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:Pacnpenenenne [Tyaccona u HezagrucHUMOE POXACHUE :

H3BecTHOE yTBEDPXAEHHE O (PaKTOpH3aUMH HHKIIO3UBHEIX CEYEHUH B CIIy-
-yae He3aBUCUMOTO POXACHUS YacTHL, (WM KAACTEpPOB, CTPYH M T.1;) H-BEITEKa-
IOLIHIA M3 HETO BHBOX O ITyaCCOHOBOM DACIPEHE/ICHHH TI0 HX MHOXECTBEHHOCTH .
HHKaK He.CJIEeAYIOT ‘M3 Teopuu BeposaTHocreld. IIpn. akkypaTHOM IpMMEHEHHH
TEOPEMHI O:TIPOM3BEACHHH HE3aBUCHMHIX BEPOSTHOCTEH ITOJydAIOTCS  COBCEM
ApyrHue ypaBHCHHUS M He NOJYyJYaeTcs HHKAKMX CJIEACTBMIT OTHOCHTEIBHO pac--
TIpeReJCHUHA MO MHOXECTBEHHOCTH.

.Pa6ota BunoaHena B JlabopaTopun BeicokHx sHepruit OU AU,

Tpenpunt O0besMHEHHOMO MHCTUTYTA SAEpPHbIX ucceaosauuit. dy6Ha, 1994
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Independent Production and Poisson Distribution

The well-known statement of factorization of inclusive cross-sections in
case of independent production of particles (or clusters, jets etc.) and the
- conclusion of Poisson distribution over their multiplicity arising from it do not

follow from the probability theory in any way. Using accurately the theorem of
" the product of independent probabilities, quite different equations are obtained
and no consequences relative to multiplicity distributions are obtained. -

The investigation has been performed at the Laboratory of High Energies,
JINR.
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In the physics of multiple processes it is customary to assume
that the multiplicity distribution of particles (as well as'clans, clus-
ters, jets and other objects of multiplicity production) must be the
Poisson one if they are produced independently (e.g., [1-3]).

It is “proved” with the help of inclusive cross-section factor-
ization: if the particles are independent, then, e.g:, rapidity: many-
particle distribution can be presented as a product of one-particle
distributions (e.g., [4,5]):

Py, Y2, - ) = p(y)p(y2) ... p(y:),  where: (1)
do ' 1. dic |
— (2)
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And as the integrals of these quantities over the whole rapldlty space

are equal respectively to
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/p(yl,yg, - w)dydys . . dy; ._—_<n(n S it D>, (3)
then integration of eqs.(1) results in simultaneous equations which

are equivalent to the Poisson distribution. (e.g., [6,7]):
<n(n=1)...(n — i+ )>=<n>". RON

The result of integration over the whole interval of y; variation
(3), (4) will not change if instead of particle rapidity, by v in (2)
is meant its momentum, velobity, exit angle or any other variable
connected with it, e.g., a random number generated by a computer
and attributed to this particle. But the results (3), (4), i.e., the Pois- -
son distribution, will not be any longer obtained:if, e.g.; a constant
factor is introduced into the right hand 51de of (1) although it w1ll>'

not affect factonzablhty
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~ . The point is'that the factorizability of just probabilities and not
of any quantities follows from independence. The probability density
of a composite event is equal to the product of elementary ones if
they are independent. Eqgs.(1) and hence the Poisson distribution
(4) do not arise from particle independence as quantities (2) are not
probability densmes even if because the integrals of these quantities
are not equal to 1.

If these quantities (2) are normalized, i.e., divided by their
integrals (3) and then substituted into (1), the Poisson distribution
.(4); will diSappear Mereover, all the same there are no grounds
to substite them 1nto (1) as normalization does not yet make them
probablhtles o R ,

Interpretatlon of quantltles (2) as densmes of plobablhty to
find at least one (or- exactly one) of partlcles at given value of y;
‘deprives these quantities of additivity property with respect to yy,
. inalienable property of probablllty density (e.g., [8]). For example,
the’ ‘probability of at léast one of the partlcles to fall into the whole
phase volume is not equal to the sum of probabilities to fall into
each of its halves. That is, not only the results of integration (3) and
hence the Poisson d1stnbut10n 4) dlsappear but even the possibility
of mtegratlon '

“Quantities (2) are measur'ed experiméntally as (Ayy — 0):

. Noo o
ply) Ay = M - anpm =<n>ay, - (5)

Nevents

m

Pnlj‘«iAs;vthe probability of event,(interaction) where n; particles fall
~into Ayi. That.is, p(y1) is the density of mean 1h111tiplicity at the
‘point y;. Certainly, when Ay; — 0, the mean multiplicity is equal
| to the probability of at least one (or exactly onc) of the particles to

fall into Ayy: S n P, — 3. Py, — P because then P, Py...—0..
However, unlike these probabilities, the density of mean '1n1iifiljlic-
ity is additive with respect to y, and when integrating it over the
whole rapidity interval, the mean 1nultipli(it'\' (3) is obtained. BV“
the way, the probability of at least one of the particles to fall 111‘(0)
the whole interval is equal to 1, and the pmbdblht\ of e\actl\ one
of the particles to fall there equals 0 (for 1 > 1).

