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3yrrHHKB.M'. . . . . . · · 
JJ:Hcl,cpepeHIJ,HaJibHOe m:qHCJieHHe Ha KBaHTO.BOH ccl,epe 
H ~e¢op.r--mpoBairnoe ypairne11He caMO'AYaJibHOCTH · · · 

E2-94-:48~ 

06cy~aeTcsl Jie~oKoBapHaHTHOe 3-MepHoe 'AH<p¢epeHIJ;HaJibHOe HCqHCJie­
HHe Ha KBaHTOBoii c¢epe SUq(2)/U(l). CrrHHopiihle.SUq(2).:-rapMO~HKH pac­
. CMaTpHBalOTC.sI KaK I<:OOP'AliHaTbl KBaHTOBOH cq,ephl: Mbl paccMaTpHBaeM KaJIH6-
l)OBOqHyIO TeOpHIO 'AJl.sI KBaH~OBOHrpyrrrrhl SUq(2)><. ~(1) Ha 'Ae¢opMHpOBaH:­
HO.M eBKJIH'AOBOM IIpOCTpaHCTBe E q( 4 ). I1 peJ:VIO)KeHo q:.o6o6m;eHHe cpopMaJIH3Ma 
rapMcniHqecKHX; KaJiiI6poBoiiHblX. IIOJieH. 3TOT ¢opMaJIH3M. HCIIOJib3yeTC5I 

)~.II.SI rapM01rnqecKOH (TBHCTOPHOH) HHTeprrpeTa:rorn ypaBHeHmi q:--CaMO'AYaJib­
HOCTH Ha .. Eq(4). Mbl paccMaTpH_BaeM rrpe~cTaBJieHHe 'HYJieBoii KPHBH3Hhl 
H 06IIJ;y10 KOHCTPYKIJ;HIO q-caMoiiya.n:hHhIX pemeHHii c noMOIIJ;bIO amuiHTHqecKo-

• ' • ';... • ' < - - ' 

ro rrperroTeHI1,HaJia.. . 

· Pa66Ta BhlIIOJIHeHa B Jia6~paTOpHH Te~peT~qecKoii cl,H3HKH HM.H.H.Boro-
.ii1060Ba OH511{ , · · · · ·· · 

Ilpenp11HT 06'be)'.11meHHoro 11HcrnryTa llJ'.lepHhIX iiccne)'.10BaH11~'. iy611a, 19.94 
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· Differential Calculus on the Quantum Sphere 
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• We discuss the left-covariant 3-dimensional differential calculus on the quantum. 
sphereSUq(2) l U(l). The Sllq(2)-spinorharmonks are treated as coordiriates 
.of the quantum sphere. We consider the gauge theory for the quantum group 
SUq(i) >< U(l) on the· deformed Euclidean space ~q(4). A q-generalization 
of the harmonic,-gauge~field formalism is suggested. .. . . . . . •. · 

This cformalism is applied for the .harmonic (twistor) interpretation 
of the quantum-group self-duality equation (QGSDE). We considerthe zero­
curvature representation and the general construction of QGSDE-solutions 
iri terms of the analytic prepotential. . · -, . . . 
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1 Introduction 
• 

The 2-dimensional sphere 8 2 is the simplest example of homogeneous 
space and can be treated as 8U(2)/U(l) coset space. 8 2 plays an impor­
tant role· in the twistor program of Penrose [1] and, particularly, in the 
twistor interpretation of self-duality equation [2]-[4]. The .harmonic ap­
proach [4],[5] is a specific version of the twistor formalism based ori using 
the spinor harmonics as coordinates on 8 2

• • 

In the present talk, we make an attempt to construct a q-deformed 
harmonic formalism in the framework of the quantum-group concept [6] ,[7]. 
Noncommutative geometry of quantum spheres has been considered in 
Refs[7]-[9]. We shall use the left-invariant 3D differential calculus on the 
quantum group 8Uq(2) [10], [11] to study geometry on the quantum sphere 
8Uq(2)/U(l) = 8; . . Global functions on 8; can be defined as the subset of 
8Uq(2)-functions with a zero U(l )-charge; so we shall consider the 8Uq(2) x 
U(l)-covariant relations for the basic geometrical objects on 8;. 

