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3yrrHHKB.M'. . . . . . · · 
JJ:Hcl,cpepeHIJ,HaJibHOe m:qHCJieHHe Ha KBaHTO.BOH ccl,epe 
H ~e¢op.r--mpoBairnoe ypairne11He caMO'AYaJibHOCTH · · · 

E2-94-:48~ 

06cy~aeTcsl Jie~oKoBapHaHTHOe 3-MepHoe 'AH<p¢epeHIJ;HaJibHOe HCqHCJie
HHe Ha KBaHTOBoii c¢epe SUq(2)/U(l). CrrHHopiihle.SUq(2).:-rapMO~HKH pac
. CMaTpHBalOTC.sI KaK I<:OOP'AliHaTbl KBaHTOBOH cq,ephl: Mbl paccMaTpHBaeM KaJIH6-
l)OBOqHyIO TeOpHIO 'AJl.sI KBaH~OBOHrpyrrrrhl SUq(2)><. ~(1) Ha 'Ae¢opMHpOBaH:
HO.M eBKJIH'AOBOM IIpOCTpaHCTBe E q( 4 ). I1 peJ:VIO)KeHo q:.o6o6m;eHHe cpopMaJIH3Ma 
rapMcniHqecKHX; KaJiiI6poBoiiHblX. IIOJieH. 3TOT ¢opMaJIH3M. HCIIOJib3yeTC5I 

)~.II.SI rapM01rnqecKOH (TBHCTOPHOH) HHTeprrpeTa:rorn ypaBHeHmi q:--CaMO'AYaJib
HOCTH Ha .. Eq(4). Mbl paccMaTpH_BaeM rrpe~cTaBJieHHe 'HYJieBoii KPHBH3Hhl 
H 06IIJ;y10 KOHCTPYKIJ;HIO q-caMoiiya.n:hHhIX pemeHHii c noMOIIJ;bIO amuiHTHqecKo-
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ro rrperroTeHI1,HaJia.. . 

· Pa66Ta BhlIIOJIHeHa B Jia6~paTOpHH Te~peT~qecKoii cl,H3HKH HM.H.H.Boro-
.ii1060Ba OH511{ , · · · · ·· · 

Ilpenp11HT 06'be)'.11meHHoro 11HcrnryTa llJ'.lepHhIX iiccne)'.10BaH11~'. iy611a, 19.94 
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• We discuss the left-covariant 3-dimensional differential calculus on the quantum. 
sphereSUq(2) l U(l). The Sllq(2)-spinorharmonks are treated as coordiriates 
.of the quantum sphere. We consider the gauge theory for the quantum group 
SUq(i) >< U(l) on the· deformed Euclidean space ~q(4). A q-generalization 
of the harmonic,-gauge~field formalism is suggested. .. . . . . . •. · 

This cformalism is applied for the .harmonic (twistor) interpretation 
of the quantum-group self-duality equation (QGSDE). We considerthe zero
curvature representation and the general construction of QGSDE-solutions 
iri terms of the analytic prepotential. . · -, . . . 
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1 Introduction 
• 

The 2-dimensional sphere 8 2 is the simplest example of homogeneous 
space and can be treated as 8U(2)/U(l) coset space. 8 2 plays an impor
tant role· in the twistor program of Penrose [1] and, particularly, in the 
twistor interpretation of self-duality equation [2]-[4]. The .harmonic ap
proach [4],[5] is a specific version of the twistor formalism based ori using 
the spinor harmonics as coordinates on 8 2

• • 

In the present talk, we make an attempt to construct a q-deformed 
harmonic formalism in the framework of the quantum-group concept [6] ,[7]. 
Noncommutative geometry of quantum spheres has been considered in 
Refs[7]-[9]. We shall use the left-invariant 3D differential calculus on the 
quantum group 8Uq(2) [10], [11] to study geometry on the quantum sphere 
8Uq(2)/U(l) = 8; . . Global functions on 8; can be defined as the subset of 
8Uq(2)-functions with a zero U(l )-charge; so we shall consider the 8Uq(2) x 
U(l)-covariant relations for the basic geometrical objects on 8;. 

