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1 Introduction

An important problem in the theory of strong 1nteract1ons is to calculate
from the first principles of QCD, the distribution functions Joru(z) [2] and
hadronic wave functions ¢.(z),... @n(x1,Z2,3),... [3] which accumulate all
the necessary information-about non-perturbative long-distance dynamics of
the theory. These phenomenological functions appear naturally as a result of
applying “factorization theorems” to hard inclusive and exclusive processes [3];
(4], [5].

Another kind of such. phenomenologlcal numbers are the quark and gluon
condensates (: §(0)q(0) :), (: G(0)G(0) :)..., the basic parameters of the QCD
SR approach [6] reflecting the non- perturba.tlve nature of the QCD vacuum.
A usual practice is to calculate the hadronic functlons f(z), o(z) by usihg
the condensates as input parameters [8]. ‘

The situation with hadronic WF’s is more complicated than with distribu-
tion functions: the firsts appear only in an integrated form like some convolu-
tions. It seems now that only the QCD Sum Rule (SR) approach and lattice’
calculation {7] can provide an information about the form of hadronic WF. The
most popular set of hadronic. WF, due-to V. L. Chernyak, A. R. Zhitnitsky
and I. R. Zhitnitsky (CZ) (8], was produced with the help of QCD SR for the
first moments of WF’s. These SR were based on the diagonal correlator of
appropriate axial currents and the condensates of the lowest dimensions; the
. pion WF thus obtained-has the well-known “two-hump” form. But now it is
known that the hadronic functions are rather sensitive to the structure of non-
perturbative vacuum [9]. Therefore one should use a non-local condensate like
(: g(0)E(0, z)q(z) :) which can reflect the complicated structure of the QCD
vacuum. (Here E(0,z) = Pexp(: f; dt,A%(t)7.) is the Schwinger phase factor
required for gauge invariance.)

Earlier, one of the authors (S. M. together with A. Radyushkin) constructed
a modified SR with non-local condensates and demonstrated that the intro-
duction of the'correlation length A’ for condensate distributions produces much
smaller values for the first moments of pion WF than the CZ values [10], [11].
This leads to the form of the pion WF strongly different from the CZ form
and close to the asymptotic form ¢%*(z) = 6z(1 — ). Our goal in the present
paper'is to obtain directly the form of the pion' WE and the first. resonance,
using the available ansatz for non-local condensates (section 2)." This program
has been suggested recently and realized in.[1], we develop alternative methods
of extracting wave functions from this sum rule for a non-diagonal correlator.
We suggest two different ways: the first uses integrated (in a sense) properties
of ansatzes (see section 3) and may be considered as an alternative to-tradi-
tional Borel SR; while the second uses ‘their local propert1es (see section 4)
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lows to the Borel SR idea. The results obtained by these ‘indé‘p}e'rfdérnt methods
agree with each other and confirm the main conclusions about shapes of the

wayé function of pion and the resonance obtained in [1].
2 = Non-diagonal correlators and pion WF

2.1 The models of non-local quark condensates

It' Is appropriate to recall some general features of derivation of the QCD sum
rules with non-local condensates [9], [10],[11), [16]. The quark and gluon fields
va‘re!t’aken in the Fock-Schwinger gauge A4,(2)z* = 0, therefore path-ordered
exponentials £(0,z) = Pexp(: [ dt, A%(t)7,) are.equal to 1. It is convenient
to parametrize the 2>-dependence of the simplest bilocal quark condensate
(- 2(0)g(2) :) = (: §(0)g(0) :)Q(2?) in analogy with the 'd:—representa'tion of a
propagator ? ; ; BRI

o= [t pas e

The correlation function f(s) may be fnterpreted as “the distribution function:
of quarks in the vacuum” ' [10] since:its nth moment is proportional to the:

matrix element of the local operator with D? to nth power:
L Ga0yey "
P(n+2) (qg:)