Quantum harmonics will be considered as matrix elements u~ of the 
8Uq(2)-matrix u. An operator of external derivation d11 on 8Uq(2) can 
be decomposed in terms of three invariant operators corresponding to the 
different generators of a deformed Lie algebra. We discuss the analogous 
decomposition of Maurer-Cartan equations on 8Uq(2). 

The deformed harmonic formalism can be used for analysis of the self­
duality equation on the quantum Euclidean space Eq( 4). The noncommu- ' 
tative coordinates x of Eq(4) satisfy the 8Uf(2) x 8U:(2)-covariant com­
mutation relations. In this approach, quantum harmonics are connected 
with the left 8Uq(2)-group. . 

We use the noncommutative algebra of differential complexes [12]- [14] 
as a basis of the quantum-group gauge theory. The quantum-group self­
duality equation (QGSDE) on Eq( 4) can. be formulated with the help of 
a duality operation on the curvature 2-form. We present the deformed 
analog of the classical BPST-instanton solution. 

Quantum harmonics allow us to interpret QGSDE as a zero-curvature 
equation for some harmonic decomposition of the connection form. We dis­
cuss harmonic solutions of QGSDE by analogy with the classical harmonic 
formalism [4],[5],
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2 Quantum harmonics and 3D-differential 
calculus on the quantum group SUq(2) 

We shall use the R-matrix approach [7] for definition of the unitary 
quantum group Uq(2) = SUq(2) x U(l) where q is a real deformation 
parameter. Let Ti (i, k = 1, 2) be elements of a quantum matrix T 
satisfying the standard RTT-relations ( in the notations of Ref[l4] ) 

RTT' = TT'R , (2.1). 
(T)ik = Ti/} (T')ik = 8iTk Im l mi Im l m 

The symmetrical R, fl and p(±) matrices obey the following relations 

R2 = I+ >.R, RR = 1, R = R - >.I (2.2) 
p(+) + p(-) = J, . p(a) p(b) = 8ab p(b), R = qp(+) _ q-1 pH 

where >. = q - q-1
, a; b = +, -. 

It is convenient to use a covariant expression for the q-generalization of 
an antisymmetrical symbol 

€ik(q) = Jq{Jk) Cik = -q(ik)€k;(q) 

q(l2) =.[q(21)]":"1 = q, q(ll) ~ q(22) = 1 
€ik(q)€k1(q) = 8;, 

where €ik is an ordinary antisymmetrical symbol (€ik = €ki) . 

(2.3) 
. (2.4) 

R-matrix elements can be written in terms of 8 and c(q) symbols 

· Rik ci ck + ki( ) ( ) Im = qulum € q €ml. q 

Eq(l) for the Uq(2) group is equivalent to the following relations: 

€m1(q)Tj T;;' = €nj(q) D(T) 

€ml(q)T/ T! = €ki(q) D(T) 

where D(T) = Detq(T) is the quantum ·determinant 

D(T) = -A€ki(q)€m1(q)T/ T! 
+ q • 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 
,,., 

Write also the covariant relations for the inverse quantum matrix S(T) = 
r-1 . 

S(TD = S£ = €kr(q) Tj €ii(q) D- 1(T) 

S ;Tr -T;Sr _ ci l k - l k - Uk 
T/'Di(q)S~ = 'Df (q) = -€j;(q)t)k(q) 

sf (v-1 )iT! = (v-1)7 = -€;j(q)€ki(q) 

(2.9) , 

(2.10) 

where the notation 1) and v-1 for SUq(2)-metrics is introduced . 
The unitarity condition for the matrix T can be formulated with the 

. help of involution [7] 
T i Ti sk k-+ k= i (2.11) 