Quantum harmonics will be considered as matrix elements u~ of the 
8Uq(2)-matrix u. An operator of external derivation d11 on 8Uq(2) can 
be decomposed in terms of three invariant operators corresponding to the 
different generators of a deformed Lie algebra. We discuss the analogous 
decomposition of Maurer-Cartan equations on 8Uq(2). 

The deformed harmonic formalism can be used for analysis of the self
duality equation on the quantum Euclidean space Eq( 4). The noncommu- ' 
tative coordinates x of Eq(4) satisfy the 8Uf(2) x 8U:(2)-covariant com
mutation relations. In this approach, quantum harmonics are connected 
with the left 8Uq(2)-group. . 

We use the noncommutative algebra of differential complexes [12]- [14] 
as a basis of the quantum-group gauge theory. The quantum-group self
duality equation (QGSDE) on Eq( 4) can. be formulated with the help of 
a duality operation on the curvature 2-form. We present the deformed 
analog of the classical BPST-instanton solution. 

Quantum harmonics allow us to interpret QGSDE as a zero-curvature 
equation for some harmonic decomposition of the connection form. We dis
cuss harmonic solutions of QGSDE by analogy with the classical harmonic 
formalism [4],[5],
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2 Quantum harmonics and 3D-differential 
calculus on the quantum group SUq(2) 

We shall use the R-matrix approach [7] for definition of the unitary 
quantum group Uq(2) = SUq(2) x U(l) where q is a real deformation 
parameter. Let Ti (i, k = 1, 2) be elements of a quantum matrix T 
satisfying the standard RTT-relations ( in the notations of Ref[l4] ) 

RTT' = TT'R , (2.1). 
(T)ik = Ti/} (T')ik = 8iTk Im l mi Im l m 

The symmetrical R, fl and p(±) matrices obey the following relations 

R2 = I+ >.R, RR = 1, R = R - >.I (2.2) 
p(+) + p(-) = J, . p(a) p(b) = 8ab p(b), R = qp(+) _ q-1 pH 

where >. = q - q-1
, a; b = +, -. 

It is convenient to use a covariant expression for the q-generalization of 
an antisymmetrical symbol 

€ik(q) = Jq{Jk) Cik = -q(ik)€k;(q) 

q(l2) =.[q(21)]":"1 = q, q(ll) ~ q(22) = 1 
€ik(q)€k1(q) = 8;, 

where €ik is an ordinary antisymmetrical symbol (€ik = €ki) . 

(2.3) 
. (2.4) 

R-matrix elements can be written in terms of 8 and c(q) symbols 

· Rik ci ck + ki( ) ( ) Im = qulum € q €ml. q 

Eq(l) for the Uq(2) group is equivalent to the following relations: 

€m1(q)Tj T;;' = €nj(q) D(T) 

€ml(q)T/ T! = €ki(q) D(T) 

where D(T) = Detq(T) is the quantum ·determinant 

D(T) = -A€ki(q)€m1(q)T/ T! 
+ q • 

2 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
,,., 

Write also the covariant relations for the inverse quantum matrix S(T) = 
r-1 . 

S(TD = S£ = €kr(q) Tj €ii(q) D- 1(T) 

S ;Tr -T;Sr _ ci l k - l k - Uk 
T/'Di(q)S~ = 'Df (q) = -€j;(q)t)k(q) 

sf (v-1 )iT! = (v-1)7 = -€;j(q)€ki(q) 

(2.9) , 

(2.10) 

where the notation 1) and v-1 for SUq(2)-metrics is introduced . 
The unitarity condition for the matrix T can be formulated with the 

. help of involution [7] 
T i Ti sk k-+ k= i (2.11) 

