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1 . Introduction

The 2-dimensional sphere S? isthe simplest example of homogeneous -
space and can be treated as SU(2)/U(1) coset space. ‘S? plays an impor-
tant role in the twistor program of Penrose [1] and, particularly, in the
twistor 1nterpretat10n of self-duality equation [2]- [4] The harmonic ap-
proach (4],[5] is a specific version of the twistor formalism based on using
the spinor harmonics as coordinates on S2. .

In the present talk, we make an attempt to construct a ¢- deformed
harmonic formalism in the framework of the quantum-group concept [6],[7].
Noncommutative geometry of quantum spheres has been considered in
Refs[7]-[9]. We shall use the left-invariant 3D differential calculus on the
quantum group SU,(2) [10], [11] to study geometry on the quantum sphere

U,(2)/U(1) = S?. Global functions on S2 can be defined as the subset of
SU,(2)-functions w;th a zero U(1)-charge; so we shall consider the SU,(2) x

U(1)-covariant relations for the basic geometrical objects on S2.

Quantum harmonics will be considered as matrix elements u', of the
SU,(2)-matrix u. An operator of external derivation d, on-SU,(2) can
be decomposed in terms of three invariant operators corresponding to the
different generators of a deformed Lie algebra. We discuss the analogous
decomposition of Maurer-Cartan equations on SU,(2).

The deformed harmonic formalism can be used for analysis of the self-
duality equation on the quantum Euclidean space E,(4). The noncommu- *
tative coordinates z of E,4(4) satisfy the SUL(2) x SUR( )-covariant com-
mutation relations. In thls approach, quantum harmomcs are connected
with the left SU,(2)-group.

We use the noncommutative algebra of differential complexes [12] (14]
as a basis of the quantum-group gauge theory. The quantum-group seli-
duality equation (QGSDE) on F,(4) can be formulated with the help of
a duality operation on the curvature 2-form.  We present the deformed
analog of the classical BPST-instanton solution. ;

Quantum harmonics allow us to interpret QGSDE as a zero- curvature
" equation for some harmonic decomposition of the connection form. We dis-
cuss harmonic solutions of QGSDE by analogy with the classical harmonic
formalism [4], [5] h

P

WAULERLL o BNITATYE [
! o s il ,l
SR 15T QN Ry e ol \\2

ml::ﬂéﬂ@""' £



2  Quantum harmonics and 3D-differential
calculus on the quantum group SU,(2)

We shall use the R-matrix approach [7] for definition of the unitary
quantum group U,(2) = SU,(2) x U(1) where ¢ is a real deformation
parameter. Let T} (¢,k = 1,2) be elements of a quantum matrix T
satisfying the standard RTT-relations ( in the notations of Ref[14] )

 RTT'=TT'R . (2.1)
TV = Ti8h, (T, = 8T =

The symrﬁetrical R, R and P®) matrices obey the following relat;loris

R*=I+AR, * . - RR=1, "R=R-I (2.2)
p) + PO =, p@pd) = gedpl) R gpt) _gm1pl)

where \=g¢—q', a;b=+,—. ‘ e
- It is convenient to use a covariant expression for the g-generalization of
an antisymmetrical symbol L
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e,-k(q) = \/m&'k = *Q(ik)el;i(q) (2'3)
q(12) = [¢(21)]™" = ¢, q(11) =¢(22) =1 (24)
" ei(g)e(q) = &, ik

where £; is an ordinary antisymmetrical symbol (g = ) .
R-matrix elements can be written in terms of § and £(q) symbols

Rir. = q6i6% + €% (g)em(q) (2.5)

Eq(1) for the U,(2) group is equivalent to the following relations:

emi(q)T) T = €45(q) D(T) ' (2.6) .
e™()T} Ty, = €"(g) D(T) @1
where D(T') = Det,(T) is the quantum determinant ’ f :
: — ml i
D(T) = —qufiki(‘I)E (q)TI T:l . (2.8)

help of involution (7]

Write also the covariant relations for the inverse quantum matrix S(T') =
T-! '
S(T{) = Sk = eulq) Tj €"(q) D7N(T) (2.9)
SiT! = TiSi = 6}, o | (2.10)
T!Dy(q)Sk = DH(g) = —e5:(2)e”(q)
SYD )Tk = (D7)E = ~&i(q)e¥ ()
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where the notation D and D! for SU,(2)-metrics is introduced. ‘
The unitarity condition for the matrix T can be formulated with the

