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F’I‘eMnepaTypa H ampomm Knamouou qepuou nbrpbl u KombopMHan aHOMaJlHSI ER

= B pa6ore o6pau1aercsr BHHMaHMeE Ha TOT cbaxr, uro Temneparypa xnaccuqecxou qepuou }lblpbl
‘MOXeET GBITh Haiijeda w3 ycnomn axcrpemanbnocm ee CBOGOHOM SHEPrMH B’ 3ABUCMMOCTH
0T BAPHUALIMHU MACCHI ABIPBL. {19 KBAHTOBO! HepHO#t Apipbl IIBapumsaa, uanyqaxomen 6eaMacco--
“BBIE HaCTHLI, TOKa3aHO, 9TO aHAJIOrMUHOE ycsoBHe npmzonm K cneny}omnM onnonemenbm Bblpa-
menmm s -remneparypbx T= (BJZM)'l (1+o (8nM ) ) 4 ampomm 'S =4aM: =0 log M,
 NPEACTaB/IEHHBIM B TEPMUHAX 3cbcbexmunou MacChl IBIPbI M BMECTE € ee mnyqeuueM u mnerpana
‘ xombopmron aHOMAJHH 0, JABUCSLIETO OT BMAAA MONEM: . TakuM ofpasom, B J:laHHOM CJlydae KBaHTO-
- phie nonpaskyu K T 1 S nonuocrbxo o6ycnormem:r anomannen Ecnm xe oHa oTcchTByer (o= - 0),
YTO. MIMEET MECTO B HEKOTOPBIX CynepCMMMeTpM!IHbe MOZENAX, TO ONHOMETJIEBLIE Bblpa)KeHMH T
ns coxpamuor x.naccuqecxyro ¢opmy. C npyro#t CTOPOHBI, €CJIM AHOMANHS OTpHIATE/IbHA (o< 0),

chapsuourancn xnamouan AbIpa, l’lO BM}.IMMOMy, npexpamae'r Hal‘peBaTbCﬂ xoma ee Macca JIlOCTH- -
.raer nnanxoucxon BeJ'lM‘lMHbl "~ S E - -
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Anenuon is pald 10° the fact thal lemperature of a clasmcal black hole can be denved

from lhe cxtrcmahty ‘condition of- its free energy with respect to variation of the ‘mass of a hole..
) For a quantum Schwarzschrld black hole evaporaung massless parucles the same condmon is shown
‘o~ resull in thc followmg one- loop temperature T= (BnM) (U + a(BnM )"‘) and enlropy

S= 4nM -0 log M expressed in terms of the effective mass M of a hole logether wnh its radlauon
,'and the lntcgral of the conformal anomaly o that depends on the field species: Thus, in the given case’
‘quantum corrections lo T and N lurn outto be completely prov1ded by the anomaly When itis absent.
(o= 0), whlch happens in a numbcr of supersymmelrxc models,’ the one-loop’ expressxons of T
and § preserve the classical form. On the other hand, if the anomalyls negative (a < 0)an evaporaung
; quantum hole seems to cease to heat up when ns mass reaches lhe Planck scales

"l he mvcsugauon has been performed at the Bogohubov Laboratory of Theoreucal PhySlCS JIN-

Sy - Preprint of the Jolnlylnstil‘ute}for Nucle'ar Research;:puhna,' 1994




Lo
sxm1lar to (2) can be used torelate the temperature of the hole with its other param- :

: can be denved explxcrtly in‘a srmple tlrelmodynamlcal treatment ba.sed on’ the scalmg };‘

of extremum for Fo

: turns out to be a consequence of (1) an(l (2).

s

Black hole thermodynamlcs is known to possess a number of puzzles lrke the meamng

= » “of black hole entropy, the mformatlon loss problem and the operatlon of the generahzed

second law [1] The pnncrpal dlfﬁculty on the way to therr resolutlon is the lack of

a consxstent theory of quantum gravrty Even 1nvest1gat10n of quantum effects on the

cla.ssxcal curved backgrounds sometlme represents a techmcal problem where results can
i be obtamed only approxrmately Tlus isa reason why exactly solvable two dlmensronal !
models of black holes are of great interest at the present moment [2]. / 5 l:

-+ The arm of this’ paper 1s to show how the’ one-loop correctxons to the temperature