For the lowest two moments one obtains

: |5 r)s =

ot Skz. o0 _1(:qD%:) A2
Jy s J sf(s)ds‘ﬁqu“?)-f? ®)

with A2 rr.lea?ning the average virtuality of vacuum quarks.
In a similar way, parametrizing the quark-gluon non-local condensate-

(: 40)ig(oG(0))a(=) ) = ( (0)q(0) Q1 (%),

one can introduce the quark-gluon distribution function. f;(s). (Note the ap-
proximate character of this definition: its L.h.s. appears as'a three-point cor-
relator and ‘only after reducing to two-point geometry can be parametrized in
terms of two-quark non-local condensates [10].) et ‘
. '-I‘o construct models of non-local condensates, one should satisfy some cdni

straints. For instance, if we assume vacuum matrix elements (: @(02)qu ;) to

3y o . * N .
In'd(?rl\(mg these sum rules we can always make a Wick rotation, i.e., we assume that
all coordinates are Euclidean, 22 < 0. ) k ‘

s B ) e s L s e e 2
et Ao gt IR L R s 2 e N g e e e 1D

exist, then the function f(s) should decay faster than 1/s**! as s — oo.
If all such matrix elements exist (for all k), a possible choice could be a
function f(s) ~ e™** 7°, or f(s) ~ e™*7, etc. at large s. The opposite,
small-s limit of f(s) is determined by the large-|2| properties of the function
Q@(2%). This behavior has been analyzed in detail in [16] in the framework of
QCD SR for heavy quark effective theory (HQET): it has been demonstrated
that for a large Euclidean z, non-local quark condensate @(z2) ~ e~ with
A = (Mg = mQ)|mg—co being the lowest energy level of the mesons in HQET
(numerically, A is around 0.45 GeV). This means that f(s) ~ e~4*/* in the
small-s region. Another hint to prove this behavior of f(s) can be obtained
from the results of the lattice calculation [12] where the exponential decay be-
havior for the correlator (: G(0)E(0,z)G(z) :) of the gluon vacuum strengths
has been found. For this reason one should expect in a;theory with confinment

CaO4E) D~ ew-ll) @

where A is the correlation Iength. This law generates the éboye-mentioned
behavior for f(s) at small s. So, we arrive at the set of ansatzes Al:

Al: f(s) = Ni- expy(—Az/s»—( szdf)

A2: f(s) = Nz-exp (=A?/s = s03)

exp(—AZ/s)l
I'k—=1) s

— Gaussian decay
— exponential decay ~ (5)

2\ (k-1) ~
(—") — inverse power decay
s ~ ‘

A31c : fk(s)

where A? = 0.2GeV? and AZ = A?(k — 2), the normalization constants N;
and the o;-parameters are fixed by eq.(3), where for the average virtuality of
vacuum quarks we take the usual QCD sum rule value [13]-A2 ~ 0.4 GeV?.

"' Ansatz Al has been used in [1], it is effectively close to ansatz A2.. The
second ansatz leads to the same behavior for the (: g(0)g(2) :) ‘as the massive
causal scalar propagator with a shifted argument does: '

(: G(0)q(2) ) N Ny - F%CXP (—2/\»\/» o2 + |32|/4) (6)

2K (20y07)]

The ansatz A3 has analytic properties in s different from those of A2, is
very convenient for calculations and imitates the §(s — A) when th;e‘ parameter ‘
k> 1. But it doesn’t look sufficiently “physical” due to the absence of higher
local condensates mentioned above. Nevertheless, we shall test it also at the

N, K,(2) is the modified Bessel function.

