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'<l>ypcae~ ~.B. · 
TeMneparypa 11 smponm1 KBaHTOBOH qepHOH )1blpbl 11 KOHqJOpMHaSI ~HOMllJll1SI ... 

E2-94~484 

· B, ;a6ore 06pa111ae;~SI BH11MaH~e Ha ;OT cpaKt, q~o TeMneparypa KJiacc11qecKOH qepHOH ~~1ph1 
. MO)KeT 6bIT~ . miH11e11a 113 yCJIOBl1SI SKCTpeMaJihHOCTl1 ee cso6011HOH SHeprn11 ii. 31!B11Cl1MOCTl1 
OT sapwa111111 MaCCbl )1blpbI:)];JIR KBaHTOBOH qepHOH /1blpbl IIIsapIJIIIl1Jlh)1a, 113JiyqaJ0111eH 6eaMaccci­
Bhie qacTl11JhI, IlOKa3aHO, qTQ aHaJiornqHoe yCJIOBl1e np11B0)111T K CJie)1yIOU\11M 0)1HOneTJieBbIM Bblpa c 

)KeHHSIM /1JIH TeMnep~ryph~ T = (SnM)- 1 (1 + ·a (8nM2
)-

1) 11 SHTpon1111_S = 4nM2 
- a log M, 

npe11crasJieHHbIM B TepM11'iiax scjJcpeKTl1BHOH MaCChl )1blpbl M BMeCTe C ee 113JiyqeH11eM 1111HTerpaJia 
KOHqJOpMHOH a110Man1111 a, aas11csi111ero OT s1111a noJieH,. TaK11M o6paa6M, s. 11aii110M cJiyqae KsaHTo­
Bbie nonpaBKl1 KT 11 s IlOJIIIOCTbIO o6ycJIOBJieHbl aHOMllJI11t:H. ECJil1 )Ke Olla OTCYTCTByeT (c:i = 0), 

, qro 11MeeT Mecro s 11eKOTOpb1x ·cynepc11MMeTp11~Hb1x M0)1eJisix, TO 011HoneT.riesb1e ·sb1pa)KeH11SI T 
11 S coxpaHSIIOT KJia~c11qecKyIO cjJopMy. C APYl'O_H CToponhI, ecJI11 aHOMllJIHSI OTp1111aTeJihHa (a< 0), 
11cnapsiI0111asicsi KBaHronasi )1b1pa, no-s111111MOMY, npeKpa111aeT narpesaTbCSI,' Kor11_a ee Macca 11ocT11-. 
raeT nJiaHKOBCKOH IieJI11q11Hbl .. 

Pa6oTa BhinOJIHeHa B .1Ia6opaTop1111 Teopeniqe,cKOH qJ11311Kl111M.H.HJioroJII06osa 011.SU:1. 

EZ-94-484 . 
.Temperature and Entropy of a Quantum .Black Hole and Conformal Anomaly 

·. · . Attention is paid to the fact that teIIJperat;re of a· classic~! black hole can be derived 
from the extreniality condition of· itsfree ·energy with respect to variation of the mass of a hole. 
For a quantum Schwarzschild black hole evaporating massless particles the same condition is shown 
10· result in the following onealoop· temperature T = (SnM)- 1 (l + a (8nM2)-

1) and _entropy 

S ~ 4nl\,J2 
- a log M expressed in terms of the effective mass M of a hole together with its radiation 

. and the integral of the conformal anomaly a that depends on the field species. Thus, in the given case 
quantum corrections to.Tand·s turn out to be completely provided by the anomaly. When it is absent­
(a,,; 0), which :happens in a nu

1

mber of supersymmetric models, the one-loop expressions of T 
and S preserve the classical form. On the other hand, if the arionialy is negative ( a < 0) an evaporating 
quantum hole seems to cease to heat up when its mass reaches the Planck scales. . 