The condition D(T) =· 1 corresponds to the case of SUq(2). Let us 
define quantum harmonics as matrix elements of the SUq(2)-matrix u~. 
We shall distinguish the upper SUq(2) index i = 1, 2 and low U(l)-index 
a = +, -. SU,f(2) x U(l) co-transformations of the harmonics have the 
following form: ·. · . . · 

u~-+ l~u~exp(±io:) (2.12) 

where a is the U(l) parameter and l is the SU,f'(2)-matrix. 
Eqs(2. 7) for the matrix elements u~ are equivalent to the basic relations 

€ki(q)u~u~ = 0 

€ki(q)u~ut = €ba(q), 
€ba(q)u~ ut = €ki(q) 

(2.13) 

We shall use the left-covariant 3-dimensional differential calculus [10], 
[11] for the quantum harmonics. Consider the q-traceless left-invariant 
1-forms satisfying the Maurer-,Cartan equations 

06 = uidui 
'l'rq0 = q0! + q-10= = 0 

d06 = -0~01, 

where u'f are components of the inverse SUq(2)-harmonics. 
Introduce the simple U(l) notation 

0o = 0! , 0(+2) = 0+ , 0(-2) = 0~ 

(2.14) 
(2.15) 
(2.16) 

(2.17) 

Consider the left-covariant bilinear relations between harmonics and 
0-forms 
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q±20ou~ = u~0o 
±1 . . .../.. 

q 0(p)U± = U±0(p), p r 0 
(2.18) 

These formulas are consistent with Eqs(2.14)-(2.16). Using the standard 
Leibniz rules·for the operator done can obtain the relations for the 0-forms 

0(p) = 0, 0(+2)0(-2) = -q20(-2)0(+2) 

0(±2)00 = -q±40o0(±2) 
(2.19) 

Consider the SUq(2) x U(l) invariant decomposition of the harmonic 
external derivative 

du= Do+ 8 + 8 
80 = 0oDo, 8 = 0(-2JD(+2J, 8 = 0(+2JD(~2J 

(2.20) 

where D0 and D(±2) are left-invariant differential operators. Note that the 
D-operators are generators of the q-deformed Lie algebra [11] 

q
2
D(+2JD(-2J - D(-2JD(+2J = Do (2.21) 

DoD(+2) - q
4
D(+2JD0 = q2(1 + q2)D(+2l 

D(-2)Do.:.... q4 DoD(-2) = q2(1 + q2)D(-2J 

The standard basis of the universal enveloping algebra Uq[SU(2)] [6] 
can be obtained by the nonlinear substitution [11] 

D = L(I -q2H) 0 l-q2 (2.22) 
D(±2J = qH/2 x(±J 

The operators 80 , 8 and 8 are nilpotent and obey the additional condi­
tion 

{ 80, 8} + {80, 8} + { 8, 8} = 0 (2.23) 

Define the manifest expressions for the action of these operators on 
quantum harmonics 

[80, u~] = u~0o, 

[80, u~] = -0ou~ , 
[8, u~] = 0, 8u~ = u~ 0(+2) 

[8, u~] = u~0(- 2), [8, u~] = 0 
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An invariant decomposition of the Maurer-Cartan equations on 
5Uq(2)/U(l) has the following form: 

du0o = 2{8,0o} = 2{8,0o} = -0(-2)0(+2) (2.25) 

du0(+2) = 2{80,0(+2)} = 2{8,0(+2)} = q2(1 + q2)0o0(+2) 

du0(-2) = 2{ 80, 0(-2J} = 2{ 8, 0(-2)} = q2( 1 + q2)0(-2J0o 

Global functions on the quantum sphere S; = SUq(2)/U(I) satisfy the 
invariant condition 

[80, J( u )] = OoDof( u) = 0 (2.26) 

We shall consider also the U ( 1 )-charged functions of the harmonics 
f(p) (u) 

[H,f(r)(u)] = Pf(p)(u) (2.27) 

where p is an integer number. . 
We shall treat harmonic functions as formal expansions on irreducible 

harmonic polynomials. The q-symmetrized product of r harmonics u~ and 
s harmonics u~ is the basis of the irreducible SUq(2)-representation with 
the U(l)-charge p = r - s 

