) + 5mgTIn1‘|"'=’"H +A(my,A) .
(13)

By using the formulae

m

2¢?

and the gap equation in the Hartree approximation (see formula (6))

§1,(m, A
S A) . _omiym, A) = -

my =my+8Gmyli(my,A),

we find for ém the following expression:

dm=ZA(my,A), s

where

omy \2 m
Z = 16Gm¥ L(my, A ﬂ:(—ﬁ) G+ 20 16
migIy(m, A) + 2 7 + (16)

For the parameters we-use here [1b]: my = 280 MeV, my = 3.3 MeV,
A=1.2GeV, G =5.4 GeV-2and g2 ~ 27, we get

Z71=36, 6m=36 A(mg,A).

Now we have to determine the term A(m,A).For that let us calculate
the functions X,(p,A) and £,(p,A). One can easily evaluate the integrals
in formulae (9) and (10) and get the following expressions:

el A) = 5 [ e (m -2 [ (B +1) +

+1n1+13,x+ax2;( m_2)‘1 1 _
1+ bpx +cz? A2 14brz+er?|

= o5 mCT (. A) - 5CE (7, M) (1”)

(14)

Zoi(p,A) = _(7!];)_4/01 dz (m + zp) [ln (:Tz + 1) +

1+ bo,x + Cx? m2\ ™! 1 _
+ln1+b‘,ix+cz2_( +X2_) 1+bg,z +cx2|
2
= (a7 IMCE (1) +5CF (b, M) (18)
where
2 _ 2 _ 2 2 2 _ 2 g2 2
bi:M "; p, c=£2_7 bl=%' m p,6=£—,a=m2+A2,
m m a a
i A2 Bi = b, Ml
C1=ln(E—2-+1 +(1+—-E>111(1+b1+0)—-(2+?)1H—T—n—+
o, B\ (b2
+(1_—E Ig+(%-2>I0, (19)
o 1(b; b\, 1, (A2 1 b? z
CQ=—§(?—F)+§ln(;-n—2+1)+§(1«W)ln(1+b,+c)—

1 b? M,' i),’ 5,2 T bi bz2
“[H‘E(l’%)]lnﬁ“%( *‘z‘é) o+ gi(2-3) o )

1 dzx = 1 dz
b= Frarar =) g

The term A(m, A) is described by divergent inyegrals. From the for-
mulae (19) and (20) we can see that the coefficients C}(p,A) are slowly
changing functions of the momentum p. Therefore we can use the esti-
mates for these coefficients at p? = —A? and then calculate the divergent
integrals in the equation (7) with the cut-off parameter A.

In our case of the group U(2)xU(2), to the three pions there corre-
spond four scalar mesons in the scalar sector (scalar isoscalar oo(700)
and three scalar isovectors ag(980)). 2

? The isoscalar partner of pions appears only in the U(3)xU(3) group in the form
of a n meson. Therefore, we will not consider it here.Scalar mesons have the masses:
Mg, = T00MeV and m,, = 980MeV.



Table 1 gives the coefficients C{ and Cj evaluated for all these mesons
at p? = —A2

| Table 1
Co | Cr|C™] Co [ CF | C}
0.52] 0.19] 0.45| 0.16| 0.85 | 0.46

Then, for A(m,A) we obtain

Gg m3 [

2(2 2(2m)t'm

+3(2CF - C)) - In(g +1)(3CT +4C5° + 3(3CP + 4CE)

+3(4CF - 3CT)) + 2(CY° + C3° + 3(CP° + C3°) + 3(CF - C))]
=-0.12m.

bm=Z'A=—04m.

As a result, the mass of a constituent quark decreases by 40 % . If
we consider only one scalar meson oy(700), the corrections noticeably
decrease, amounting to 18 % (ém = -0.18 m).

These calculations have only a qualitative character because to obtain
more accurate results it is necessary to redefine all the model parameters
(m,A,G ) in the 1/N. approximation. However, the derivation of the
very accurate results is not our task in this short note. We would like
only to emphasize here the following two important facts:

1) The gap equation (7) and the Schwinger-Dyson equation (11) are
different in form in the 1/N. approximation of the NJL model. In order to
test the low-energy theorems in the 1/N. approximation, it is necessary
to use the gap equation (7).