,, 

_The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR .. 
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, Black hole thermodynamics is known to ;ossess a number of puzzles like the ~eaning 

of black hole entropy, the information loss proble~ and the ~peration of the generalized . · . . . . . 

second law [1]. The principal difficu!ty on the w·ay to t~eir resolution is the .lack o( 

a consiste~t theory of quantum gravity . .'Even investigation of q~antum effects on the 

classical curved backgrounds sometime repre~ents a t_echnical probl;m where res.ults can 

be obtained only approximately. This is ~reason why exactly solvable two-dimensional '· 

models of black holes are of great interest at the present moment [2]. 
' . 

·•. The a_im of this pap eds to sh~w 'how the .one-loop corrections to the temperature 

and entropy of the· 4~dimenslonal Schwarzschild black hole with massless quantum fields 
. ' / -

can be derived explicitly in a simple thermody1~a~1ical treatment based on' the scaling . ' . 
' ' 

properties of the. theory. 

To begin with,' weremind,that the e1_wrgy E and.entropy Sofa canonic~! ensemble 

at the temperatu
0

re {3..:. 1 canhe derived from. the free energy F(/3) as· follo\VS: 

{) ,, ' 

E = -;-({3F) 
. 8/3 

S ~ {3(E - F) (1) 

'.l_'hese quantities for a system being at the fixed temperature ~hange until a system reaches · 

a _thermal equilibrium characterized by a 1nini111;1111 of F [3]. lri this state the condition 

of extremum for F 

(oF)fJ = 0 (2) 

gives a relation between {3 and other'j:i~rameters of the ensemble. Moreovei:, the first law . . 

of thermodyn_amics in its simplest form 

1r1bs = bE (3) 

. turns out to be~ consequence of (1) and (2). 

Now, returning to thermodynamics of black holes,, an ·extremality con?it_ion of F, 

similarto (2), can be used to.relate the temperature of the hole with its other param-
, . -,~ ' "" ' "- -

eters~(mass, charge, etc.). To see thi;, we make ;se or'th~ Gibboris-Hawking _approach 
i •, ' 

to gravitational thermodyn~111ics }I]. Ju its framework •the free energy in the serniclas-
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sical approximation is given by the Euclidean Einstein-Hilbert action Wc1 with suitably 
subtracted boundary terms 2 

{3F(/3) = Wc1(f3) = -
1
~ir (! R,/gd4x + 2 J (I< - I<0 )\l'h,d3x) (4) 

This functional is taken on the corresponding gravitational instanton. To elucidate the 

idea, consider as an example the Schwarzschil? black hole with the mass m. The Euclidean 

metric reads 

ds2 = ( 1 -
2
~) dr2 + ( 1 -

2
~ )-

1 

dr2 + r 2dn2 (5) 

and the presence of the temperature 13-1 implies the periodicity of this solution in r 

05:,rS./3 . (6) 

Although at arbitrary /3 and m the space (5) has a conical singularity at the horizon , 
r = 2m, the integral curvature in ( 4) on such a space is well-defined and it is non-zero. 

One can show [5], [6] that on (5) 

j R,/gd
4
x = 41r (1 - S:m) A- (7) 

where A = 16irm2 is the area of the horizon. Plugging (7) in ( 4) and taking into account 

the boundary terms, we get the free energy 

F(/3, m) = m - 4irm2/3-1 (8) 

The definitions (1) applied to (8) show that the energy of the system equals the mass of 

the black hole, whereas its entropy is given by the Bekenstein-Hawking formula 

E=m S=~A 
4 

Finally, finding the extremum of (8) at fixed /3 

oF(/3,m) = 1 - SirmP-1 = 0 
om 

(9) 

(10) 

one can gets the desired relation /3-1 = (81rm)-1 between the temperature of the Hawking 

radiation and the mass of the hole. However, as distinct from a normal canonical ensemble, 

a black hole is the maximum of F(/3, m) rather than the minimum, which indicates its 

well-known instability due to evaporation. 