<I>(r:sl(u) = <I>(ii·••ir+,l(u) = u~1 u~ • • • u~u~+i • • · u~+,J = (u+r(u_)5 
(2.28) 

where (r, s) = I is the q-symmetrized multi index 

p(+) <J>(r,s) _ q-1 p m.(r,s) _ m.(r,s) 
k,k+ 1 - Lk,k+ 1 'I' - 'I' (2.29) 

Herc the fl-matrix and the projectional operator p(+) act on the indices 
ik and iH1• 

The monomials <J>(r,s) obey complicated commutation relations depend­
ing on the values r, s , so the polynomials f(r)(u) with complex numerical 
coefficients have not covariant commutation properties. It is useful to ex­
tend the algebra of harmonics by adding the set of noncommuting coeffi­
cients C(r,s)· These coefficients are the components of the covariant neutral 
harmon_ic polynomials ( covariant q-harrrionic fields ) 

F(u) = L C(r,r)<I>(r,r)(u) = L C1<I> 1 (2.:30) 

The bilinear commutation relations between Ci and u follow from the 
requirement of harmonic commutativity : 

[u~, F(u)] = 0 
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Relations between different coefficients C1 can be obtained , for in­
stance, from the additional assumption of commutativity for the mono­
mials in Eq(2.30). If one has a matrix harmonic field Fba(u) satisfying 
the bilinear relations, then new relations for the corresponding coefficients 
arise too. 

A construction of the differential calculus on covariant harmonic fields 
includes the relations for the harmonic external derivatives (2.21) and C1 

[oo, Ci]= [o, Ci] = [8, Ci]= O (2.32) 

3 Quantum Euclidean space and quantum 
self-duality equation 

Quantum deformations of the Minkowski and Euclidean 4-dimensional 
spaces have been considered in Refs[16]-[19]. We shall use the coordi­
nates x~ of q-deformed Euclidean space Eg(4) as generators of a non­
commutative algebra covariant under the coaction of the quantum group 
Gg( 4) = suf(2) x suqR(2) . 

i (t )' zi (J '°' k x°'-. xrex= kr°''UxfJ (3.1) 

where land r are quantum matrices of the left and right SUg(2) groups: 

Rik xi xm = xi xk R--YP 
Im °' (J --y p O!(J 

R r r' = r r' R, R l l' = l l' R 
[r, /'] = [r, x'] = [l, x'] = 0, Detg(l) = l = Detg(r) 

We use two identical copies of R-matrices for SU{(2) and SUt(2). 

(3.2) 

(3.3) 

The q-deformed central Euclidean interval T can be constructed by 
analogy with the quantum determinant 

,(x) = --½c:fJ°'(q)t:k;(q)x~xi 
l+q 

I 

(3.4) 

We do not consider the quantum-group structure on Eg( 4) but we shall 
apply, the standard formula (2.10) for a definition of the inverse matrix 
S(x). 

It is convenient to use the following Eg( 4)-involution: 

x~ = c;k(q)x1c:f3°'(q) = rSf(x) (3.5) 

-_ t _ I 
T - T , X°' .- X°' 
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Let us consider th~ bicovariant differential calculus on the quantum 
group Ug(2) [20]-[23] 

TdT' = RdTT' R 
D(T)dT = q2dT D(T) 
wRw + RwRwR = 0 

Tw' = RwRT 

(3.6) 
· (3.7) 

(3.8) 
(3.9) 

where wi(T) = dTj S(T1) are the right-invariant differential forms. 
The quantum trace ( of the form w plays an important role in this 

calculus 

((T) = 'P7(q)wi(T)-:/ 0, e = 0, d( = O 
dT = wT = (q2,\t1[T,(], qdD(T) = (D(T) 

dw = w2 = -(q2,\)-1 {(,w} 

(3.10) 
(3.11) 
(3.12) 

All these formulae can be used for a construction of the Gq ( 4 )-covariant 
differential calculus on Eg ( 4) via the substitution 