. and entropy of the 4- dlmensxonal Schwarzscluld black hole w1th ma.ssless quantum fields :

propertres of the theory

i r

To begm wrth we 1emmd tlmt the ener gy Ek and entlopy S of a canomcal ensemble T

at the temperature ﬂ‘ can ‘be (lenved fl om thc ﬁee cnergy F(ﬂ) as follows S o

(ﬂF) %;ﬂ(f? - F) e e m

These quantxtxes for a system bemg at tho h\ed tempel ature change untll a system 1eaches 8

a thermal equlhbnum chalactenzed by a minimum of F [3] ln tlns state the condltron

e L M Y]

- .,(,2:) o

glves a relatlon between [3 and other par ameters ol' the ensemble Moreover the ﬁrst law :

of thermodynamxcs in'its s1mplest foun

r/—;‘,‘ . D -

: Now, retumlng to thennodynanucs of black lroles ;an extremahty condltlon of l‘

ORI

eters (mass, charge etc) To see tlus we make use of the Glbbons Hawlung apploach

to gravxtatronal tllermodynamlcs [l] ln 1ts flamcwork tlre free energy in the semlclas

‘o

sical approximation is given by the Euclidean Einstein-Hilbert action W,; with suitably

subtracted boundary terms ?

BF(B) = Wa(B) = < / Rygd*z +2 / (K — Ku)\/f-td”z) ) - (4)

This functional is taken on the corresponding gravitational instanton. To elucidate the

idea, consider as an example the Schwarzschild black hole with the mass m. The Euclidean

1.2 2 2 - 2 2 2
ds? = (1~ a4 (1 Z2)  ar? 4120 (5)
T r .

and the presence of the temperature ! implies the periodicity of this solution in 7

metric reads

0<r<g . (6)

Although at arbitrary # and m the space (5) has a conical singularity at the horizon
]
r = 2m, the integral curvature in (4) on such a space is well-defined and it is non-zero.

One can show [5], [6] that on (5)
/R\/ﬁd"z =dx <1 - gﬂ—> A . (7

Tm
where A = 16mm? is the area of the horizon. Plugging (7) in (4) and taking into account

the boundary terms, we get the free energy
F(B,m)=m —4xm?g™" . (8)

The definitions (1) applied to (8) show that the energy of the system equals the mass of

the black hole, whereas its entropy is given by the Bekenstein-Hawking formula
1

Finally, finding the extremum of (8) at fixed 3

oF
OF(Bm) _ | _ gemp=t =0 (10)
om
one can gets the desired relation $~! = (87m)~! between the temperature of the Hawking
radiation and the mass of the hole. However, as distinct from a normal canonical ensemble,

a black hole is the maximum of F(f,m) rather than the minimum, which indicates its

well-known instability due to evaporation.

2For simplicity we use the system of units h=¢ ,__\G....-J:B,..l. e




For simplicity we deal with the Schwarzschild black holes but one can show that
an analogous consideration for charged holes or those in a cavity of a finite size is also
possible. In particular, in these cases the value of the Hawking temperature can also be
obtained in the same manner from the extremum of F with respect to variation of the
mass of the hole when other parameters are ﬁxed This fact is not surprising. Indeed
even if the gravitational action (4) is c0n51dered on a class of manifolds admrttmg conical
singularities, its extrema do not change and they correspond to the smooth geometries [5],
[6]. A physical reason for this is the absence of such a matter distribution over the horizon
which could give rise to conical defects. On the other hand, different masses m under fixed
B -are equivalent to Euclidean black holes with different ranging of the time coordinate 7,
and their free energy has the extremum when the comcal smgula.uty vamshes whlch is

usually associated with the Hawkmg temperature [4].

Consider now the black-hole thermodynamics with the one-loop quantum‘ corrections.
We will be interested in the Schwarzschild hole evaporating massless particles, so far as
in this case quantum effects can be eva.lua.ted expllcltly In quantum theory the effective

action and the free energy read

BE(B)=W(B) = Wa(B) + Wao(B) . : (11)

Here W, is the classical action (4) and W is a one-loop contribution to it from N scalar
fields and, possrbly, from other ﬁelds of the higher spins (h s.), which depends on the
model in questron,

Wo = %log det V,,V* + ‘h.s. (12)

computed on the background space (5).

