

обьєдиненный ИНСТИТУ ядерных иєөледований

A.I.Golokhvastov*

INDEPENDENT PRODUCTION AND POISSON DISTRIBUTION

Submitted to «Ядерная физика»

[^0]Известное утверждение о факторизации инклюзивных сечений в случае независимого рождения частиц (или кластеров, струй и т.д:) и вытекающий из него вывод о пуассоновом распределении по их множественности . никак не следуют из теории вероятностей. При аккуратном применении теоремы о произведении независимых вероятностей получаются совсем другие уравнения и не получается никаких следствий относительно распределений по множественности.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained.

The investigation has been performed at the Laboratory of High Energies, JINR.

In the physics of multiple processes it is customary to assume that the multiplicity distribution of particles (as well as clans, clusters, jets and other objects of multiplicity production) must be the Poisson one if they are produced independently (e.g., $[1-3]$).

It is "proved" with the help of inclusive cross-section factorization: if the particles are independent, then, e.g., rapidity manyparticle distribution can be presented as a product of one-particle distributions (e.g., [4,5]):

$$
\begin{gather*}
\rho\left(y_{1}, y_{2}, \ldots y_{i}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right) \ldots \rho\left(y_{i}\right), \quad \text { where } \tag{1}\\
\rho\left(y_{1}\right) \equiv \frac{1}{\sigma_{i n}} \frac{d \sigma}{d y_{1}} ; \quad \rho\left(y_{1}, y_{2}, \ldots y_{i}\right) \equiv \frac{1}{\sigma_{i n}} \frac{d^{i} \sigma}{d y_{1} d y_{2} \ldots d y_{i}} . \tag{2}
\end{gather*}
$$

And as the integrals of these quantities over the whole rapidity space are equal respectively to

$$
\begin{gather*}
\int \rho\left(y_{1}\right) d y_{1}=<n> \\
\int \rho\left(y_{1}, y_{2}, \ldots y_{i}\right) d y_{1} d y_{2} \ldots d y_{i}=<n(n-1) \ldots(n-i+1)> \tag{3}
\end{gather*}
$$

then integration of eqs.(1) results in simultaneous equations which are equivalent to the Poisson distribution.(e.g., $[6,7]$):

$$
\begin{equation*}
\langle n(n-1) \ldots(n-i+1)\rangle=\langle n\rangle^{i} . \tag{4}
\end{equation*}
$$

The result of integration over the whole interval of y_{k} variation (3), (4) will not change if instead of particle rapidity, by y_{k} in (2) is meant its momentum, velocity, exit angle or any other variable connected with it, e.g., a random number generated by a computer and attributed to this particle. But the results (3), (4), i.e., the Poisson distribution, will not be any longer obtained if, e.g., a constant factor is introduced into the right hand side of (1) although it will not affect factorizability.

The point is that the factorizability of just probabilities and not of any quantities follows from independence. The probability density of a composite event is equal to the product of elementary ones if they are independent. Eqs.(1) and hence the Poisson distribution (4) do not arise from particle independence as quantities (2) are not probability densities even if because the integrals of these quantities are not equal to 1 .

If these quantities (2) are normalized, i.e., divided by their integrals (3) and then substituted into (1), the Poisson distribution (4) will disappear. Moreover, all the same there are no grounds to substite them into (1) as normalization does not yet make them probabilities.

Interpretation of quantities (2) as densities of probability to find at least one (or exactly one) of particles at given value of y_{k} deprives these quantities of additivity property with respect to y_{k}, inalienable property of probability density (e.g., [8]). For example, the probability of at least one of the particles to fall into the whole phase volume is not equal to the sum of probabilities to fall into each of its halves. That is, not only the results of integration (3) and hence the Poisson distribution (4) disappear but even the possibility of integration.

Quantities (2) are measured experimentally as $\left(\Delta y_{k} \rightarrow 0\right)$:

$$
\begin{equation*}
\rho\left(y_{1}\right) \Delta y_{1}=\frac{N_{\text {particles in }} \Delta y_{1}}{N_{\text {cvents }}}=\sum_{n_{1}} n_{1} P_{n_{1}}=\left\langle n_{1}\right\rangle_{\Delta y_{1}} \tag{5}
\end{equation*}
$$

$P_{n_{1}}$ is the probability of event (interaction) where n_{1} particles fall into Δy_{1}. That is, $\rho\left(y_{1}\right)$ is the density of mean multiplicity at the point y_{1}. Certainly, when $\Delta y_{1} \rightarrow 0$, the mean multiplicity is equal to the probability of at least one (or exactly one) of the particles to
fall into $\Delta y_{1}: \sum n_{1} P_{n_{1}} \rightarrow \sum P_{n_{1}} \rightarrow P_{1}$ because then $P_{2}, P_{3} \ldots \rightarrow 0$. However, unlike these probabilities, the density of mean multiplicity is additive with respect to y_{1}, and when integrating it over the whole rapidity interval, the mean multiplicity (3) is obtained. By the way, the probability of at least one of the particles to fall into the whole interval is equal to 1 , and the probability of exactly one of the particles to fall there equals 0 (for $n>1$).