The condition D(T) =· 1 corresponds to the case of SUq(2). Let us 
define quantum harmonics as matrix elements of the SUq(2)-matrix u~. 
We shall distinguish the upper SUq(2) index i = 1, 2 and low U(l)-index 
a = +, -. SU,f(2) x U(l) co-transformations of the harmonics have the 
following form: ·. · . . · 

u~-+ l~u~exp(±io:) (2.12) 

where a is the U(l) parameter and l is the SU,f'(2)-matrix. 
Eqs(2. 7) for the matrix elements u~ are equivalent to the basic relations 

€ki(q)u~u~ = 0 

€ki(q)u~ut = €ba(q), 
€ba(q)u~ ut = €ki(q) 

(2.13) 

We shall use the left-covariant 3-dimensional differential calculus [10], 
[11] for the quantum harmonics. Consider the q-traceless left-invariant 
1-forms satisfying the Maurer-,Cartan equations 

06 = uidui 
'l'rq0 = q0! + q-10= = 0 

d06 = -0~01, 

where u'f are components of the inverse SUq(2)-harmonics. 
Introduce the simple U(l) notation 

0o = 0! , 0(+2) = 0+ , 0(-2) = 0~ 

(2.14) 
(2.15) 
(2.16) 

(2.17) 

Consider the left-covariant bilinear relations between harmonics and 
0-forms 
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q±20ou~ = u~0o 
±1 . . .../.. 

q 0(p)U± = U±0(p), p r 0 
(2.18) 

These formulas are consistent with Eqs(2.14)-(2.16). Using the standard 
Leibniz rules·for the operator done can obtain the relations for the 0-forms 

0(p) = 0, 0(+2)0(-2) = -q20(-2)0(+2) 

0(±2)00 = -q±40o0(±2) 
(2.19) 

Consider the SUq(2) x U(l) invariant decomposition of the harmonic 
external derivative 

du= Do+ 8 + 8 
80 = 0oDo, 8 = 0(-2JD(+2J, 8 = 0(+2JD(~2J 

(2.20) 

where D0 and D(±2) are left-invariant differential operators. Note that the 
D-operators are generators of the q-deformed Lie algebra [11] 

q
2
D(+2JD(-2J - D(-2JD(+2J = Do (2.21) 

DoD(+2) - q
4
D(+2JD0 = q2(1 + q2)D(+2l 

D(-2)Do.:.... q4 DoD(-2) = q2(1 + q2)D(-2J 

The standard basis of the universal enveloping algebra Uq[SU(2)] [6] 
can be obtained by the nonlinear substitution [11] 

D = L(I -q2H) 0 l-q2 (2.22) 
D(±2J = qH/2 x(±J 

The operators 80 , 8 and 8 are nilpotent and obey the additional condi
tion 

{ 80, 8} + {80, 8} + { 8, 8} = 0 (2.23) 

Define the manifest expressions for the action of these operators on 
quantum harmonics 

[80, u~] = u~0o, 

[80, u~] = -0ou~ , 
[8, u~] = 0, 8u~ = u~ 0(+2) 

[8, u~] = u~0(- 2), [8, u~] = 0 

4 

(2.24) .I ,. 

" \ 

An invariant decomposition of the Maurer-Cartan equations on 
5Uq(2)/U(l) has the following form: 

du0o = 2{8,0o} = 2{8,0o} = -0(-2)0(+2) (2.25) 

du0(+2) = 2{80,0(+2)} = 2{8,0(+2)} = q2(1 + q2)0o0(+2) 

du0(-2) = 2{ 80, 0(-2J} = 2{ 8, 0(-2)} = q2( 1 + q2)0(-2J0o 

Global functions on the quantum sphere S; = SUq(2)/U(I) satisfy the 
invariant condition 

[80, J( u )] = OoDof( u) = 0 (2.26) 

We shall consider also the U ( 1 )-charged functions of the harmonics 
f(p) (u) 

[H,f(r)(u)] = Pf(p)(u) (2.27) 

where p is an integer number. . 
We shall treat harmonic functions as formal expansions on irreducible 

harmonic polynomials. The q-symmetrized product of r harmonics u~ and 
s harmonics u~ is the basis of the irreducible SUq(2)-representation with 
the U(l)-charge p = r - s 