Several remarks concerning (11) and (12) are in order. To get rid off the standard
ultraviolet divergences in Wy, one should include in (11) higher order curvature terms.
This also enables one to'remove completely [7] the additional divergences in the entropy
of a black hole that are concentrated on its horizon [8]. However, forthe case of the
Schwarzschild hole the role of R?-termsin the Lagrangian is reduced to irrelevant constant

in the entropy [6], and for this reason we omit these terms. For massless fields there is

4
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also an infrared divergence in (12). It can be eliminated in the same manner [4] as for the
classical Einstein action (4) by subtracting from the effective gravitational functional W -
(11) additional terms given on a distant spatial boundary r = ry. After the subtraction,
the action (11) turns out be finite on (5) and includes terms of the order O(r;"') that can
be neglected in the limit 7o — oo. We imply that infrared divergences are removed in
such a way but do not write the boundary terms in (11) explicitly since their form is also
irrelevant for further consideration.

For the functional (11) taken on the space (5) the only free parameter, apart from 3,
is the mass m of the hole and as in classical theory we can consider its variation witl
respect to this parameter. Thus. the extremality condition of F(:3) can be represented as

y—sm+(‘),"‘?) =0 . (13)
Jm 4

Equation (13) indicates a correction d, g to the Hawking temperature which can be
calculated as follows. Consider the scaling properties of We that depends on m throngh
the background metric (5) and on g through the boundary conditions. Assuming 115 to

be a renormalized action, one can yvrite

‘IVQ (ﬂ, .(fuu(”' ) = ”"‘Q (ﬁa—]’ 02.(/1“'(”.'0—]‘)) =

Wo (a7, gu(ima™)) + </ "‘\/_(I'I — Agurf{ 335" )) log a (1)
where « is an arbitrary parameter and 3y = Sam. The last term in the r. h. s, of (14)
appears due to the breaking in HWo of the conformal invariance 1o be held for classical
massless fields. 1t includes the standard trace anoimaly of the renormalized stress tensor
T# =—(167*)"'az determined by the ap-coellicient in the DeWitt-Selwinger proper time

expansion [9]. In our case, it is

/ / ridy /(IQ T = (r——-— (15)
2m I

where o is the integral of the trace anomaly at 3 = gy that depends on the numbers .V,

of the fields with the spin s entering in the model [9], {10]

1/ T 233 ., e .
o = 4—|_ —No — —I;'\’|/2 -+ l:;.’\"l -+ T.\';;/‘ - _)l_)\g . “())
h : .



There is also an additional anomalous term a,u,j(ﬂﬂ;,l) in the transformation law of Wy-

due to the conical singularities of the background manifold; a,urj(ﬂﬂ,;l) is an integral
over the horizon surface which has been exactly found for the scalar determinants in [11].
Howgver, the only thing important for us is that this addition disappears at the Hawking
temperature

a,u,j(ﬂﬂ;ll)zo , ﬂ:ﬂH=87rm . 3 (17)

It is suitable to choose a = m and represent (14) as

We (8, 9uw(m)) = W (Bm™, gy (m = 1)) +(0BB5" — duurs (887")) logm = f(Bm~",m).

(18)
This immediately results in the relation
(%) - (a_f By |
am ), T \om (Bm-1) M a8/, -
) L) 8 (W |
(o7 — o (065 ) -2 (5 )m . (19)
Inserting (19) into condition (13) we have ‘ v
B8 aw, o 1 _ -
B-8wm— (( aﬂq) ﬂ_n) — ey (B87) =0 (20)

and 8 can be found from (20) by iteration in the Planck constant % as a series. Thus,

taking into account (17), one obtains the expression

p=tn (m+(%)m—_#)+omé) . (21)

The quantity dsWy in (21) is the thermal energy of quantum fields associated with the
radiation of a hole and it is an unknown functional of the background metric. Fortunately,
there is no need to calculate it explicitly so far as equation (21) can be rewritten through

the total internal energy of the system’

9 W'
_aﬂ(ﬂF) =m +< % )

The constant M can be considered as the effective gravxtatlonal mass including the energy

M. (22)

of the radiation and, as distinct from the classical ma.'.ss m, it is an observable parameter
of the theory. In terms of M and in the first order in %, 8 takes the simple form
. ‘ a . . -
f =8 (M st) (23)
6 <

(replacing m by M in the anomalous term in (21) results in a correction O(A?)). Conse-
quently, the one-loop temperature reads