3.



values k=3, 4 5 Thxs ansatz 1eads to the asyrnptotlc behav1or

| <:f q(O)q(_z) ?) ,ziwi‘(T\/—;’B (ZA

3

22 Sumrule

o0

Let us write. down the Inodel sum rule for the ax1al” wave functlons (p,r ( )
of the pseudoscalar mesons suggested in [1]

.(pﬂ.(:z;) + Ort (:l:)e ﬂ’/M + ©r M(I)C ""/M2'+...E‘I)(—A4—2,I) o (8)

,'.‘,‘ . ) N “ . M2 n AQ , - ’ . . | ' A_
L = ( —:v+2M2)f(:vM)+(z——>1—:v)
wrth the function f(s) specified in the precedlng section. It should be noted
that this sum rule results from the approxunatlons (for a detailed dlscussmn

see [1]):

1. reductlon of three pomt correlators to two- pomt ones;
:2. fl(s) = 2/\2 f(s)

3. contributions of higher non-local condensates '(qGGq), (gGGGy),
*Could bé neglected. , o R

As has been shown in [1] the function ®(47, :v), i.c., the weighted sum of
all WF’s, is given by two humps (one centered at z4 = .s4/M?, where s, is
the point of maximum for the ansatz dlStI‘lbuthIl functlon f(s), and the other
~at £4 = 1 — s4/M?) moving as M? changes. When M? increases, the humps
become narrower, higher and more close to. boundary pomts z=0orz =1,
For M? =1 GeV? , e.g., the function ®(347> ) looks very much hke the CZ
WF (see Fig.1). However, ®(4z,z) is not just the pion WF: the larger M2 the
larger contamination from higher states Moreover, the (“axial”) WF of the
higher pseudoscalar  mesons #, #”,... produce zero total integrals (whereas
the pion WF is normahzed to unlty, see also [14]) and therefore they should
oscillate (see, e.g., Fig.5.) :

At low M?, the pion WF dominates in the total sum (I>( i ,:v) (hOWever
one cannot take too low M? because the operator product expansion fails for

TMP< AZ). When M2 =0.4 GeV?, it was ‘observed that <I>(M,, ) is very close
to the asymptotlc wave function of the pion (see Fig.1).

“In our’ opinion, this very nice picture of successive switching on Tresonances
has an unélear point: there i is no strict criterion for selecting the value of M?

. 4

SN exp( M@

for determining WF of the ground state (pion). That’s why we have decided to
verify the results of this analysis in different way and to elaborate new methods
for treating such SR.

3 Method of Integral Projector

As we have seen before, all the resonances contribute to @(7‘%,1) and the
problem is to distinguish between the ground state (¢(z)) and resonances
(¢i(z)) and between resonances. We should know the whole spectrum y; to
extract the ground state. We represent here a method to obtain ¢;(z) and ;
step by step. It is based on an integral transformation of equation (8).

As a result, we shall obtain approximately the same form for the ground
state and the first resonance by using essentially different ansatzes A2 and A3.

3.1 General formulas

In what follows it’s convenient to use a new variable 7 = 1/M? instead of the
Borel parameter M2, The r.h.s. of SR (8), i.e. ®(,z) is defined for 7 € [0, /\2]

Let us consider this function in the whole complex plane of 7 and define the
projector P(N, mo,w): *

PN, () = o | eplr — o)) (g (9)

2miwl (1 —m)NH!

where the contour C is a vertical line C = (¢ — 100, ¢ +1ic0) with ¢ > 1/AZ,
the ¢ lyes righter than any pole of the integrand, w >0 and 7o € (0, Ai%] To
obtain the result of this projector action on the initial SR-representation

p(z) + Z pi(z) exp(—7;) = ®(7,z), (10)

consider its action on a simple exponential. Evidently, by closing the contour
C to the left we get (due to the well-known residues theorem):

P(N, To, W) exp(—nr) = 9‘((...1 — ) - exp(—pTo) (1 - g)N (11)

Then, for w > 0, we have:

o)+ 300 - ) pita) (11— ) exp (<o) =

- P(N, To;w)q)(T,I) = &)N(Q,z). (12)