T; - T} = S* (2.11)
The condition D(T) = 1 corresponds to the case of SU;(2). Let us
define quantum harmonics as matrix elements of the SU,(2)-matrix u}.
We shall distinguish the upper SU,(2) index i =1, 2 and low U(1)-index
a =+, — SUF(2) x U(1) co-transformations of the harmonics have the
following form: ' . o '
ul, — liubexp(tia) ' (2.12)
where a is the U(1) parameter and [ is the SU[(2)-matrix.
Egs(2.7) for the matrix elements u' are equivalent to the basic relations

eri(quiul =0 (2.13)
Eki(Q)ul}uf = €ba(q) »
e (q)ul uf = e¥(q)

We shall use the left-covariant 3-dimensional differential calculus [10],
(11] for the quantum harmonics. Consider the g-traceless left-invariant
1-forms satisfying the Maurer-Cartan equations :

e = utduy (2.14)
Tr0 =0 +¢7'0- =0 (2.15)
dog = —0%0; (2.16)

where ¢ are components of the inverse SUy(2)-harmonics.
Introduce the simple U(1) notation

00 - 01 3 0(+2) »= 0; , 0(_2) = 01_ (217)

Consider the left-covariant bilinear relations between harmonics and
O-forms



qifﬁou; =uily (2.18)
¢ 0pyuk = uil), p#0

Th‘ese. formulas are consistent with Eqs(2.14)-(2.16). Uéing the standard
Leibniz rules for the operator d one can obtain the relations for the §-forms
. ,
0(p) = 0, 9(_!_2)9(_2) = —q20(_2)0(+2) (219)

O(+2)00 = '—qi4000(i2) ‘

Consider the SU,(2) x U(1) invariant decomposition of the harmonic |

external derivative

dy=6+6+6 ; (2.20)
S0 =00Do, 8=062Di2), &=045D s

where Dy and D42 are left-invariant differential operators. Note that the
D-operators are generators of the g-deformed Lie algebra [11]

*Di42) -z — Di-3) D42y = Dy | (2.21)
DoD(y3) ~ ¢'D42)Do = ¢*(1 + 4*) D42y
Di—2)Do = ¢"DoD(_y) = ¢*(1 + 0*)D(_y

The standard basis of the universal envelopi
: ping algebra U
can be obtained by the nonlinear substitution [ll]g ebra LSV 16

Do=(l=g) )
D) = ¢"/2x *) :
; The operators 6y, § and & are nilpotent and obey the additional condi-
on ,
{60,6} + {60,6} + {6,8} =0 (2.23)

ﬁl’le t manlf St ex 10n ‘ T € n ()I € l() (0]
h Se Opera. TS Il .

[50,:;;] = u;ag, (6, ’{U = 0_, but, :‘u"_ O(+2) (2.24)
[0, ul] = —Goui , [, u’_] =uib_y, [S,u]=0

An invariant decomposition of the Maurer-Cartan equations on
SU,(2)/U(1) has the following form:

duOO = 2{6, 00} : 2{_5,00} = —0(_2)0(+2) (225)
dub(12) = 2{60,0(42)} = 2{6,0(42)} = ¢*(1 + ¢*)000(+2) ‘
duO(_z) = 2{60, 0(_2)} = 2{6, 0(_2)} = q2(1 + q2)0(_2)00

Global functions on the quantum sphere S? = SU,(2)/U(1) s'at,isfy the
invariant condition

(60, f ()] = 6o Do f(u) =0 (2.26)

We shall consider also the U(1)-charged functions of the harmonics
Jo(w) N
[H, Jin()] = pfp(w) (2.27)

where p is an integer number.

We shall treat harmonic functions as formal expansions on irreducible
harmonic polynomials. The ¢g-symmetrized product of r harmonics v/, and
s harmonics u® is the basis of the irreducible SU,(2)-representation with
the U(1)-charge p=r —s '

(I)(r.,s)(u.) — (I)(il-.-i.-+5)(u) — uf;lutj . ui-ul—-:+l . u’_r+.<) — (U+)r(u_)5

\ (2.28)
where (r,s) = I is the ¢g-symmetrized multiindex
P 009 = g7 Ry 4y 90 = @) (2.29)
Here the R-matrix and the projectional operator P*) act on the indices
1% and 244. '

The monomials ®(™} obey complicated commutation relations depend-
ing on the values r,’s , so the polynomials f(,)(v) with complex numerical
coeflicients have not covariant commutation properties. It is useful to ex-
tend the algebra of harmonics by adding the set of noncommuting coeffi-
cients C(; ). These coefficients are the components of the covariant neutral
harmonic polynomials ( covariant g-harmonic fields )

Fu)=Y Con®(u)=>"Cro’ (2.30)

. The bilinear commutation relations between C; and u follow from the
requirement of harmonic commutativity : :

[, F()] =0 (2:31)
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Relations between different coefficients C; can be obtained , for in-
stance, from the additional assumption of commutativity for the mono-
mials in Eq(2.30). If one has a matrix harmonic field F7}(u) satisfying
the bilinear relations, then new relations for the corresponding coefficients
arise too.