<I>(r:sl(u) = <I>(ii·••ir+,l(u) = u~1 u~ • • • u~u~+i • • · u~+,J = (u+r(u_)5 
(2.28) 

where (r, s) = I is the q-symmetrized multi index 

p(+) <J>(r,s) _ q-1 p m.(r,s) _ m.(r,s) 
k,k+ 1 - Lk,k+ 1 'I' - 'I' (2.29) 

Herc the fl-matrix and the projectional operator p(+) act on the indices 
ik and iH1• 

The monomials <J>(r,s) obey complicated commutation relations depend
ing on the values r, s , so the polynomials f(r)(u) with complex numerical 
coefficients have not covariant commutation properties. It is useful to ex
tend the algebra of harmonics by adding the set of noncommuting coeffi
cients C(r,s)· These coefficients are the components of the covariant neutral 
harmon_ic polynomials ( covariant q-harrrionic fields ) 

F(u) = L C(r,r)<I>(r,r)(u) = L C1<I> 1 (2.:30) 

The bilinear commutation relations between Ci and u follow from the 
requirement of harmonic commutativity : 

[u~, F(u)] = 0 
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Relations between different coefficients C1 can be obtained , for in
stance, from the additional assumption of commutativity for the mono
mials in Eq(2.30). If one has a matrix harmonic field Fba(u) satisfying 
the bilinear relations, then new relations for the corresponding coefficients 
arise too. 

A construction of the differential calculus on covariant harmonic fields 
includes the relations for the harmonic external derivatives (2.21) and C1 

[oo, Ci]= [o, Ci] = [8, Ci]= O (2.32) 

3 Quantum Euclidean space and quantum 
self-duality equation 

Quantum deformations of the Minkowski and Euclidean 4-dimensional 
spaces have been considered in Refs[16]-[19]. We shall use the coordi
nates x~ of q-deformed Euclidean space Eg(4) as generators of a non
commutative algebra covariant under the coaction of the quantum group 
Gg( 4) = suf(2) x suqR(2) . 

i (t )' zi (J '°' k x°'-. xrex= kr°''UxfJ (3.1) 

where land r are quantum matrices of the left and right SUg(2) groups: 

Rik xi xm = xi xk R--YP 
Im °' (J --y p O!(J 

R r r' = r r' R, R l l' = l l' R 
[r, /'] = [r, x'] = [l, x'] = 0, Detg(l) = l = Detg(r) 

We use two identical copies of R-matrices for SU{(2) and SUt(2). 

(3.2) 

(3.3) 

The q-deformed central Euclidean interval T can be constructed by 
analogy with the quantum determinant 

,(x) = --½c:fJ°'(q)t:k;(q)x~xi 
l+q 

I 

(3.4) 

We do not consider the quantum-group structure on Eg( 4) but we shall 
apply, the standard formula (2.10) for a definition of the inverse matrix 
S(x). 

It is convenient to use the following Eg( 4)-involution: 

x~ = c;k(q)x1c:f3°'(q) = rSf(x) (3.5) 

-_ t _ I 
T - T , X°' .- X°' 
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Let us consider th~ bicovariant differential calculus on the quantum 
group Ug(2) [20]-[23] 

TdT' = RdTT' R 
D(T)dT = q2dT D(T) 
wRw + RwRwR = 0 

Tw' = RwRT 

(3.6) 
· (3.7) 

(3.8) 
(3.9) 

where wi(T) = dTj S(T1) are the right-invariant differential forms. 
The quantum trace ( of the form w plays an important role in this 

calculus 

((T) = 'P7(q)wi(T)-:/ 0, e = 0, d( = O 
dT = wT = (q2,\t1[T,(], qdD(T) = (D(T) 

dw = w2 = -(q2,\)-1 {(,w} 

(3.10) 
(3.11) 
(3.12) 

All these formulae can be used for a construction of the Gq ( 4 )-covariant 
differential calculus on Eg ( 4) via the substitution 