2) In the realistic case the inclusion of scalar 1sovect0r mesons ag can
very strongly change the 1/, corrections.

The first point is very important in calculations in the 1/N, approxi-
mation and at present several works appear where a inadequate approx-
imation is used. In paper [7] , the equation (11) has been employed with
a constant mass m and without expanding of the tadpole term around

A(m,A) = (C"0 +2C3° + 3(C{* + 2C5°)

e S~ T

the mass my. On the other hand, in the recent work [12], the gap equa-
tion (7) has been used but with an additional term ¥ in the right-hand
side.However, to prove the low-energy theorems, they omitted this term,

i.e. they used our equation (7).

One of the interesting tasks is the construction of chirally symmetric
perturbation theory for the 1/N, expansion. The positive results in this
direction have been obtained by G.S.Guralnik with coauthors already
in 1976 [13]. They showed that in the 1/N, approximation for the NJL
model with one scalar and one pseudoscalar mesons the pion mass was
equal to zero when the current quark mass was vanishing. Therefore,
the pion remains the Goldstone particle in this approximation as well.

When this work has been fulfilled, we found out that a very inter-
esting paper appeared just now [12].In this work, a chirally symmetric
self-consistent 1/N. approximation scheme to the NJL model was de-
veloped.The authors used the correct 1/N. approximation for the gap
equation and demonstrated explicitly that their scheme fulfills all the
chiral symmetry theorems - the Goldstone theorem, Goldberger-Treiman
relation and the conservation of the quark axial current.

This paper is very close to ref. [13]. In contrast with our work they
considered the SU(2) x SU(2) chiral symmetric Lagrangian with only
one scalar isoscalar meson and the case when the current quark mass
was equal to zero.

It is interesting to consider the changes of the meson coupling con-
stants g and g, in the 1/N, approximation. As we have shown in the
Appendix, the scalar meson coupling constant g does not change in the
1/N, approximation. A more complicated situation took place for the-
coupling constants g, and the Goldberger-Treiman identity (see [12]).

In conclusion, we would like to say that the papers [12-13] and this
one give the full picture of the chirally symmetric 1/N, approximation
in the NJL model.
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Let us show that 1/N. corrections to the scalar coupling constant g
are equal to zero. For this aim we consider diagrams depicted in Fig.3.
The scalar vertex function for oy meson in 1/N, approximation takes the

Fig.1 The quadratically (1a, 1b) and logarithmically (1c, 1d) diver- form
gent quark loop diagrams in the NJL model.

TN (p, plq) = go+T%, (0, P'10)+T 5 (0, ' 19)+3T2, (p, 2 19) + 3T (p, p'lg)+

+304(p, P'lg) + 305 (p, p'lg). (A1)
Now consider the case when ¢ =0, p=p'. Then '

q ' Goouo b 3 d4k
G PuI = ' (p,pl0) = —i , , A2
“ﬁ'q - "<ﬂ L,l-Con L )=ty | ooy Y
q q q _

. g2 dik ,
Soo(p+k) = —ivr [ — : A3
| o=y o mog Y
Fig.2 The additional tadpole diagram in the 1/N. approximation. e+ (p, pl0) =gE"°(p2_ (M )| 95200(1,)'
The ¥ is the self-energy part of the quark propagator with pion and ° ’ p—-m p=m sp =™
scalar meson internal lines. P dik ®
=1 = = F 3 0 A4
(2m) / (k+p—m)2(Mz, —k2) o(ppl0) - (A4)

The similar situation takes place for I'y, and T'y. As a result all
. contributions of the diagrams deplcted in Fig.3b-d cancel each other

o 62 (P p) ‘
1, wX " okl - and finally we got :
6, 6o 4 G v."Q\ S, .
(q) — r T T LI L P o\ + = e
. P g . 1/N. _
T Nmy 3Nty 3N\ ‘65; () T/N)(p, pl0) = go - (A.5)
)

a b C S d

Fig.3 The scalar vertex diagrams in the 1/N, approximation .
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