A construction of the differential calculus on covariant harmonic fields
includes the relations for the harmonic external derivatives (2.21) and C/

[60101] = [63 CI] = [S, CI] =0 (232)

3 Quantum 'Euclidean space and quantum
self-duality equation

Quantum deformations of the Minkowski and Euclidean 4-dimensional

spaces have been considered in Refs[16]-[19]. We shall use the coordi--

nates z! of ¢-deformed Euclidean space FE,(4) as generators of a non-
commutative algebra covariant under the coaction of the quantum group

G,(4) = SUL(2) x SUR(2)
zt, — (lzr)t, = l};’rf ® zg ' - (3.1)

where [ and 7 are quantum matrices of the left and right SU,(2) groups:

Rk azﬁ =zl ’;RZ’; (3.2)
Rrr=rrR, RII/'=IIR (3.3)

[r,lI') =[r,2") = [l,2'] =0, Det,({) =1 = Det,(r)

We use two identical copies of R-matrices for SU}(2) and SUR(2).
The ¢-deformed central Euclidean interval 7 can be constructed by
analogy with the quantum determinant

7(2) =~ e (@enla)lzh (34)

. /
We do not consider the quantum-group structure on E,(4) but we shall
apply, the standard formula (2.10) for a definition of the inverse matrix
S(z).

It is convenient to use the following £,(4)-involution:

oL = ealq)zhe™(q) = 752 (a) (3.5)

- e e £

Let us con51der the bicovariant differential calculus on the quantum

group U,(2) [20]-[23]

TdT" = RATT'R
D(T)dT = ¢*dT D(T)
wRw + RwHwR =0
Tw' = RwRT

N TN TN N
© 00 I D

where wi(T) = dT} S(T7?) are the right-invariant differential forms.
The quantum trace ¢ of the form w plays an 1mportant role in this
calculus

6(7) = Di(q)o G(T)£0, €0, =0  (3.10)
dT = wT = (2\))(T, €], qdD(T) = £D(T) (3.11)
do = ? = —(FN) {60} (3.12)

All these formulae can be used for a construction of the G,(4)-covariant
differential calculus on £,(4) via the substitution _
T — =z, dT - dz, w(T)— w(z)=dz S() (3.13)

The noncommutative algebra of differential complexes [12]-[14] can be
used for a consistent formulation of the U,(2) gauge theory on the quantum
space E,(4). Consider the U,(2) gauge matrix 7 defined on F,(4). Sup-
pose that Eqgs(2.2,3.7 - 3. 12) locally satisfy for each "point” z. Coaction

of the gauge group U,(2) on the connection 1-form A} has the following
form [12]-[14]: ‘

A= T(z) AS(T(z)) + dT(z) S(T(z)) _TAS + w(T) (5.14)
Ay = dz, A3 () -

The basic commutation relations for the form A are covariant under
the gauge transformation

ARA+RARAR =0 = . (3.15)

Note that the general relation for A contains a nontrivial right-hand side
(14].

The restriction @ = TryA = 0 is inconsistent with Eq(3.15), but we can
choose the zero field-strength condition da = Tr,dA = 0. This constraint
for the U(1)-gauge field is gauge invariant.



The curvature 2-form is g-traceless for this model
F = dA — A? = dzl dzj Fif (z) (3.16)

‘Basic 2-forms on E,(4) can be decomposed with the help of the pro-
jectional operators P(*) (2.3)

daidzt = [ PC)dzda' PY) + PWdzda' PO) | = (3.17)

= ﬁqﬁ[eki(Q)dzxaﬁ + Sﬁa(q)dzzik]

By analogy with the classical case we can treat these two parts as self-dual
and anti-self-dual 2-forms under the action of a duality operator *.
Let us consider the deformed anti-self-duality equation

"We can obtain a 5-parameter solution for the ¢-deformed anti-sel{-dual
U,(2)-connection [23]:

Af = dz? en(q) if, Eg“(q)(c + 7)1 (3.19)
ik =zh—ch, di=dz, dc=0 (3-20)
Ri#'=%2% R, Rcd=cdR, ca’=RzdR
cdz’=Rdz d R, [z,7(£)]=0
7(2)dz = ¢*dz7(%)

where ¢ and cf are some ”parameters” and a central function 7 = 7(%) can

be defined by substitution z — Z in Eq(3.4). :

Note that one can treat c as a central periodical.function which define
a solution of the first-order finite-difference equation: ¢(7) = ¢(¢*7). This
solution is a deformed analogue of Belavin-Polyakov-Schwarz-Tyupkin in-
stanton. The multiparameter ¢q-generalization of the 't Hooft solution can
be considered too.