T-. x, dT-. dx, w(T)-. w(x) = dx S(x) (3.13) 

The noncommutative algebra of differential complexes [12]-[14] can be 
used for a consistent formulation of the Uq(2) gauge theory on the quantum 
space Eg( 4). Consider the Ug(2) gauge matrix Tt defined on Eq( 4). Sup
pose that Eqs(2.2,3.7 - 3.12) locally satisfy for each "point" x. Coaction 
of the gauge group Ug(2) on the connection I-form Ab has the following 
form [12]-[14]: ' 

A-. T(x) AS(T(x)) + dT(x) S(T(x)) =TA S + w(T) (3.14) 

Ab= dx~Aj1,U(x) 

The basic commutation relations for the form A are covariant under 
the gauge transformation 

ARA+RARAR = O (3.15) 

Note that the general relation for A contains a nontrivial right-hand side 
[14]. 

The restriction a = TrqA = 0 is inconsistent with Eq(3.15), but we can 
choose the zero field-strength condition da = TrqdA = 0. This constraint 
for the U(l)-gauge field is gauge invariant. 
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The curvature 2-form is q-traceless for this model 

F = dA - A2 = dx~dx1Ff;
0

(x) (3.16) 

Basic 2-forms on Eq(4) can be decomposed with the help of the pro
jectional operators p(±) (2.3) 

dx~dx1 = [ pHdxdx'P(+) + p(+ldxdx'PH ]:;;, = 
= ~-r[cki(q)d2xa;, + c;,a(q)d2xik] 

(3.17) 

By analogy with the classical case we can treat these two parts as self-dual 
and anti-self-dual 2-forms under the action of a duality operator *· 

Let us consider the deformed anti-self-duality equation 

*F = -F (3.18) 

· We can obtain a 5-parameter solution for the q-deformed anti-self-dual 
Ug(2)-connection [23]: · 

Ab= dx~ Cbk(q) xt c;,0 (q)(c + f)- 1 

•k k k d' d d 0 X;, = X;, - C;,, X = x, C =· 

R X x' = X x' R R C c' = C c' R C x' = R X c' R 
. '. ' 

cdx' = Rdx c' R, [x,r(x)] = O 
r(x)dx = q2dxr(x) 

(3.19) 

(3.20) 

where c and c1 are some "parameters" and a central function f = r(x) can 
be defined by substitution x--+ x in Eq(3.4). 

Note that one can. treat c as a central periodical.function which define 
a solution of the first-order finite-difference equation: c( r) = c( q2 r ). This 
solution is a deformed analogue of Belavin-Polyakov-Schwarz-Tyupkin in
stanton. The multiparameter q-generalization of the 't Hooft solution can 
be considered too. 

4 - Harmonic ( twist or) interpretation of 
quantum-group self-duality equation 

The QGSD-equation for the field strength has the following form: 

Ff;0 = [p(+)FpH]ff = ck;(q)F;,a 
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( 4.1) 

One can obtain the integrability condition multiplying this equation by 
the product of q-harmonics u~ut. 

Let us discuss the covariant formulation of this integrability condition 
using the deformed harmonic space. It is con\'enient to introduce new 
anal}rtic coordinates Xa(±) for Eq(4) 0q S;. One should use the following 
commutation relations 

,:ic, i ca ci + Rij Rap I (YY (./k x{3 = u{3uk kl {3-,Xp(.Jj 

q8"'u1. = R1mukaa 
1 a ik a m 

qui xk = Rik xi um 
. a {3 Im {, a 

(4.2) 

( 4.:3) 
( 4.4) 

Define the charged analytical coordinates and derivatives and the cor
responding commutation relations 

Xc,a = Cab(qfx~ = Cik(q)x!u~ = -q2Ek;(q)u~x! 
Red R-;p abXacXf3d = ·a[JX-;aXpb 

o)c, - i 8" Rcdaaaf3 - 1~{/aapa-; 0 a - 11a i ' ab C d - t-,p a h 

aaxb = 8a8b + q-1 Rap Rfbxga-; a {3 {3 a {/-; ga ·. p f 

(4.5) 

