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. 06cy~,11aem1 o6~asi cxeMa cpopM)'JmpOBKH K0Bap~aHTHOH'KBaHTOBOii MexaH11K11 B o6~eii 
wopmr OTHOCHTeJI&HOCTH. Ilo~a3aHO, noqeMY np11 yqeTe xoTsi 6L1 nepBLIX peJISIT11B11CTCKHX nonpa
BOK HY)KHO cne~HaJibHbIM o6pa30M, 113 HeKOTOpbIX o6~epeJISITl1BHCTCKHX Bblpa)KeH11H, onpe,lleJISITb 
onepaTOpbl Ha6JI10)laeMhlX B Ka}K)IOH )laHHOH CHCTeMe OTCqeTa. Ilp11 STOM onepaTOpbl 11MnyJILCa,· 
K00p)ll1HRTbl 11 CilHHa He o6pa3y!OT CTaH,11apmy10 anre6py rew3eH6epra; XOTSI np11H~l1Il _COOT
B(!TCTBirn, KOHeqHO, co6JIIO)laeTCSI. I(a)Kj:iasi Il0JIHasi npocrpaHCTBeHHOilO)I06HaSI rnnepnoBepxHOCTb 
onpe,11eJIS1eT HOPMaJibHYIO reo,11e311qeCKYIO CHCTeM)' 0TCqeTa, KOTOpasi, B_ CBOIO oqepe,llh, onpe,11eJIS1eT 
npocTpaHCTBO BOJIHOBblX cpyHK~HH, .11onycKal0~11X 6op110BCKYIO BepOSITHOCTHYIO 11HTepnpeia~HIO, 
TaKl1e npOCTPllHCTBa, OTHOCSI~ecsi K cy~ecTBeHH0 pa3Hb!M CHCTeMaM OTcqeTa, HeKorepeHTHbI, 11, 
TaKHM o6paiioM, B03HHKaeT npaB11JIO cynepoT6opa, CBSI3a11Hoe He c KaK11M-JI1160 3apsi,110M, a c caM11M , 
IlOHSITHeM «qaCTH~a BO BHeWHeM rpaBHTa~HOHHOM IlOJie»·. BbICKa3bIBaeTCSI npe,llilOJI.O)KeHHe, qTO 

. yKa3aHitasi HeKorepeHTHOCTb pa3pewaeT 113BeCTHblH napa)IOKC IlOTepir HHcpOpMa~:mi· B qepHblX 
,llblpax. . ' . . . • . .. . . . • 

: Pa6oTa BLIIlOJIHeHa B JI~6opaTOp11,11 TeopemqecKofi cp11311Kir 11M .. H.H . .6oroJI1060Ba murn:. 

Tagirov E:A. .. E2-94~477 
Quantum Mechanical Observabl~s in General Relativity 

A general scheme of consecutive and covariant formulation of quantum mechanics in general 
.relativity is dicussed. It is shown, why operators of observables should be defined in a special way from 
general relativistic relations in each given frame of reference if relativistic corrections are taken into 
account. The operators of momentum,· (curvilinear) coordinates and spin so defined do noi form a 
standard Heisenberg algebra, -though the principle of correspondence, of course; is satisfied. Any 
complete.space-like hypersurface determines normal geodesic system, which, in turn, determines a ' 
space of wave functions that have Born's probabilistic interpretation. The spaces determined by the 
essentially different frames are incoherent and so a superseleciion rule arises that is connected not 
wiih a charge, but with the notion itself of «a particle in an external gravitational field». A conjecture 

· is don_e _that this incoherence solves the known paradox_ of information los~ in black holes.:· 
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1.Introd uction 

A consecutive formulation of quantum mechanics of a particle and more 
complicated physical systems in the framework of general relativity seems 
to be interesting both for investigation of quantum effects in an external 
gravitational field and for more profound insight onto basic concepts of the 
theory through modification of its geometric background. 

The problem does not seem difficult when it concerns the evolution 
equation and a structure of the space of wave functions. Quantum mechan
ics in the Schrodinger picture can be considered as an asymptotic theory in 
c- 2 

, c being the velocity of light, of the theory of field ¢( x) with a mass 
m and a spin s , in a riemannian space-time ¼ with the metric tensor 
gcx13(x) of the signature -2, a,/3, 1 , ... = 0,1,2,3. The theory so ob
tained is non-relativistic in the sense that it is asymptotic but having been 
correctly formulated it permits to take into account relativistic corrections 
in a form which is general-covariant and identical in a wide class of frames 
of reference; in the latter sense the theory is general-relativistic. In the 
present paper a short description of the approach mentioned above will be 
outlined with a special stress on determination of operators of observables 
which is not a direct generalisation of notions of the standard theory in 
R4 if the relativistic corrections are taken into account. We refer for more 
details to papers [1, 2] for the case of s = 0 and to [3] for s = 1/2 . 

