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A general scheme of consecutive and covariam formulanon of quantum mechanlcs In general
Trelativity is dicussed. It is shown, why operators of observables should be defined Ina speclal way from -
‘general relativistic relatlons In each given frame of reference if relativistlc corrections are taken into
account. The operators of momentum, (curvilinear) ‘coordinates and spin so defined do not form a
“standard ‘Heisenberg algebra, though the principle of correspondence, of course, is satisfied. Any
‘complete space-like hypersurface determines normal geodesic system, which, in turn, determines a '
_space of wave functions that have Born’s probabilistic interpretation. The spaces determined by the

1 essennally different frames are. incoherent and so a superselection rule arises that is connected not.
with'a charge, but with ihe notion itself of «a particle in an external gravitational field». A con jecture

s done that this mcoherence solves the known paradox of mformanon loss in black holes

'w

The : v; tlganon has been performed at the Bogohubov Laboraiory of Theoreiical Physxcs, JINR

- Preprint of the Joint Institute for Nuclear Research. Dubna, 1994 -




1.Introduction

A consecutive formulation of quantum mechanics of a particle and more
complicated physical systems in the framework of general relativity seems
to be interesting both for investigation of quantum effects in an external
gravitational field and for more profound insight onto basic concepts of the
theory through modification of its geometric background.

The problem does not seem difficult when it concerns the evolution
equation and a structure of the space of wave functions. Quantum mechan-
ics in the Schrédinger picture can be considered as an asymptotic theory in
c™*, ¢ being the velocity of light, of the theory of field ¢(z) with a mass
m and a spin s, in a riemannian space-time V4 with the metric tensor
gop(z) of the signature -2, «,f8,v,... = 0,1,2,3 . The theory so ob-
tained is non-relativistic in the sense that it is asymptotic but having been
correctly formulated it permits to take into account relativistic corrections
in a form which is general-covariant and identical in a wide class of frames
of reference; in the latter sense the theory is general-relativistic. In the
present paper a short description of the approach mentioned above will be
outlined with a special stress on determination of operators of observables
which is not a direct generalisation of notions of the standard theory in
R4 if the relativistic corrections are taken into account. We refer for more
details to papers [1, 2] for the case of s =0 and to [3) for s =1/2.

2. Schrodinger Equation and Born Interpretatlon
of Wave Functlons in General Relativity

We start with ¢(z), r € V4 (a scalar field for s =0 and a bispinor
for s =1/2 ) in the form '

é(z) = const - exp (—i(mc/h)S(:c))f((x)i,b(:vv), ‘ 1)

where 1 is a scalar or a (two-component) spinor field, K is a transfor-
mation of ¢ defined below. (Some unessential changes in notation are
done in the present paper with respect to {1-3]). Assume also, that the
non-exponential part in Eq.(1) is adiabatic, i.e. :

| Barg(RK()p(a) 0°5(@) |= o), (2)




and that S(z) satisfles a Hamilton-Jacobi equation for geodesics of Vj
8.5 88 =1, (3)

or a modification of this equation including any additional terms at most

of order O(c™').

Then, we substitute ¢ into the corresponding field equation in Vj (we:

have considered the Dirac equation in the tetrad formalism in [3] and the
minimal or non-minimal Klein-Gordon-Fock equatlon in [1 2]), introduce
the time-like vector field Ly
: = 0, S, (4)

which might be called a normal (almost) geodesic frame of reference, and
come to a generally covariant Schrédinger or Pauli equation in the forrn_

N
T = (—g=D'+ ) ¢ Hn+ O )y,

. n=1
Hip, (5)

where (we write out the expressions for s =1/2 to give a general idea on
the structure of the forrnulae)

def

T (0. + V )T+ lny"")‘f(fﬂc)ff’(k)T“

def

D= o (hy0a + 5 v hy) — —Q $eq; )h( .

and the following notation is used. o@) are the Pauli matrlces Vea
is the covariant derivative; . I is an identity operator; the 1ndlces in
parentheses mean projections to tetrad basis h%g) with he (0 = 0°5(z)
and 4,5,k,...=1,2,3 ; €@k Is an antisymmetric symbol; Q47 are
the Ricci rotation coeﬂicients.

The asymptotic operator K can be calculated simultaneously with
operators H, by iterations as a differential operator series in powers of
¢™? and both the hamiltonian H and K contain only derivatives along
the space—like hypersurface

S ={z € Vy; S(z) = const}.