To understand this result, it is instructive to consider the case N = 0. 70 = 0:

pi<w

)+ Y wi(z) = P(0,0,w)d(, z) (1)

121

We see that by varying'w one can switch on (switch off) more and more res-
onances in the Lh.s. of SR. For N > 0 one can successively determine the
positions (masses ;) of resonances. Formula (12 ) is the main result of this
subsection. : '

Consider now the meaning of the introduced parameters of the projector

P(N,10,w):

1. The parameter w has a clear physical méaning — it produces a real
division of the set of resonances ( with y; > w). Contrary to the role
of the “unphysical” Borel parameter M? that supplies an exponential

. . . /V
cut of higher resonances, it gives a (smoothed by powers (1 - ﬁ) ) real
step cut. : “

2. The real life is more complicated than the simple model (13): to suppress
the non-desirable asymptotic behavior of the function ®(r, z) for T - oo
(in order to neglect the integral over a semicircle closing the initial con-
tour C), one should use the parameter N > 0. Besides, the projected SR
with different NV can be used for determining the subsequent resonances.

3. At last, 7o defines the significant region of variable 7 which’ mainly con-
trlbutcs to the integral.

Let us consider the third feature in detail. Note that the physical meaning
has only large-|z| asymptotics of the non-local quark condensate (: (0)q(z) :).
But no information about this behavior can be extracted from the known val-
ues of the first few moments. Contrary to that, the behavior of the condensate
at small |z| isn’t fixed at all, and different klnds of the behav1or of the corre-
lation function f(s) are allowed at a large s (or a small 7). The reason is the
dominance of perturbative contribution in this region. Different ansatzes Al,
A2, A3 have been suggested earlier in this way. It is easy to show that (4 )
generates the exponential behavior of the correlation function f(s) at a small
s, f(s) ~ exp(—A?/s) that corresponds to the law

®(7,z) ~ exp(—7A?)

at a large 7 for the r.h.s. of SR.
As the behavior of ®(7) at small 7 isn’t fixed we always choose the value
of 7o in some region near point 1//\:. Since the final result, in any way, should

6 .

not depend on the behavior of ®(7) at a small 7 <« 1/AZ, this is a constraint
on the available correlation function f(1/7) and the value of 7. The
practical recipe is that one takes the parameter 7o so that the contribution
of the region near point 7 = 0 to the integral (9) must be small (see the
integration with ansatz A2 in the next subsection).

Consider now as an illustration, the result of the action of P(N To,w) oL
the n-th term of the operator product expansion (OPE) (O,) - 7" in the r.h.s.
of the traditional SR, proportional to 7. After explicit integration we obtain
for N > n:

N (n + 1) 1
PN, 70,w)r™" = (kz CEE) (wTo)") -
= (1 ML ) (14)

WwTo

One can see the re-formation of the usual set of power corrections:

In the limiting case wrp — oo (at a fixed 7), when all the resonances are
included into the l.h.s., the projector P(N,7y,w) is similar to the projector
on a single value of 7, i.e. its kernel in the integral representation is close to
§(1 — 70): ~

P{N,mo,w)T" = 77,

and the SR is restored again to its initial form (with a new argument 7 — 7).

" For intermediate values of w, the cut of the tail of resonances in the L.h.s.
(i. e. those which satisfy w < p;) leads to the relative growth of theoretical
contributions in the r.h.s. of the SR (see (14)) with respect to the remaining
resonance contributions. In other words, it can be interpreted as an effective
increase in the scale of the standard vacuum expectation values (0,). This
example demonstrates, in particular, the strong dependence of SR.treatment
on the adopted model for the phenomenological part of SR.