4 - Harmonic (twistor) interpretation of
quantum-group self-duality equation

The QGSD-equation for the field strength has the following form:
Flr = [P FPONE = epi(q)FP° (4.1)
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-One can obtain the integrabili iti iplyi i
: grability condition multiplying th i /
the product of ¢g-harmonics ul ufl. WP TS cquation by
. Let us discuss the covariant formulation of this integrability condition
, usxr}gt'the dcgqrmed harmonic space. It is convenient to introduce new
analytic coordinates z,(4) for £,(4) ®, S2. One should lowir
commutation relations e ! 1€ e the following

- Oz = 656, + Ry R« 07 (4.2)
q@f‘u’a. = R?’--;"ufa,‘fl ' (4.3)
quyzf = Rif ghum (4.4)

Define the charged analyti i ivati
ne the ¢ ytical coordinates and derivatives
responding commutation relations ' *and the cor-

_ b . .‘
Taa = €ab(q)Tq = €ir(g)ziul = —q?epi(q)uizk (4.5)
Rz pezgy = R % az (4.6)
os :bu:,a?. R30204 = REc o0y
‘Do — Sakb -1 pap b ‘
07z = 6560 + ¢ Rﬁ,nga:fid] “.7)

Note tha.t upper and low indices @, b. .. have opposite U(1)-charges
Consider the symmetrical decomposition of the external derivat‘ive d

on [,(4)

dy = dz,0f = k20° = d® = d) + d, (4.8)
d: =0, dy = K20¢ ‘

a _ .ab :
where k2 = €%(g)K,4 are the covariant analytic 1-forms:

Koo = €ki(q)dziul = dzoy — 2,400 (4.9)
{ds,k2} =0, k2k5 = —Rbeyckd P
) a’™g de™yNpltag (110)
o _ ap a
Oinp = Ry RYw)0]

It is not difficult to check the following relations:

di =0, d&+{d,d;}=0 (4.11)

Stress that df — 0 in the limit ¢ — 1.



An analyticity condition for the functions of Zae and u} has manifest
solutions A depending on the analytical coordinate T,(4)

N=0<= A=0 (4.12)

"1t should be remarked that the action of the harmonic derivatives
60 and & (2.25) conserves the analyticity

{60,di}A =0, {8,d1}A=0 (4.13)

Consider a decomposition of the U,(2)-connection in the central basis
(CB) (3.15) A = a1 + a2 corresponding to the decomposition (4.9) where
a, = &} A%(z) is a connection for the derivative d;. The quantum-group
. self-duality equation (4.3) is equivalent to the zero-curvature equation

diay —a? =0  (4.14)

" This equation has the followingﬁ harmonic solution:

ay = dih S(h) = w(h,dih), | (4.15)

where h(z,u) is a "bridge” U,(2)-matrix function. The matrix elements of
h,dyk,dzh and d,h satisfy the relations analogous to Eqs(3.7-3.9). Addi-

tional harmonic conditions are ‘
boh =0, dTrgw(h,dh) =0 (4.16)

where d is a nilpotent operator (dy, dzor du)-
The bridge solution possesses a nontrivial gauge freedom

h — T(z)hA(zg)u), SoA=diA=0 (4.17)

where A is an analytical /;(2) gauge matrix.

"The matrix A is a transition matrix from the central basis to the analytic
basis (AB) where d; has no connection. Consider formally the decomposi-
tion d = d, +d, in the CB equations (3.15-3.16) although the CB-harmonic
connection is equal to zero (d,T = 0 = d,A). The bridge transform is a
transition to a new u-dependent basis A in the algebra of U,(2) differential

complexes

A= S(h)Ah — S(h)dh = A, +V : (4.18)
A, = S(R)Ah — S(h)d.h = &5 A% (4.19)
= — (h)duh, v = 0(_2)‘/(+2), v = 0(+2)V(_2) (420)
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where Ag, V.v and 9 are the AB-connection 1-forms for the operators

d;.d,,é and § correspondingly. ‘
A general solution of QGSDE can be obtained as a solution of the basic

harmonic gauge equation [4],[5] ' '

(Sh + hv = 0(_2)(D(+2)h + h‘/(+2)] = 0 ' (4.21)

where the connection v contains the-analytic prepotential V().
We can discuss also the harmonic equations for the’AB-gauge fields by

analogy with Refs[24]

2Vi42) =0, A% = —q7203V[_y ‘ (4.22)

[Diszy + VienlVieey = 7 (Do) + iy Vigay = 0 (1.23)

where V{_y) is the nonanalytic gauge field for D(_y).

Onc can obtain explicit or perturbative solutions of these equations by
using the noncommutative generalizations of classical harmonic expansions
and harmonic Green functions [4],[5],[24]. - : ‘
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