2. Schrodinger Equation and Born Interpretation 
of Wave Functions in General Relativity 

We start with ¢( x), x E ¼ ( a scalar field for s = 0 and a bispinor 
for s = 1/2 ) in the form 

¢(x) =canst· exp(-i(mc/fi)S(x))k(x)if;(x), (1) 

where if; is a scalar or a (two-component) spinor field, k is a transfor
mation of if; defined below. (Some unessential changes in notation are 
done in the present paper with respect to [1-3]). Assume also, that the 
non-exponential part in Eq.(1) is adiabatic, i.e. 

I c-1ac,arg(k(x)if;(x)) acxs(x) I.= o(l), (2) 



~ 

and that S(x) satisfies a Hamilton-Jacobi equation for geodesics of ¼ 

Oo,S f)DIS = 1, (3) 

or a modification of this equation including any additional terms at most 
oforder O(c-1 ). 

Then, we substitute </> into the corresponding field equation in ¼ ( we 
have considered the Dirac equation in the tetrad formalism in [3] and the 
minimal or non-minimal Klein-Gordon-Fock equation in [l, 2]), introduce 
the time-like vector field 

def f} 
To, = c o,S, (4) 

which might be called a normal (almost) geodesic frame of reference, and 
come to a generally covariant Schri:idinger or Pauli equation in the form 

t,,2 N 

inTip =, ( -2mD2 + ';;,c-2nHn + O(c-2(N+ll))i/J, 
n=l 

d!} Hip, (5) 

where (we write out the expressions for s = 1/2 to give a general idea on 
the structure of the formulae) 

T def ( o,f) l '7 o,) I i n(ij) (k) o, = T + - V T · + -H t(""k)(]" T 
· 0/ 2 0/ 2 0/ ' 3 ' 

n d.;J a(il (h(i/t + ~v'o,hfo) - ~ntil€(ijk)h(k)o, • r: 
and the following notation is used: a(i) are the Pauli matrices; v' 0/ 

is the covariant derivative; I is an identity operator; the indices in 
parentheses mean projections to tetrad basis ho, (fJ) with ho, (o) = f}Oi S( x) 
and i,j, k, ... = 1, 2, 3 ; €(ijk) is an antisymmetric symbol; n~,, are 
the Ricci rotation coefficients. 

The asymptotic operator k. can be calculated simultaneously with 
operators Hn by iterations as a differential operator series in powers of 
c- 2 and both the hamiltonian H and k. contain only derivatives along 
the space-like hypersurface 

S = {x E ¼; S(x) = canst}. 

So, when all the mentioned conditions and relations are fulfilled, ¢>( x) 
1s an asymptotic solution of the corresponding general--relativistic field 
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equation of the order c-2N , N being the order of iteration in calculation 
of operators JI and k . Note that all previous and subsequent essential 
relations and quantities arc scalars with respect to general transformations 
of coordinates .TOI • 

Further, an import.au!. step can be done due to that the relations de
termining these operators leave a freedom in determination of k ( x) . It 
may be used to fulfill the following asymptotic relations 

{61, <P2}s = (i/Ji, i/J2)s+O(c-2(N+1)) 

where 

{</>1, <P2}s d:;j J daa(x) (-;f; Oaefi2 - Oa</>1 ¢2) · 
s 

def r da"(.r) ¢1 'Yo-(x)¢2 
ls 

) def l t ( 1P1, i/J2 s - da 1/J1 i/J2; 
,E 

for .5 = 0. 

i' 
for s = r 

(6) 

(7) 

(8) 

(9) 

and the following notation is used: da<> ( x) and da( x) arc correspond
ingly normal and volume clements of S ; 1> is the ordinary complex 
(s = 0) or Dirac (s = 1/2) conjugation of <P and ij.,t is respectively the 
ordinary complex or hermitean conjugation of 1/J • · 

So, the generally non--positive-definite bilinear form { ·, ·} s , value of 
which actually does' not depend on choice of the space--like hypcrsurface 
S , becomes positive-definite in the space 'Ps,N of asymptotic solutions 
of the general-relativistic field equation which are represented by solutions 
if;( x) of the Schri:idinger - Pauli equation 5. We denote the space of wave 
functions i/J(x) as \J!s,N . 0-s one secs from Eqs.(6). (7) and (8) the 
general- relativistic "scalar product" {·, ·}s iuduces i:n \J!s,N a natural 
generalization for Vi of the pre-Hilbert structure of the space of wave 
functions in the coordinate representation. Of course, \J!s,N 2 \J!s,N+I . 