- In the same way:

$$
\begin{equation*}
\rho\left(y_{1}, \ldots y_{i}\right) \Delta y_{1} \ldots \Delta y_{i}=\sum_{n_{1} \ldots n_{i}} n_{1} \ldots n_{i} P_{n_{1} \ldots n_{i}}=\left\langle n_{1} \ldots n_{i}>\Delta y_{1} \ldots \Delta y_{i},\right. \tag{6}
\end{equation*}
$$

$P_{n_{1} \ldots n_{i}}$ is the probability of an event where n_{1} particles fall into Δy_{1}, \ldots and n_{i} particles into Δy_{i}. So, $\rho\left(y_{1}, \ldots y_{i}\right)$ is many-particle multiplicity density; $\rho\left(y_{1}, y_{2}\right)$ is the multiplicity density of pairs of particles when one of the particles of a pair is within Δy_{1} and other one is within $\Delta y_{2} ; \rho\left(y_{1}, y_{2}, y_{3}\right)$ is the density of threes and so on. The many-particle multiplicity density is also additive with respect to each y_{k}, and when integrating it over the whole phase volume, the mean many-particle multiplicity (3) is obtained: $\left\langle n_{1} \ldots n_{i}\right\rangle=$ $<n(n-1) \ldots(n-i+1)>$, where n is the number of particles in an event. Each of n particles can be the first one in a pair, in a three etc., each of $(n-1)$ remaining particles can be the second one and so on to $(n-i+1)$.

So, eqs.(1)-(4) are obtained from the statement of independence of mean multiplicity densities at different points of the phase volume and not of probability densities independence.

One can simulate a set of events with wittingly independent particles and spectra independence of multiplicity giving a multiplicity distribution and simulating each particle in random manner
over the same one-particle spectrum. Despite this, trivial reasons for correlations of mean multiplicity at different points of the phase volume will remain. For example $(i=2)$, selecting a sub-set of events with large multiplicity within Δy_{1}, we thereby select the events with large total multiplicity, and hence we increase multiplicity within Δy_{2}. On the other hand, selecting the events with large multiplicity within Δy_{1} at fixed total multiplicity, we decrease multiplicity within Δy_{2}. So, this multiplicity correlation is negative at a very narrow total multiplicity distribution, and it is positive at a very wide one. In case of the multiplicity distribution with $D^{2}=<n>$, i.e. $<n(n-1)>=<n>^{2}$, these contrary tendencies are precisely compensated according to (4).

Let us obtain accurately the consequences from independence of particles at first for semy-inclusive events containing exactly n particles which independence is being investigated. The probability density that one particle, randomly chosen from an event with n particles (e.g., by means of a random number choosing the particle number), has rapidity y_{1} is equal to

$$
\begin{equation*}
\rho_{n}^{\prime}\left(y_{1}\right) \equiv \frac{1}{n \sigma_{n}} \frac{d \sigma_{n}}{d y_{1}} ; \quad \int \rho_{n}^{\prime}\left(y_{1}\right) d y_{1}=1 \tag{7}
\end{equation*}
$$

The probability density that i random particles, successively chosen from an event with n particles $(n \geq i)$, have respectively $y_{1}, y_{2}, \ldots y_{i}$ (each following particle is chosen from the lesser number of remaining ones) is written as [9]:

$$
\begin{gather*}
\rho_{n}^{\prime}\left(y_{1}, y_{2}, \ldots y_{i}\right) \equiv \frac{1}{n(n-1) \ldots(n-i+1) \sigma_{n}} \frac{d^{i} \sigma_{n}}{d y_{1} d y_{2} \ldots d y_{i}} \\
\iint \rho_{n}^{\prime}\left(y_{1}, y_{2}, \ldots y_{i}\right) d y_{1} d y_{2} \ldots d y_{i}=1 \tag{8}
\end{gather*}
$$

If all particles are produced independently, i.e. if in a subensemble of events, where the first randomly chosen particle has rapidity y_{1}, the second one y_{2} and so on to y_{i-1}, the y distribution of the rest of particles is the same as in the total ensemble, then the compoind probability density is equal to the product of elementary ones:

$$
\begin{equation*}
\rho_{n}^{\prime}\left(y_{1}, y_{2}, \ldots y_{i}\right)=\rho_{n}^{\prime}\left(y_{1}\right) \rho_{n}^{\prime}\left(y_{2}\right) \ldots \rho_{n}^{\prime}\left(y_{i}\right) \tag{9}
\end{equation*}
$$

These equalities correspond to the well-known procedure of studying correlations when real events are compared with mixed ones consisting of particles randomly chosen from different events [10] (but with the same n).

From (9), i.e. assuming the independence of produced particles, using approximations of one-particle semi-inclusive spectra (7) only (and multiplicity distributions), a good description of experimental data on diverse inclusive "correlations" of π^{-}mesons in $p p$ interactions is obtained: two-particle $C, C^{\prime}, C_{s h}, R$ correlations, forward-backward correlations with different rapidity cuts, right-left correlations, multiplicity distributions within diverse rapidity intervals and intervals separated by empty gaps [11].