2 For simplicity we use the syste,m.•-? .. t'!~i~JL= ~=...G.;.kB.=L~ •. ~, 
i'. ~ • · .. 3 ;, ,,v~•,e' "'{ 
~ l,;t,'t_.(.11,;_l·,•• ~:!h ;;i~ f.j;l,:_.~.;.lif 

§ ··~~-,.,.,.,, 'li''''"'""~ ..... ,1"~ 1 ~ .. t·;_l· .... ~!'h~!!.a. ?_.,- .,,.,-h,,t,.u-U~~,,,..U• f 

,; ,:. , '. ~· ,u .. o•-,·,·cu n, ,. 
i t">~=:;JJlO'I '~. _ .. l 



For simplicity we deal with the Schwarzschild black holes but one can show that 

an analogous consideration for charged holes or those in a cavity of a finite size is also 

possible. In particular, in these cases the value of the Hawking temperature can also be 

obtained in the same manner from the extremum of F with respect to variation of the 

mass of the hole when other parameters are fixed. This fact is not surprising. Indeed, 

even if the gravitational action (4) is considered on a class of manifolds admitting conical 

singularities, its extrema do not change and they correspond to the smooth geometries (5], 

(6]. A physical reason for this is the absence of such a matter distribution over the horizon 

which could give rise to conical defects. On the other hand, different masses m under fixed 

/3 are equivalent to Euclidean black holes with different ranging of the time coordinate T, 

and their free energy has the extremum when the conical singularity vanishes, which is 

usually associated with the Hawking te~perature (4]. 

Consider now the black-hole thermodynamics with the one-loop quantum corrections. 

We will be interested in the Sc)lwarzschild hole evaporating massless particles, so far as 

in this case quantum effects can be evaluated explicitly. In quantum theory the effective 

action and the free energy read 

/3F(f3) = W(/3) = Wc1(/3) + WQ(/3) (11) 

Here Wc1 is_ the classical action ( 4) and WQ is a one-loop contribution to it from. No scalar 

fields and, possibly, from other fields of the higher spins (h.s.), which depends on the 

model in question, 

No 
WQ = 2 logdet'v,.'v"+ h.s. (12) 

computed on the background space (5). 

Several remarks concerning (11) and (12) are in order. To get rid off the standard 

ultraviolet divergences in l3/'Q, one should include in (11) higher order curvature terms. 

This also enables one to remove completely (7] the additional divergences in the entropy 

of a black hole that are concentrated on its horizon (8]. However, for the case of the 

Schwarzschild hole the role of R2-terms in the Lagrangian is reduced to irrelevant constant 

in the entropy (6], and for this reason we omit these terms. For massless fields th'ere is 
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also an infrared divergence in ( 12). It can be eliminated in the same manner [.I] as for the 

classical Einstein action H) by subtracting from the effective gravitational functional lV 

( 11) additional terms given on a distant spatial boundary r = r 0 • After the subtraction. 

the action (11) turns out be finitt" on (-5) and includes terms of the order O(r01
) that can 

be neglected in the limit r0 -> ,:x:,. \Ve imply that infrared divergences are removed in 

such a way but do not write the boundary terms in ( 11) explicitly since their form is also 

irrelevant for further consideration. 

For the functional (11) taken on the space (5) the only free parameter, apart from J. 

is the mass m of the hole and as in classical theory we can consider its ,·ariation with 

respect to this parameter. Thus. the extremality condition of F( 3) can be represented as 

(
iJH'Q) = O 

;i - 8;.111 + dm iJ (1:J) 

Equation ( 13) indicates a correct ion iJ,., IFQ to the Hawking tempera! ure which ran be 

calculated as follows. Consider the s~a.l!ng properties of H'Q that depends on III through 

the background metric (5).and 011 /3 through the boundary conditions. :\ssumi11g ll'Q to 

be a renormalized action, one can write 

WQ U~,g,,,,(111 )) = IVQ (/3a-1,a2g,,,,(mo- 1
)) = 

' ' 