3.2 How to extract a ground state WF

Let us assume that the experimental mass values are known pyo = 0, p; =
1.7, ... and they correspond to ansatzes A2 or A3. Then, we can obtain an
expression for (z) by employing equation (12) with the parameter w = w; <
p1. that corresponds to the saturation of the ground state ¢(z)

cp(:c) = P(N,70,u)®(r,z) = ®n(w1,z). (15)’

Then, the final result should not depeﬂd on the parameter N strongly. How-
ever, in the real life we don’t know the position p;.€xactly, therefore we may

7



get a contamination from the next state. This contamination becomes smaller
when N increases, due to the power suppression near threshold y;. So, the fol-
lowing criterion of saturation of the ground state can be suggested: the form
of the curve p(z) = ®n(ws,z) doesn’t depend on N at some w;. This is a
very simple but no so effective criterion for the following reason: the region of
comparatively small w (i. e. w < 1 GeV?) seems to be transient, here the cor-
responding WF is not well normalized (its normalization is of the order of 0.5
as compared to needed 1). The normalization of WF restores at w > 1.5 GeV'?,
but the correction for the first resonance is too small to be extracted with the
help of this criterion.

To integrate the r.h.s. of SR (15), we take residues: there are two residues
in the case of ansatz A2 at the points 7 = 79 and 7 = 0 (essential singularity).
At the end we obtain that the saturation realizes near w = 1.8 + 2.0 GeV?
and the function ®n(w,z) doesn’t change noticeably for N = 1, 2, 3. The
parameter 7p is chosen in accord with the suggested criterion of smallness of
the contribution from the residue at 7 = 0 and appears to be 75 ~ 2.5 GeV 2.
The curve is in form rather close to the asymptotical WF, and the second
morment of WF (£?) = 0.19 (the corresponding curves are shown in Fig.2, their
forms vary very slowly when the parameter 7, decreases from 2,5 GeV =2 to
2.0 GeV~2, and for N =2, 3 - even to 1.5 GeV~2).

We have completely different behavior of the r.h.s. of SR near 7 ~ 0 for
ansatz A3i, ®(1,z) ~ 7*. For this reason, we are should use the projector

with the parameter N =k +2 for this ansatz. We proceed here with ansatzes’

with & = 3,4,5. The integral in the r.h.s. <I>N(w0, ), is determined by the
one residue at the point 7 = 7. Performlng the procedure like for ansatz
A2 with the same value of 19, we obtain slightly thinner forms of go( ) for all
these ansatzes. As it will be clear later, the most adequate to pion physics is
ansatze A3;c with 3 < k < 4. For this casé we observe the saturation of the

r.his. of SR at w'=wy ~ 2 GeV? with (£?) = 0.16. (We could conclude about

this saturation by the smallness of variations of @N(wo, ) with N, of course
the WF normalization now reaches unity.) The results are also close to the
asymptotic WF, see Fig.3. : : ; : ‘ )

3.3 - How to extract resonance WF’

Suppose we know the values of H1, Ha2, ‘..., then we can extract the first
resonance by 1nvert1ng equatlon (12), e.g., at N =1:

(@1(w, ) — ®1(p1, 7))

NOE exp (Top1) - (16)

w

wtrere < w < 2 corresppnds to saturation of the first resonarrce.

e i ®

The later equation may be improved if one takes into account a more de-
tailed spectrum model. Let us suggest that the resonance contribution to the
spectral density has a finite width 24, e.g.:

6(s — ) - pr(z) = p(s — 1. A) - pa(z), where p(s — g, A) |a—o = 6(s — p)

This leads to a more complicated expression in the Lh.s. of SR (8) than simple
exponentials. Applying the projector P(V,7o,w) to the L.h.s. of SR with this
new spectral density p one can easily obtain

P(N, n,,w)/ ¢ Tp(s — p, A)ds =
0

N co
= (1 + d ) / O(w — s)e "™ p(s — p,A)ds (17)
0

wdTy

instead of expression (11). To estimate the main effect of the finite width A,
we apply the simplest (and rather rongh) “step-model” for p

1

pls = D) =0(p + 8 > s)0(s > p—A)- 5 (18)
at natural constraint A < p. Substituting (18) into (17) and integrating we
obtain a new expression for the L.h.s. of SR. The latter leads to modified

equation for ¢(z); at N =1 and w > p + A we arrive at the expression

] (@1(w,z) - @1 (p1,7)) ATg

o) = e (om) - SR

(19)

1
Apy = A - (coth(ATO) — —A—>

T0 /-

The final numerical result due to finite width in (19) is not large for param-
eters of the first resonance [15] A = 0.18 GeV?, i ~ 1.7GeV? but may be
important for the next resonance.