( 4.6) 

~4.7) 

Note that upper and low indices a, b ... have opposite U( l )-charges. 
Consider the symmetrical decomposition of the external derivative dr 

on Eq(4) 

d - d ; aa - a aa - da - d + d x - X 0 i - K 0 a - a - 1 2 

d; = o, db = K~ar 
where K~ = cab(q)Kab are the covariant analytic ]-forms: 

Kaa = €k;(q)dx~u! = dx 0 a - XabO~ 
{d Ka} = 0 Ka Kb = -Rba Kc Kd R-;p x, a , o,• {3 de -; p o,{3 

a <> b - R 0 PRga Ja-; aK{3- {3-; JbKp g 

It is not difficult to check the following rel~tions: 

df = 0, d~ + {dlid2} = 0 

Stress that d~ --+ 0 in the limit q --+ 1. 
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An analyticity condition for the functions of Xaa and u~ has manifest 
solutions A depending on the analytical coordinate Xa(+) 

8~A = 0 ~ d1 A = 0 (4.12) 

It should be remarked that the action of the harmonic derivatives 
80 and 15 (2.25) conserves the analyticity 

{ 80, di}A = 0, { 15, di}A = 0 (4.13) 

Consider a decomposition of the Uq(2)-connection in the central basis 
(CB) (3.15) A = a

1 
+ a2 corresponding to the decomposition (,1.9) where 

a
1 

= 11:!A~(x) is a connection for the derivative d1 . The quantum-group 
self-duality equation ( 4.3) is equivalent to the zero-curvature equation 

d1a 1 - ai = 0 ( 4.14) 

This equation has the following harmonic solution: 

a1 = d1h S(h) = w(h,d1h) ( 4.15) 

where h(x, u) is a "bridge" Uq(2)-matrix function. The matrix elements of 
h,d

1
h,dxh and duh satisfy the relations analogous to Eqs(3.7-3.9). Addie 

tional harmonic conditions are 

80 h = 0, dTrqw(h, dh) = O (4.16) 

where d is a nilpotent operator ( d1, dx or du)· 
The bridge solution possesses a nontrivial gauge freedom 

h - T(x)hA(x(+), u), 80 A = d1A = O (4.17) 

where A is an analytical Uq(2) gauge matrix. 
The matrix his a transition matrix from the central basis to the analytic 

basis (AB) where d1 has no connection. Consider formally the decomposi
tion d = dx+du in the CB equations (3.15-3.16) although the CB-harmonic 
connection is equal to zero (duT = 0 = duA). The bridge transform is a 
transition to a new u-dependent basis A in the algebra of Uq(2) differential 

complexes 

A= S(h)Ah - S(h)dh = ,<!x + V 

Ax= S(h)Ah - S(h)d~h = 11:~-l A~ 

V = V +ii= -S(h)duh, V = 0(-2) Y(+2), ii= 0(+2) Y(-2) 
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(4.18) 

(4.19) 

( 4.20) 

where Ax, V, v and ii are the AB-connection I-forms for the operators 
d,:, du, 8 and b correspondingly. 

A general solution of QGSDE can be obtained as a solution of the basic 
harmonic gauge equation [4],[5] 

8h + hv = 0<-2i[D(+2ih + h¼+2)] = 0 (4.21) 

where the connection v contains the·analytic prepotential ¼+2)· 
We can discuss also the harmonic equations for the'AB-gauge fields by 

analogy with Refs[24] 

aD V, - 0 A" -· q-2ao V,. + (+2) - , - - - + (-2) , 

[D(+2) + Vc+2il\1c-2) - q-
2[D(-2) + Vc-2ilVc+2) = 0 

( 4.22) 

(4.23) 

where \1c 72) is the nonanalytic gauge field for D(-2). 
One can obtain explicit or perturbative solutions of these equations by 

using the noncornmutative generalizations of classical harmonic expansions 
and harmonic Green functions [4],[5],[24]. 
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