J\. very important point is that as a consequence of conservation of 
{ ·, •} s the hamiltonian II fr~m Eq.(5) is hermit.can with respect to the 
scalar product (·, ·)s in the usual sense, i.e. 

H = ut 

and the system described by a wave function if;( x) is stable: This 
is a reason for the Horn probabilistic interpretation if1(x) . The operator 
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k is still determined up to the multiplication from the right by a unitary 
operator so that the unitarity of the theory takes place . 

3. Operators of observables 

To continue the formulation of quantum mechanics in ¼ we should 
define operators of observables. The conventional postulate of the stan
dard quantum mechanics is that any hermitean ( well defined on the state 
space) operator is an observable. and all operators of observables for spin
less particle can be realized in configuration representation as functions 

of operators of ( cartesian) spatial coordinates x; d.;f x;l and of their 

canonically conjugate momenta . p; d;J -in8; . This scheme could be 
generalized to ¼ as follows. 

The ?perator in the space Ws,N of projection of four-momentum on 
the given unit four-vector field V 0 (x) could be defined as 

1 
Pv d.;f (inV"v',., + 2'v O V")iliT=H' (10) 

where the general index inT = H signifies that. it should be used if V 0 

has a component along 7° . Due to the hermiticity of H and to the 
second term at the right hand side of Eq.(10) one has fiv =pi .. 

As concerns spatial coordinates, we introduce three arbitrary. scalar 
functions qA( x ), A, B, ... = l, 2, 3, satisfying the conditions: 

do-"80 qA =.0, rank ll8aqA II = 3. ( 11) 

Their values determine a position on S , where they can be considered 
as intrinsic (curvilinear) coordinates . Then the spatial position operator 
could be defined as· 

qA(x) = qA(x) I 

and its conjugate momentum will be fivA, where 

V o def [}" B A = WAB q , AB def [}" A[} B w = q o,q . 

(12) 

A fact is, however, that the scheme so described is plausible at most only 
in the case of N = 0 , that corresponds to c-1 = 0 , i.e. in the purely 
non-relativistic theory of a spinless particle . If we are going to take into 
acc~unt ielativistic corrections, i.e. consider N ~ l , and spin, we should 

4'. 
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expect the corrections not only in H and 7/J , but also in fiv and 
qA . This is just the point at which the approach of (4] to formulation of 
quantum mechanics in general relativity seems to be incorrect. 

In fact, if we calculate the mean projection on V" of momentum of 
the field </> E <I> s,N through the well-known general-relativistic formula 

Pv( </>; S) = 1 do-"V13 Ta11, (13) 

where T013 is the (metric) energy-momentum tensor of field </> , then we 
shall obtain 

Pv(</>; S) - (1/J,pv1/J)s = O(c-2
), 

for fiv defined by Eq.(10). It seems natural to assume that the cor
rect value is given by the fundamental formula (13) although it cannot be 
represented in the form { </>, fiv </>} except V" being a Killing field. 

As concerns the coordinate operator, the situation is even worse because 
there is no universally recognized expression analogous to Eq(l3). In (1-3] 
we use the following simplest general-relativistic expression for "meanvalue 
of spatial coordinate qA ": 

QA(</>; S) = { </>, qA l <P}' (14) 

which is an immediate generalization of the definition used in [5] for R 4 

and a cartesian system { xa} . 
On contrary, an analogous expression for "mean spin tetrad compo

nents" S(i) ( </>; S) is well known, but for brevity we restrict ourselves with 
consideration of operators of momentum and coordinates. 

Thus, we should construct operators fiv, qA in \JI s,N which are con
sisterit with the general-relativistic real quadratic functionals Pv( </>; S), 
Q~(</>; S) on <I>s,N . The prescription is very simple. A real quadratic 
functional Z ( </>) uniquely defines a sesquilinear hermitean functional. 
Z( </>1 , </>2; S) through the known procedure of polarisation, see, e.g., [6] : 

4Z(</>1 , </>2) = Z(</>1 + </>2) - Z(</>1 - </>2) - iZ(</>1 + i</>2) + iZ(</>1 - i</>2).(15) 

The hermiticity of Z(</>1, </>2) means that 

Z( </>1, </>2) = Z( </>2, </>1)- (16) 
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If Z ( ¢; S) is a local real quadratic functional in the form of an invariant 
integral over given S as Pv( ¢; S), QA(¢; S) and S(i)( ¢; S), . then 
it can be represented asymptotically on iI>s,N as 