Let us assume now that we don’t know the spectrum {u;}. How can we find
a resonance. for the particular. ansatz? Evidently, equation (12) has the best
sensitivity to. it at the lowest N, because the threshold effects are suppressed
for large N. However SR with N = 0 is not also good: there is a too rough
simulation of the continuous (over w) r.h.s. by the set of step-like contributions.

The case of SR with N = 1 is more attractive: here steps are smoothed by
switching-functions ( - %) and the discontinuity is present only in deriva-
tives of the Lh.s. of SR. As it has been mentioned in the discussion of the
criterion for selecting resonances in the former subsection, the magnitude of



this discontinuity is too small to be trigger resonances. lf we examine the
difference @y (w,z) — Py (w, ), then we obtain the very convenient criterion
for resonances: '

0(w — p1)wi(z) - exp(—pi7o) /:J—l (1 - /L—I)A = dy(w,z) — Oyp(w, 7). (20)

As one can see, at w = w. = y, this difference is equal to zero and for w >

becomes negative, if y1(z) < 0, otherwise, positive, with I/w-decreasing at’

large w. For ansatz A2 we see in Fig.4 that the zero of this differcnce at

= 1, z = 0.5 is reached for w. = 1.8 GeV? that is quite reasonable for the
pion case (the experimental value is gy, = 1.7 £0.25 GeV*?). 1t should be
emphasized that ®,(w,z) imitates the Lh.s. of SR as a function of w rather
well despite of their different origin. Note here that the position of the root w,
depends also on the value of z: in the region 0.35 < z < 0.65 this dependence
is rather weak.

So, we have found the position of the first resonance p; that agrees with
Pierp. based on ansatz A2. This is an unexpectedly good‘result. for our rather
crude model of non-local condensates (see subsection 2.2). The saturation by
the first resonance is reached near w = 2.5+3 GeV?. The curves corresponding
to the resonance ;(z) (for different values of w near w = 3 GeV2) are shown
on ig.5. : o

The same program for ansatz A3 with k = 3,4,5 produces the roots w.(k) =
1.3, 3.0, 5.5 GeV?Z, respectively. For this reason the choice 3 < k£ < 4
is more adequate to the pion case. Here we also observe the saturation of
normalizations and forms of the ground state WF before switching on the
first resonance (i.e.. at w < w.(k)). The curves of the ground state WF
corresponding different k = 3,4,5 are very close.

4 Method of leferentlal Pro Jectors

4.1 General formulae

We shall construct here a trick to extract the ground state and resonances,
based on the criterion traditional for QCD SR approach: a physical quantity,
©(z), should not depend on the Borel parameter M? on the stability plateau.
However, as we have seen in section 2, the weighted sum of all WF in the initial
representation (8) has a strong dependence on M2 even'for M? < 1 GeV?'due
to contamination by the resonances, and there is no stablhty of the form of &
curve at all. ‘

Let us suggest that the positions of the first n resonances are known exactly.
Then, one may hope to obtain the ground state ¢(z) that doesn’t depend on
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M? in the region [A2, M?], by cancelling the contributions of these resonances.
The contamination in this case will be defined by the contributions of the
(n + 1)-th resonance and subsequent resonances and will be suppressed by: the
exponential factor ~ exp(—puZ,;/M?). * If the positions of some resonances
are not well known, one can vary the parameters y; to obtain the best fit of
stability. Of course, this proposal will “work” if the resonances are well distin-
guished and the corresponding pre-exponential factor ¢,41(z) is not too large
(for any z). Note at least that the renormgroup evolution of the condensates
with respect to M? should be taken into account to complete this analysis in
a separate publication.