IVQ (,in- 1 ,Y,,v(111n- 1 )) + (! 1;;',jgd 1
.r - a.,,,.,(;M1/)) logo (l-1) 

where o is an a.rbitrary parameter and ,811 = 8:irm. The last term in the r. h. s. of ( l-1) 

appears due to tlw breaking in H'Q of the conformal invarianc,· I<; lw held for classical 

massless fields. It includes the sta11dard trace anomaly oft.he n·11ormaliz,·d stress t,·nsor 

I'''= -( l(i;r 2
)-

1a 2 dPt.ermi11Pd In· t.h<' arcod[ident. in tht• De\Vitt-Sd11ri11.,·er prop,•r time 
fl , •' t"l 

•·xpa.nsio11 [9]. In our case, it. is 

1;.i 1"'' J ·i dr r2dr dn 'f~' = rr-;-
u 2m )11 

(l:i) 

where u is the integral of the t.rac<' anomaly at 13 = ti11 that. d<>1w11ds 011 th,· 1111mlH'rs .\'_, 

of the fields with I.he spin., e11lt•ri11g int.he model [9]. [10] 

I ( T 2:1:1 ) 
rr = .j!j -/Vo - t\!1/2 + t:l:V1 + -

1
-.Y:112 - 212.\'2 (Hi) 
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There is also an additional anomalous term a,urJ(/3/3j/) in the transformation law of WQ 

due to the conical singularities of the background manifold; a,urJ(/3/3j/) _is an integral 

over the horizon surface which has been exactly found for the scalar determinants in [11]. 

However, the only thing important for us is that this addition disappears at the Hawking 

temperature 

a,urJ(/3/3i/) = 0 , /3 = f3H = 81rm (17) 

It is suitable to choose a = m and represent (14) as 

WQ (/3,gµv(m)) = WQ (/3m-1 ,91w(m = l))+(u/3/31/ -a,urJ(/3/3;/)) logm = J(/Jm-1,m). 

(18) 

This immediately results in the relation 

(a;~Qt = (%~)(µm-•J -! (!~)m = 

l ( /3 · ) /3 (8W. ) m (J /JH - a,urJ(/3/Jj/) - .m a/ m (19) 

Inserting (19) into condition (13) we have 

/3 ((awQ) a ) 1 ( 1) /3 - 8rn1 - m 8 /3 m - /3H - m a,urf /3/3H = 0 (20) 

and /3 can be found from (20) by iteration in the Planck constant 1i as a series. Thus, 

taking into account ( 17), one obtains the expression 

/3=81r(m+(a;Q)m -8:m)+o(1i2) (21) 

The quantity 8µWQ in (21) is the thermal energy of quantum fields associated with the 

radiation of a hole and it is an unknown functional of the background metric. Fortunately, 

there is no need to calculate it explicitly so far as equation (21) can be rewritten through 

the total internal energy of the system 

a (awQ) _ E = 8/fJF)m = m + 8/3 m = M (22) 

The constant M can be considered as the effective gravitational mass including the energy 

of the radiation and, as distinct from the classical mass m, it is an observable parameter 

of the theory. In terms of M and in the first order in Ti, /3 takes the simple form 

/3 = 81r ( M - s: M) (23) 

6.; 

.,, 

~) 
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(replacing m by Min the anomalous term in (21) results in a correction 0(1i2
)). Conse­

quenUy, the one-loop temperature reads 

T = TH(M) (1 + 81r~2) (24) 

where TH(M) = (81rM)- 1 is the classical Hawking temperature defined for a hole with the 

mass M. The one-loop entropy can be recovered from (24) by making use of Clausius's 

rule 

JdM 
S = T = 41rM2 

- ulogM · (25) 

and it differs from the Bekenstein-Hawking entropy by the logarithmic term. Another 

way to derive (25) is to use the ~tatistical-mechanical definition (1) of S. Equations (24) 

and (25) represent the main result of this paper. Remarkably that T and Scan be found 

explicitly and coming out is the only new coefficient u of the field species given by equation 

(16). 