T = Tu(M) (1+ 5o5) | (24)

where Ty(M) = (87 M)~! is the classical Hawking temperature defined for a hole with the
mass M. The one-loop entropy can be recovered from (24) by making use of Clausius’s

rule

S= /—-———-47rM2—alogM _ - (25)

and it differs from the Bekenstein-Hawking entropy by the logarithfnic term. Another
way to derive (25) is to use the statistical-mechanical definition (1) of S. Equations (24)
and (25) represent the main result of this paper. Remarkably that T and S can be found
explicitly and coming out is the only new coefficient o of thé field species giyen by equation
(16). ' '

“The temperz;.ture T has been derived from the extremum of the one-loop free energy
or, which is the same, of the effective gfavitatioﬁal' action W, see (11). 'Alythough Wisa
no;l-triviz;.l functional of the metric one can expect that it posSésséé the same ’provp'erty
as the Euclidean Einstein action ( ) when quantum effects are weak and has the extrema
on the smooth manifolds with the black hole geometry similar to (5). This seems to be
a natural assumption because, as was pointed Out, non-smooth solutions with conical
singularities would correspond to some specific matter distribution concentrated on the
horizon surface of a hole. Therefore, in quantum case one can repez;t the same arguments
given above for the classical action (4) and relate the extremum (13) of W with vanishing
of the conical singularity for the Schwaiiéchild solution deformed by on‘e-loop quantum
corrections. After that the temperature (24) should be related with the one—loop surface
gravxty k as T = (2r)"'k and, hence, one can identify it w1th the temperature of the
Hawkmg ra.dla.tlon in presence of the back reaction. T ’ /

Let us dlscuss these results. As is seen from (24) and (25) 1n the :mo‘dd in question the
dlfference of T a.nd S from their classical form is completely prov1ded by the conformal
anomaly (16). In this context it is interesting to pay attentlon to the role played by the

anomalous trace in two dimensional theory where it determines the flux of the Hawking

7



radiation {12]. In four dimensions the anomaly is known to be absent in the models of
N = 8 and N = 4 supergravity and in the N = 4 super Yang-Mills theory [10]. Thus,
following from (24) and (25) is an interesting consequence that for these models the one-
loop corrections can change the mass of the Schwarzschild black hole, whereas the form
of the thermodynamics is left the same as in the classical case. In general, the behavior of
T and S depends on the sign of o. The latter is positive when spins 1 and 3/2 dominate
in the theory and then quantum effeets accelerate evaporation of the liole by increasing
its temperature.

A qualitative difference from the classical black hole thermodynamics appears for
the negative anomaly o < 0, when the scalars, fermions and gravitons prevail. Then,
the increese in the hole temperature T slows down. Moreover, in this case, when mass
approaches the Planck scales M ~ \/oMpjyncr, T reaches a maximum and after that
starts to decrease, a hole cools down. Surely, in this domain the one-loop approximation
is not reliable and another, probably, nonperturbative treatment is needed. However, if
(24) is used for extrapolation to the Planck region, it shows that temperature is null for
some small or zero values of M, which can be interpreted as the end of evapora.tion.r If
this w:ere actually true, the black hole evaporation would finish by a pure vacuum state.
This eventually would remove the inforrnétion loss pafadox 1],

Our analysis would be incomplete without comparing equations (24) and (25) with

the one-loop quantities derived by taking directly into account the back reaction caused

to the Schwarzschild metric by the quantum matter [13}, [14]. However, to employ the
back-reaction method, one needs the renormalized stress teusor that is known for the
Schwarzschild hole in 4- dlmenslons only in the Page approximation [15]. Neveltheless
there is a qualitative agreement between equatlon (24) and that reported in [13] [14]. In
particular, the maximum of the radiation temperature was also mentioned in [14] for the
gravitetion dominated matter. 1t is also worth pointihg out that a logarithmic depen(lence
of the one-loop black hole entlopy on the mass, 51m1]ar to (25), has bcen found out in a
number of two- dlmenswnal models, for instance in [16] an(l has been argued to occur iu
the membrane approach to the description of black holes [17].

One should remark in conclusion that the reason why the simple o\pnessx(ms f01 F

and 5 have been obtained in our method is that the Schwarzschild metric possesses the
only dimensional parameter m. Thus. it is interesting to repeat the analysis for more
general black hole geometries.and massive quantum fields and see how the properties of
the considered model can change.
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