To cancel the contribution of a set of resonances, we shall use a differential
operator. Apparently, one can obtain for one resonance ¢; { here D =0, ):

(14 2) e =0, (1+D)so(z) — (a).

From this result it is éasy to find the action of the projector Qo(n) °

Qo(n) = H (1 + 2) , ' (él)

i=1 Hi

on a finite set of the resonances L, = 3| exp(—pi7)pi(z):

Qo(n) (Z e”“"w(z)) = 0; Qo(n) (so(z) + Ze‘“"w(z)) = ?(z)- (22)

i=1

So, applying the projector Qo(n) to eq. (10), one obtains the express1on for

the ground state o(z)
#(z) = Qo(n)®(r,2) + O(c™7). (23)

We can extend the region of stability for ¢(z) with respect to 7 (or M?) by
adding subsequent resonances to projector @Qo(n) (and making the last term
in eq.(23) still smaller):

By a similar procedure, the projector for extracting the k-resonance from
the set L, could be obtained:

Qk(n)ze“*f-f[<1+“k+0) o (24)

ik Hi — Hk

“%14 is similar to the formulation of the “inverse problem”: to obtain the ¢(z) one uses
the known spectrum {u;}.
5This form of projector was proposed to us by A. V. Ra.dyushkm
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The contamination of the k() resonance could be more strong than for ¢(z)

due to the factor exp(px7).
It would be worthwhile to rewrite expression (23) as a form of Laplace

representation:
= /w e ﬂ <1 - 3) &(p, z)dp; (25)
0 i1 Hi
where ®(7,z) = /0‘00 e""‘i)(p,x)dp

and then to employ the identity

n

(1= 2) e )3 ()

i=1 i=1

Now, all the information about the spectrum is accumulated in s;-parame-
ters in the final formula:

p(z) = / exp (—pr ~ psy — Zp"%) d(p,z) dp+ O(e™+17). (27
0 k=2

Expression (27) is'the main result of this subsection: it is very convenient
for applications of any models of the spectrum {x;}, and allows one to use
different approximations.

4.2 The spectrum model and the ground state WF

We suggest here the following spectrum model:
The positions of the first two resonances are py = 1.7, py = 3 (GeV?) in accord
with erperimental data and estimations of subsection 3.3. For subsequent u;
we adopt the phystcally appealing” oscillator’s model with « ﬁmte spectrum:
pa= g, pa=p+1,... pp=p+n-3.

Now we rewrite express1on (27) in a form without the first two. resonances,
and all the model suggestions concentrate in the intergrand exponential:

99(1:):(1-*—#21) (1+:%>/0 exp( —pT — psy — Zp k) ,7)dp

HO(emnT), wheresy = Z (i> (28)

_3 1
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Our model allows one to apply any approximation to the integral in the r.h.s..
We shall not here describe the details (see Appendix A). It results in a “three-
resonance formula” for expression (28) with a shifted argument 7

o(z) ~ Pap(z,7) = (1 + ﬂﬂl) (1 + g) (1 + g) @(r,;) lmrtsr,  (29)

Note here that the shift 7 — 7 + 5 cffectwely reduces the available region of
the parameter M?:
M?* - -—Mz——
1+ s,M?2
Evidently, this “scaling” effect improves the stability of ¢(x) with respect to
M2,

The “reduced” expression (29) depends on two parameters, y and n. We
can vary them to obtain the best region of stability for ¢(z) with respect to
M?. The best fit leads to the values: g ~ 4 GeV?, n =11 for ansatz A2. For
these values of parameters the form of the curve @(z) doesn’t depend on M?
visibly in the region M? € (0.5 — 2) GeV?, and has a rather slow evolution
when M? increases. The form of curve (in the stability region) is similar to the
asymptotic WI again (see Fig.6), and the second moment of WF (£2) = 0.16
for M? =1 GeV?2. So, we may conclude that the results of the "differential
method” confirm the results for pion WF obtained by the "integration method”
in Sec. 3.