T-. x, dT-. dx, w(T)-. w(x) = dx S(x) (3.13) 

The noncommutative algebra of differential complexes [12]-[14] can be 
used for a consistent formulation of the Uq(2) gauge theory on the quantum 
space Eg( 4). Consider the Ug(2) gauge matrix Tt defined on Eq( 4). Sup­
pose that Eqs(2.2,3.7 - 3.12) locally satisfy for each "point" x. Coaction 
of the gauge group Ug(2) on the connection I-form Ab has the following 
form [12]-[14]: ' 

A-. T(x) AS(T(x)) + dT(x) S(T(x)) =TA S + w(T) (3.14) 

Ab= dx~Aj1,U(x) 

The basic commutation relations for the form A are covariant under 
the gauge transformation 

ARA+RARAR = O (3.15) 

Note that the general relation for A contains a nontrivial right-hand side 
[14]. 

The restriction a = TrqA = 0 is inconsistent with Eq(3.15), but we can 
choose the zero field-strength condition da = TrqdA = 0. This constraint 
for the U(l)-gauge field is gauge invariant. 
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The curvature 2-form is q-traceless for this model 

F = dA - A2 = dx~dx1Ff;
0

(x) (3.16) 

Basic 2-forms on Eq(4) can be decomposed with the help of the pro­
jectional operators p(±) (2.3) 

dx~dx1 = [ pHdxdx'P(+) + p(+ldxdx'PH ]:;;, = 
= ~-r[cki(q)d2xa;, + c;,a(q)d2xik] 

(3.17) 

By analogy with the classical case we can treat these two parts as self-dual 
and anti-self-dual 2-forms under the action of a duality operator *· 

Let us consider the deformed anti-self-duality equation 

*F = -F (3.18) 

· We can obtain a 5-parameter solution for the q-deformed anti-self-dual 
Ug(2)-connection [23]: · 

Ab= dx~ Cbk(q) xt c;,0 (q)(c + f)- 1 

•k k k d' d d 0 X;, = X;, - C;,, X = x, C =· 

R X x' = X x' R R C c' = C c' R C x' = R X c' R 
. '. ' 

cdx' = Rdx c' R, [x,r(x)] = O 
r(x)dx = q2dxr(x) 

(3.19) 

(3.20) 

where c and c1 are some "parameters" and a central function f = r(x) can 
be defined by substitution x--+ x in Eq(3.4). 

Note that one can. treat c as a central periodical.function which define 
a solution of the first-order finite-difference equation: c( r) = c( q2 r ). This 
solution is a deformed analogue of Belavin-Polyakov-Schwarz-Tyupkin in­
stanton. The multiparameter q-generalization of the 't Hooft solution can 
be considered too. 

4 - Harmonic ( twist or) interpretation of 
quantum-group self-duality equation 

The QGSD-equation for the field strength has the following form: 

Ff;0 = [p(+)FpH]ff = ck;(q)F;,a 

8 

( 4.1) 

One can obtain the integrability condition multiplying this equation by 
the product of q-harmonics u~ut. 

Let us discuss the covariant formulation of this integrability condition 
using the deformed harmonic space. It is con\'enient to introduce new 
anal}rtic coordinates Xa(±) for Eq(4) 0q S;. One should use the following 
commutation relations 

,:ic, i ca ci + Rij Rap I (YY (./k x{3 = u{3uk kl {3-,Xp(.Jj 

q8"'u1. = R1mukaa 
1 a ik a m 

qui xk = Rik xi um 
. a {3 Im {, a 

(4.2) 

( 4.:3) 
( 4.4) 

Define the charged analytical coordinates and derivatives and the cor­
responding commutation relations 

Xc,a = Cab(qfx~ = Cik(q)x!u~ = -q2Ek;(q)u~x! 
Red R-;p abXacXf3d = ·a[JX-;aXpb 

o)c, - i 8" Rcdaaaf3 - 1~{/aapa-; 0 a - 11a i ' ab C d - t-,p a h 

aaxb = 8a8b + q-1 Rap Rfbxga-; a {3 {3 a {/-; ga ·. p f 

(4.5) 