Eqs.(9) can be averaged over $n\left(P_{n}\right.$ is the probability of an event with multiplicity n):

$$
\begin{equation*}
\sum_{n=i}^{\infty} P_{n} \rho_{n}^{\prime}\left(y_{1}, y_{2}, \ldots y_{i}\right)=\sum_{n=i}^{\infty} P_{n} \rho_{n}^{\prime}\left(y_{1}\right) \rho_{n}^{\prime}\left(y_{2}\right) \ldots \rho_{n}^{\prime}\left(y_{i}\right) \tag{10}
\end{equation*}
$$

For probabilistic reasons one can also obtain relations for "more inclusive" events, however for that one has to use the same semiinclusive cross sections. The probability density that one particle, randomly chosen from a random event (but with $n \geq i$) has y_{1}, is
equal to (averaging over n):

$$
\begin{equation*}
\hat{\rho}\left(y_{1}\right) \equiv \sum_{n=i}^{\infty} P_{n}^{\prime} \rho_{n}^{\prime}\left(y_{1}\right) ; \quad \int \hat{\rho}\left(y_{1}\right) d y_{1}=1 \tag{11}
\end{equation*}
$$

Here P_{n}^{\prime} is the multiplicity distribution for a sub-set of events with $n \geq i$. The probability density that i random particles, successively chosen from a random event, have respectively $y_{1}, y_{2}, \ldots y_{i}$, is equal to:

$$
\begin{equation*}
\hat{\rho}\left(y_{1}, \ldots y_{i}\right) \equiv \sum_{n=i}^{\infty} P_{n}^{\prime} \rho_{n}^{\prime}\left(y_{1}, \ldots y_{i}\right) ; \quad \int \hat{\rho}\left(y_{1}, \ldots y_{i}\right) d y_{1} \ldots d y_{i}=1 \tag{12}
\end{equation*}
$$

Using the theorem of the product of independent probability densities, we obtain:

$$
\begin{equation*}
\sum_{n=i}^{\infty} P_{n}^{\prime} \rho_{n}^{\prime}\left(y_{1}, \ldots y_{i}\right)=\sum_{n=i}^{\infty} P_{n}^{\prime} \rho_{n}^{\prime}\left(y_{1}\right) \ldots \sum_{n=i}^{\infty} P_{n}^{\prime} \rho_{n}^{\prime}\left(y_{i}\right) \tag{13}
\end{equation*}
$$

If $\rho_{n}^{\prime}(y)$ did not depend on n, then these equalities would coincide with (10).

Certainly, equalities (10) and (13) can be slightly altered. For example, one can try to start summation in (11)-(13) from $n=1$. Averaging in (10) can be performed with a weight, e.g. proportional to statistics at each multiplicity: $n(n-1) \ldots(n-i+1)$, then the left hand side of (10) will be equal to the left hand side of (1): $\rho\left(y_{1}, y_{2} \ldots y_{i}\right)$. However, in any case these equations cannot be reduced to (1) or only constructed of inclusive spectra in any other way. Formulating accurately the statement of particle independence, one has to use semi-inclusive probability densities. Therefore no consequences relative to multiplicity distributions are obtained from the independence of particles.

However, the Poisson multiplicity distribution for independent particle production can be obtained in the following case. For events with fixed total multiplicity, the multiplicity distribution within a limited phase volume is a binomial one. If this volume is very small, i.e. if for randomly chosen particle the probability to fall into this volume is very small, then the distribution turns into the Poisson one. The distribution over the number of decays of a radioactive source over an interval of time is an accurate analogy to this case if the time interval is much smaller than the source lifetime.

The author is grateful to M.I. Podgoretsky and S.A. INhorozov for numerous useful discussions.

REFERENCES

1. T.T. Chou, C.N. Yang, Phys.Rev.Lett. 55 (1985) 1359: Phys.Lett.B 167 (1986) 453; 193 (1987) 531.
2. A. Giovannini, L. Van Hove, Z.Plys.C 30 (1986) 391; Acta Phys.Pol.B 19 (1988) 495; 917; 931.
3. A. Capella, J. Tran Thanh Van, Z.Plyys.C 23 (1984) 165; A. Capella et al., Plys.Rev.D 32 (1985) 2933; 37 (1988) 1763.
4. K.G. Wilson, Cornell preprint CLNS-131 (1970).
5. C.E. DeTar, Phys.Rev.D 3 (1971) 128.
6. A.H. Mueller, Phys.Rev.D 4 (1971) 150.
7. A. Bassetto, M. Toller, L. Sertorio, Nucl.Plys. B 34 (1971) 1.
8. H. Cramer, Matheinatical methods of statistics. Princeton (1954).
9. W. Koo, Plys.Rev.Lett. 28 (1972) 935.
10. G.I. Kopylov, Phys:Lett.B 50 (1974):472.
11. A.I. Goloklivastov, preprint JINR E2-94-27. Dubna (1994). Submitted to Z.Plys.C.

Received by Publishing Department on February 15, 1994.

[^0]: * E-mail: Golokhv@LHE17.JINR.Dubna.SU