So, when all the mentioned conditions and relations are fulfilled, ¢(z)
i1s an asymptotic solution of the corresponding general-relativistic field

equation of the order ¢=2¥ | N being the order of iteration in calculation

of operators H and K . Note that all previous and subsequent essential
relations and quantities are scalars with respect to general transformations
of coordinates x® : '

Further, an important step can be done due to that the relations de-
termining these operators leave a freedom in determination of K (z) . It
may be used to fulfill the following asymptotic relations

{élv ¢2}S = (1/)11. P2)s + O(C_z(N-H)) (6)

where

{61, ba)s /daa(z) (&7 Qoo Dadr éa) fors=0, (1)
S5 . N

de . o e ‘ l\ Q
= /d(f (%) &1 YalT)d2 cors=5 (8)
s « o 2
/ def t . C
(¥1,92)s = do ¥’ ¥a; , (9)
Je , ‘

and the flollowing notation is used: ~ do®(x) and do(zx) are correspond-
ingly normal and volume elements of S ; ¢ is the ordinary coniplex

(s = 0) or Dirac (s =1/2) conjugation of ¢ and ! is rcqpectlvol\ the
ordinary complex.or hermitean conjugation of 1 .

So, the generally non-positive-definite bilincar form - {-,:}s , value of
which actually does'not depend on choice of the space-like hypersurface
S, becomes positive-definite in the spacc ®gsn of asymptotic solutions
of the general-relativistic field equation which are represented by solutions
(z) .of the Schrodinger — Pauli equation 5. We denote the space of wave
functions ¢ (z) as WYsn . As one sces from Eqs.(6). (7) and (8) the
g(‘n(’rdlﬂ relativistic ”scalar product” {-s'}s induces in ¥gn  a natural
generalization for V; of the pre-Hilbert structure of the space of wave
functions in the coordinate representation. of course, Ugn 2 Pgony -

A very important point is that as a consequence of conservation of
{-,-}s the hamiltonian H from Liq.(5) is hermitean with respect to the
scalar product (-,-)s in the usual sense, i.e.

H=1HT

and the system described by a wave function (z) is stable:.. This
is a reason [or the Born probabilistic interpretation ¥(zx) . The operator



K is still determined up to the multiplication from the right by a unitary
operator so that the unitarity of the theory takes place.

3. Operators of observables

To continue the formulation of quantum mechanics in V4 we should
define operators of observables. The conventional postulate of the stan-
dard' quantum mechanics is that any hermitean (well defined on the state
space) operator is an observable and all operators of observables for spin-
less particle can be realized in configuration representation as functions
of operators of (cartesian) spatial coordinates z “ 21 and of their
canonically conjugate  momenta . p; = —thd; . This scheme could be
generalized to V; as follows.

- The operator in the space Wsx of projection of four-momentum on
the given unit four—vector field V*(z) could be defined as

~ de . o 1 o .
pv < (ihVoV, + SVoV )iz (10)

where the general index ih7T = H signifies that it should be used if V*
has a component along 7% . Due to the hermiticity of H and to the
second term at the right hand side of Eq.(10) one has py. = [3{,

As concerns spatial coordinates, we introduce three arbitrary. scalar
functions ¢#(z), A,B,..=1,2,3, satisfying the conditions:

do®d,q" =0, rank ”8an|| =3 (1

Their values determine a position on S , where they can be considered
as intrinsic (curvilinear) coordinates . Then the spatial position operator
could be defined as’ ‘ o

| | (@) = ¢*() I NP
and its conjugate momentum will be py,, where l

o de de

| %4 A :fwAB(')" B, wAB :faanaan.
A fact is, however, that the scheme so described is plausible at most only
m the case of N = 0, that corresponds to ¢! = 0 , 1.e. in the purely
non-relativistic-theory of a spinless particle . If we are going to take into
account relativistic corrections, i.e. consider N > 1 ; and spin, we should

expect the corrections not only in H and ¢ , but also in py and
¢4 . This is just the point at which the approach of [4] to formulation of
quantum mechanics in general relativity seems to be incorrect.

In fact, if we calculate the mean projection on V¢ of momentum of
the field ¢ € ®sn through the well-known general-relativistic formula

Py (¢; S): /S do*VPT g, . (13)

where T,g is the (metric) energy-momentum tensor of field ¢ , then we
shall obtain

Pv(¢; S) — (%, pvip)s = O(c™?),

for py defined by Eq.(10). It seems natural to assume that the cor-
rect value is given by the fundamental formula (13) although it cannot be
represented in the form {¢@, py ¢} except V* being a Killing field.

As concerns the coordinate operator, the situation is even worse because
there is no universally recognized expression analogous to Eq(13). In [1-3]
we use the following simplest general-relativistic expression for "meanvalue
of spatial coordinate ¢# ”:

QY ¢ S)=1{s.¢"T¢}, , (14)

which is an immediate generalization of the definition used in {5] for R4
and a cartesian system {z°} . , '

On' contrary, ‘an analogous expression for "mean spin tetrad compo-
nents” S()(¢; S) -is well known, but for brevity we restrict ourselves with
consideration of operators of momentum and coordinates.