( 4.6) 

~4.7) 

Note that upper and low indices a, b ... have opposite U( l )-charges. 
Consider the symmetrical decomposition of the external derivative dr 

on Eq(4) 

d - d ; aa - a aa - da - d + d x - X 0 i - K 0 a - a - 1 2 

d; = o, db = K~ar 
where K~ = cab(q)Kab are the covariant analytic ]-forms: 

Kaa = €k;(q)dx~u! = dx 0 a - XabO~ 
{d Ka} = 0 Ka Kb = -Rba Kc Kd R-;p x, a , o,• {3 de -; p o,{3 

a <> b - R 0 PRga Ja-; aK{3- {3-; JbKp g 

It is not difficult to check the following rel~tions: 

df = 0, d~ + {dlid2} = 0 

Stress that d~ --+ 0 in the limit q --+ 1. 
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An analyticity condition for the functions of Xaa and u~ has manifest 
solutions A depending on the analytical coordinate Xa(+) 

8~A = 0 ~ d1 A = 0 (4.12) 

It should be remarked that the action of the harmonic derivatives 
80 and 15 (2.25) conserves the analyticity 

{ 80, di}A = 0, { 15, di}A = 0 (4.13) 

Consider a decomposition of the Uq(2)-connection in the central basis 
(CB) (3.15) A = a

1 
+ a2 corresponding to the decomposition (,1.9) where 

a
1 

= 11:!A~(x) is a connection for the derivative d1 . The quantum-group 
self-duality equation ( 4.3) is equivalent to the zero-curvature equation 

d1a 1 - ai = 0 ( 4.14) 

This equation has the following harmonic solution: 

a1 = d1h S(h) = w(h,d1h) ( 4.15) 

where h(x, u) is a "bridge" Uq(2)-matrix function. The matrix elements of 
h,d

1
h,dxh and duh satisfy the relations analogous to Eqs(3.7-3.9). Addie 

tional harmonic conditions are 

80 h = 0, dTrqw(h, dh) = O (4.16) 

where d is a nilpotent operator ( d1, dx or du)· 
The bridge solution possesses a nontrivial gauge freedom 

h - T(x)hA(x(+), u), 80 A = d1A = O (4.17) 

where A is an analytical Uq(2) gauge matrix. 
The matrix his a transition matrix from the central basis to the analytic 

basis (AB) where d1 has no connection. Consider formally the decomposi­
tion d = dx+du in the CB equations (3.15-3.16) although the CB-harmonic 
connection is equal to zero (duT = 0 = duA). The bridge transform is a 
transition to a new u-dependent basis A in the algebra of Uq(2) differential 

complexes 

A= S(h)Ah - S(h)dh = ,<!x + V 

Ax= S(h)Ah - S(h)d~h = 11:~-l A~ 

V = V +ii= -S(h)duh, V = 0(-2) Y(+2), ii= 0(+2) Y(-2) 
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(4.18) 

(4.19) 

( 4.20) 

where Ax, V, v and ii are the AB-connection I-forms for the operators 
d,:, du, 8 and b correspondingly. 

A general solution of QGSDE can be obtained as a solution of the basic 
harmonic gauge equation [4],[5] 

8h + hv = 0<-2i[D(+2ih + h¼+2)] = 0 (4.21) 

where the connection v contains the·analytic prepotential ¼+2)· 
We can discuss also the harmonic equations for the'AB-gauge fields by 

analogy with Refs[24] 

aD V, - 0 A" -· q-2ao V,. + (+2) - , - - - + (-2) , 

[D(+2) + Vc+2il\1c-2) - q-
2[D(-2) + Vc-2ilVc+2) = 0 

( 4.22) 

(4.23) 

where \1c 72) is the nonanalytic gauge field for D(-2). 
One can obtain explicit or perturbative solutions of these equations by 

using the noncornmutative generalizations of classical harmonic expansions 
and harmonic Green functions [4],[5],[24]. 
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