Z(¢1, ¢2; S) = (1P1, z(x) 1/J2 )s + O(c-(2n+2l), ( 17) 

where z( x) is a ( matrix for s = 1 /2 ) differential operator in terms of 

derivatives along S , and 
z(x) = z(x)t 

·as a consequence of hermiticity of Z( ¢1 , ¢2; S). 
Application of the described procedure to Pv( ¢; S), in the particular 

case of s = 1/2, N = 1 and 1/io) = 0 gives 

1i, 2 

Pv,N(x) IN=1= Pv,o(x) + -
4 2 2 [D, [D, Pv,o(x)l] + O(c-4

), (18) 
, me 

where 

pv,o(x) = in( (V°'o(Ji + ~ v' Oi VOi) · I - i L(jl(V, h(i)) C(ijk)a(kl), (19) 

LUl(V, W) being a spatial tetrad component of the Lie derivative of a 
vector field W in the direction of V . 

We see here, that pv differs from the right hand side of Eq.(10) even in 
the case of N = 0 (owing to spin terms) and commutators of projections 
of momentum on three independent vector fields do not vanish except the 
fields commute too, what is possible at most in the spatially flat Robertson 
- Walker space-times. 

Similarly, we come from Eq.(14) to 

qA IN=i= qA I + 
8
~:c

2 
[D , [D , qA)l] + O(c-4

). (20) 

Here a difference with the naive definition Eq.(12) arises in the order 
0( c- 2 ) ( or even higher if s = 0 qA form a harmonic coordinates on S ). 

Obviously, [qA(x) , q8 (x)] = 0 at least for N = 0 it can be easily 
shown that this is the case if s = 0 . So in these cases the coordinate 
op.erators (together with spin ones if s = 1/2 ) may be used to form 
a complete set of quantum mechanical observables in contrast with the 
momentum operators pv . 

6 

An important fact is that the asymptotic series for qA ( x) may be 
represented in a closed form if 80 8 is a Killing vector, i.e. Vi is static. 
Then, as it is shown in [2], there exist ~nother representation space, not 
Born intepretable, in which the corresponding coordinate operator is a 
generalization to curvilinear coordinates and static external gravitation ·of 
the well--known N cwt 011 --Wigner operator in the case of s = 0 . The case 
of s = l /2 has not been investigated yet in this aspect. 

At last, an interesting point is that the algebra (if it :is an algebra at 
all) of the operators of momentum and coordiates differs from the direct 
generalization ~)f the Heisenberg algebra to Vi on the level of N = 1 
and this circumstance needs further investigation. 

4. Conclusion 

So, for any appropriate solution of the Hamilton-Jacobi equation. (3) 
or its proper modification there exists a space <l>s,N of asymptotic so
lutions of order N of the general--relativistic field under consideration 
and its equivalent representation in the space IV s,N of solutions 1f,• of 
the Schrodinger or Pauli equation (5) that may be considered as having 
the Born probabilistic interpretation. A class of general-relativistic real 
quadratic functionals and their polarisations induce hermitean asymptotic 
operators of observables in each IV s,N in an uniform way (but in the form 
depending on S. ) and so the general mashinery of quantum, mechanics 
proves to be produced there. It should be emphasized the appearance of 
the mentioned functionals as gencral--relativistic pre-images of quantum 
mechanical matrix elements of observables. This approach as a whole looks 
as a new sort of quantization, different from the canonical and geometrical 
ones because it does not lead _to the Heisenberg algebra for coordinates 
and momenta. 

A superposition of functions ¢ from different spaces IV s,N is , of 
course, an asymptotic solution of the field equation, but. it cannot be ex
pressed as a superposition of the corresponding wave functions which be
long to the different spaces. So, the spaces IV s,N are not coherent in 
t.hc quantum-mechanical sense and situation is just similar to that with 
t.he supcrsclection rules, sec, e.g., [7]. The one-particle state in a given 
frame of reference, or more.exactly in a class of equivalent. frames, has 110 

qµantum-mechanical (Boru interpretable) sense in another essentially dif
ferent frame. This assertion does not contradict to that. in inertial frames of 
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reference the spaces of one-particle states arc coherent. Herc the coherence 
is supported by the Lorentz symwetry. 

However, an approximate basis in IV s.N can be used for second quan
tization .of the field ¢ · and it seems that then one- particle states from 
a given frame of reference may be represented as superposition of many-
particle states in another but this is only a conjecture . 

We have met in our construction of the quantum mechanics two sorts 
of incoherence., The first is incoherence due to abcense of an exact complete 
of observables. This incoherence increases with increase of external fields 
and of velocities of quantum particle. The second is· incoherence connected 
with different frames of reference. A question may be posed: could these 
uncertainties to solve the known paradox [8] of information loss in the 
thermodynamics of black holes. 
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