5 Conclusion

In this paper, we have considered a model sum rule for the pion wave function
and pseudoscalar resonances based on the non-diagonal correlator [1]. The the-
oretical side (r.h.s.) of this sum rule depends only on the non-local condensate.
We suggest two different ways to extract the wave functions of the ground and
resonance states of the meson from the sum rule. Two kinds of ansatzes with
different analytlc properties for the condensate distribution have been used for
final numerical estimates. We have obtained qualitatively similar results for
the pion wave function by using both these methods and different condensate
ansatzes: their forms are close to the asymptotic wave function. Moreover, we
obtained the shape of the wave function and the position of the first resonance
near m} &~ 1.8 GeV?, (m?,,, = 1.7 GeV?), based on the first kind ( A2) of
the ansatz. Our results confirm the main conclusions about shapes of the wave

function of pion and the resonance obtained in [1].
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Appendix

A Three-resonance formula

The oscillator spectrum model leads to the evident. expression for coefﬁc1ents
s 1n (26):

n—p

Sk:z(jﬁ:k(k;#)—((k;nﬂ)- (A.1)

To derive the three-resonance formula (29) we shall use a set of successive ap-
proximations (A.2 - A.5). Substituting (A 1) into the 1dent1ty (26) we obtain:

ZP Z e ( (k n+1)) 7121
~p-(1 —Zl)ln(l — ) - (fl+1) (1 —22) In(1-2)] <1,  (A2)
where z, = p/p, 25 = p/(n + 1).

exp[—(u- (1= 21)In(1 = 2) — n- (1 — ) In(l — 25))] "R

e~ P

Simple numerical analysis demonstrates the validity of the approximate equa-

tion for the r.h.s. of (A.3):

0(u~p)(—1ig(—m sw-n(-2) )

The main condition for the next approximation is that the Laplace representa-
tion <I>(p, 7) for A2 is concentrated on a bounded support of about few GeV?,
and the integral in'(27) over p is saturated in the interval (0, 4). So, we may
hope that

[Od;} [(1—;) (1~ p)] ®(p, ) exp (—pr — ps;) ~
| ~ (14 2) 8(r2) e (A.5)

Substituting the set of approximations (A.2 - A.5) 1nto expression (28) we
arrive at three-resonance formula for ¢(z),

o(T)r = (1 + i) (1 + %) (1 + %) q)(.T’“T’) [+ Zorgsy (A.6)

15
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Figure 1: ®(z, M?) with M? = 0.4 GeV?*(line), M? = 0.6 GeV?*(small-dashed), ‘ o S o o ' S
M? = 1.0 GeV?*(big-dashed) vs. asymptotic pion wave function (dotted) Figure 3: A3j-ansatz: dy(w,z) with N = 6(line), N = 7(small-dashed) vs.
asymptotic pion wave function (dotted)

2.5
0.1
2t 1 0.075 | £0 = 2.5
3 0.05
1.5} P ;
% . 0.025
N
= ol Yo
T
£-0.025
o
0.3 & -0.05} L
-0.075}F.  .° T
0 0.2 0.4 0.6 0.8 1 ol o
. x » 1.6 1.8 2 2.2 2.4 2.6 2.8 3

- ’ omega
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Figure 6: A2-ansatz: ®ap(z ym7) with M? = 05 GeV3(line), M2 =
1.0 GeV¥(small-dashed), M? = 1.5 GeV?(big-dashed) vs. asymptotic pion
wave function (dotted)
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