The temperature T has been derived from the extremum of the one-loop free energy 

or, which is the saiu'e, of the effective gravitational action W·, see (11). Although Wis~ 

non-trivial functional of the metric, one can expect that it possesses the same property 

as the Euclidean Einstein action ( 4) when quantum effects are weak and has the extrema 

on the smooth manifolds with the black hole geometry similar to (5). This seems to be 

a natural assumption because, as was pointed out, non-smooth solutions with conical 

singularities would correspond to some specific matter distribution concentrated on the 

horizon surface of a hole. Therefore, in quantum case one can repeat the same arguments 

given above for the classical action (4) and ·relate the extremum (13) of W with vanishing 

of the conical singularity for the Schwarzschild solution deformed by one-loop quantum 

corrections. After that the temperature (24) should be related with the one-loop surface 

gravity k as T = (21r t 1 k and, hence, one can identify it with the temperature of the 

Hawking radiation in presence of the back reaction. 

Let ~s di~cuss these results: As is seen fro~ (24) and (25), i~ the model in question the 

difference of T and S from their classical form is completely pro~ided by the conformal 

anomaly (16). In this context it is interesting to pay attention to the role played by the 

anomalous trace in two dimensional theory where it determines the flux of the Hawking 

,7 



radiation [12]. In four dimensions the anomaly is known to be absent in the models of 

N = 8 and N = 4 supergravity and in the N = 4 super Yang-Mills theory [10]. Thus, 

following from (24) and (25) is an interesting consequence that for these models the one­

loop corrections can change the mass of the Schwarzschild black hole, whereas the form 

of the thermodynamics is left the same as in the classical case. In general, the behavior of 

T and S depends on the sign of a. The latter is positive when spins 1 and 3/2 dominate 

in the theory and then quantum effects accelerate evaporation of the hole by increasing 

its temperature. 

A qualitative difference from· the classical black hole thermodynamics appears for 

the negative anomaly a < 0, when the scalars, fermions and gravitons prevail. Then, 

the increase in the hole temperature T slows down. Moreover, in this case, when mass 

approaches the Planck scales NJ ':c:'. foMPtanck, T reaches a maximum and after that 

starts to decrease, a hole cools down. Surely, in this domain the one-loop approximation 

is not reliable and another, probably, nonperturbative treatment is needed. However, if 

(24) is used for extrapolation to the Planck region, it shows that temperature is null for 

some small or zero values of !YI, which can be interpreted as the end of evaporation. If 

this were actually true, the black hole evaporation would finish by a pure vacuum state. 

This eventually would remove the information loss paradox [1]. 

Our analysis would be incomplete without comparing equations (24) and (25) with 

the one-loop quantities derived by taking directly into account the back reaction ~aused 

to the Schwarzschild metric by the quantum matter [13], [14]. However, to employ the 

back-reaction mPthod, one needs the renormalized stress tensor that is known for the 

Schwarzschild hole in 4-dimensions only in the Page approximation [1.5]. Nevertheless, 

there is a qualitative agreement between equation (24) and that reported in [13], [14). In 

particular, the maximum of the radiation temperature was also mentioned in [14) for the 

gravitation dominated matter. It is also worth pointing out that a logarithmic dependence 

of the one-loop black hole entropy on the mass, similar to (2.5 ), has been found out in a 

number of two-dimensional models, for instance in [16], and has bee11 argued to occur in 

the membrane approach to the description of black holes [17]. 

One should remark in conclusion that the reason why the simple expressions for 'I' 

8 

and S have been obtained in our method is that the Schwarzschild metric possesses the 

only dimensional parameter m. Thus. it is interesting to repeat the analysis for more 

general black hole geometries.and massive quantum fields and see how the properties of 

the considered model can change. 
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