Thus, we should construct operators py,¢#? in Wsxy which are con-
sistent with the general-relativistic real quadratic functionals Py(¢; S),
Q%(¢; S) on ®sn . The prescription is very simple. A real quadratic
functional Z(¢4) uniquely defines a sesquilinear hermitean functional
Z(¢1,¢2; S) through the known procedure of polarisation, see, e.g., [6] :

42(¢1,82) = Z($1 + #2) — Z(r — $2) — iZ($1 + ida) + iZ($1 — ia).(15)
The hermitjcity of Z(41,43) means that '

2($1,62) = Z(90, ). (16)



If Z(¢;S) isalocal real quadratic functional in the form of an invariant
integral over given S as Py(¢; S), Q*(¢; S) and Sp(¢; S), . then

it can be represented asymptotically on @5y as .
Z(¢1, ¢2; S) = (77[)17 2(1) 77&2)5 + O(C—(2n+2))a (17)

where 2(z) is a (matrix for s =1/2) differential operator in terms of

derivatives along S, and
(z) = 3(z)!

‘as a cohsequence of hermiticity' of Z(é1,d2; S).
Application of the described procedure to Pyv(4; S), in the particular
caseof s=1/2, N=1 and Vg =0 gives

2

h _
pvn(z) [N=1= Pvo(z) + Zm—%_i[D , (D, pvo(@)]] + O(c™), (18)
where
1 i
pvol) = ih((VZ0 + 2V.V7)-T= OV ) o), (19)

LUNV,W) being a spatial tetrad component of the Lie derivative of a
vector field W in the direction of V .

We see here, that py differs from the right hand side of Eq.(10) even in
the case of N =0 (owing to spin terms) and commutators of projections
of momentum on three independent vector fields do not vanish except the
fields commute too, what is possible at most in the spatially flat Robertson
- Walker space-times.

Similarly, we come from Eq.(14) to

2

P o= T4 oo [D, D, ) + 0. 20)

Here a difference with the naive definition Eq.(12) arises in the order
O(c™?) (or even higher if s =0 ¢* form a harmonic coordinates on S ).

Obviously, [¢(z), ¢B(z)] = 0 at least for N =0 it can be casily
shown that this is the case if s = 0 . So in these cases the coordinate
operators (together with spin ones if s = 1/2 ) may be used to form
a complete set of quantum mechanical observables in contrast with the

momentum operators py .

An important fact is that the asymptotic series for §4(z) may be
represented in a closed form if 8,5 is a Killing vector, i.e.- V; is static.
Then, as it is shown in [2], there exist ‘another representation space, not
Born intepretable, in which ‘the corresponding coordinate operator is a
generalization to curvilinear coordinates and static external gravitation of
the well-known Newton-Wigner operator in the case of s =0 . The case
of s=1/2 has not been investigated yetin this aspect. ‘

At last, an interesting point is that the algebra (if it is an algebra at
all) of the operators. of momentum and coordiates differs from the direct
generalization of the Heisenberg algebra to V4 on the.level of . NV =1
and this circumstance needs further investigation. ‘

4. Cbnéluéion

So, for any appropriate solution of the Hamilton-Jacobi equation: (3)
or its proper modification there existsa space ®gny of asymptotic so-
lutions of order N of the general-relativistic ficld under consideration
and its equivalent representation in'the space Wgy- of solutions . ¢ of
the Schrodinger or Pauli equation (5) that may be considered as having
the Born probabilistic interpretation. A class of general-relativistic real
quadratic.functionals and their polarisations induce hermitean asymptotic
operators of observables in cach Wgn in an uniform way (but in the form
depending on - S ) and so the general mashinery of quantum. mechanics
proves to be produced there. It should be emphasized the appearance of
the mentioned functionals as gencral-relativistic pre-images of quantum
mechanical matrix elements of observables. This approach as-a whole looks
as a new sort of quantization, different from the canonical and geometrical '
ones because it does not lead to the Heisenberg algebra for coordinates
and momenta. . ‘

A superposition of functions ¢ from different spaces illig'N is , of .
course, an asymptotic solution of the field cquation, but it cannot be ex-
pressed as a superposition of the corresponding wave functions which be-
long to the different spaces. So, the spaces Wgn are not coherent in.
the quantum-mechanical sense and situation is just similar to that with
the superselection rules, see, e.g., [7]. The one-particle state in a given
frame of reference, or more exactly in a class of equivalent frames, has no
quantum-mechanical (Born interpretable) sensc in another essentially dif-
ferent frame. This assertion does not contradict to that in inertial frames of



reference the spaces of one-particle states are coherent. Here the coherence
is supported by the Lorentz symrpetry.

However, an approximate basis in Wsn can be used for second quan-
tization of the field ¢ 'and it seems that then one- particle states from
a given frame of reference may be represented as superposition” of many-
particle states in another but this is only a conjecture .

We have met in our construction of the quantum mechanics two sorts
of incoherence. The first is incoherence due to abcense of an exact complete
of. observables. This incoherence increases with increase of external fields
and of velocities of quantum particle. The second is incoherence connected
with different frames of reference.. A question may be posed: could these
uncertainties  to solve the known paradox {8] of information loss in the
thermodynamics of black holes. :
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