In the same way:

CAY; «an

N,y

1 nl n,—<”l 77i>Ag/1...A1ii.a (6)

Py, - - - )Ayl
P,,l:‘__,,,,i is the probability of an event where n; particles fall into Ay,

. and n; particles into Ay;. So, p(yi,...y;) is 1/11a‘11y—part.ilcle. mul-
tiplicity density; p(y1,y2) is the multiplicity density of 1);1i1'5'9f pdr— ,
ticles when one of the particles of a pair is within Ay, and other
one is within Ayy; p(y1, v, y3) is the deusity of threes and so-on.
The many-particle multiplicity density is also additive with respect
to cach y;, and when iutegrafiug it over the wlhole phase volume,
the mean 1112111v—p;11'ticle multiplicity (3) is obtained: <ny...n;>=
<n(n—1)..

event. Each of n partl(lcs can be the first one i a pair, in a thle(‘ ,

.(n =i+ 1)>, where n is the nmunber of particles in an

cte., each of (n— 1) remaining 1)211th1(‘§ (‘dll be the qecoud one and
90011t0(z—1+1) ‘ o . L
So, eqs.(1)~(4) are obtained from the statement of ill(lep(‘ll-
dence of mean multiplicity densities at different po>i1V1t.s of the phase
volume and not of probability densities independence.
One can simulate a set of events with wittingly independent
particles and spectra independence of mmltiplicity giving a multi-

plicity distribution and simulating cach particle in random manner
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over the same one- part1cle spectrum. Despite this, trivial reasons for
correlatlons of 1nea11 1nult1phc1ty at d1fferent _points of the phase vol-:
ume Wlll remain. For example. (i = 2), selectmg a sub-set of events

w1th large mult1pl1c1ty \nthm Ayy, we thereby:select the events with .

large total mult1phc1ty and hence we increase multiplicity within
: Ay2 On the other, hand selectmg the events with large multiplic-
ity within Ay; at fixed total 1nult1pllc1tv, we decrease nrultiplicity
‘within Ayy.” So, this multiplicity correlation is negative at a very
narrow total multiplicity distribution, and it is positive at a very

wide one. In case of the multiplicity distribution with D? =<n>,

le. <n(n —1)>=< n>2 these contrary tendencies are prec1sely

compensated according to (4). "

" Let s obtain accurately the consequences from 111dcpendence

of particles at first for semy- -inclusive events contaunng exactly n

partlcles which independence is being investigated. The probability

density that one particle' randomly chosen from an event with n

‘particles (e.g., by means of a random number choosing the part1cle v

. number) has rap1d1ty ¥ is equal to

1 dan_
no, dy,’

/)',1(3/1) =,

The probabzlzt y density that 7 random particles, success1vely chosen

from an event with n part1cles (n > 1), have respect1vely Y, Y2, - Yi

(each followmg part1cle is chosen from the lesser number of remaining

ones) is written as [9] »
1 : dio, )
(n—i+1) o, dpdys...dy;’

/ ‘ .
1 WY =

"/P:I(yl,ym--5?Jii)d?/1dy2---<dyli=1-‘ ', (8)
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/ Ay, = 1. (7

U —
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If all particles are produced independently, i.e. ‘if in a sub-:
ensemble of events, where the first randomly chosen particle has
rapidity y;, the second one ys and so on to y;_i, the y distribution
of the rest of particles is the same as in the total ensemble, then the
compound-probability density is equal to the product of elementary
ones:

i) = Pp(y)on(y2) - - P(vi)- 09

These equalities correspond to the well-known procedure of studying

(1, Y2, -

correlations when real events are compared with mixed ones consist-

‘ing of particles randomly chosen from different events [10] (but with

the same n). .
"~ From (9), i

ticles, using approximations of one-particle semi- -inclusive spectra

,,,,,

assuming the 1ndependence of produced par—_

(7 only (and multiplicity d1str1but10ns) a good descrrptron of ex-

per1mental data on diverse inclusive “correlations” of 7= ‘mesons in

pp interactions is obtained: two-particle C, C', Cy,, R correlations;

forward-backward correlations with different rapidity cuts, right-left
correlations, multiplicity distributions within diverse rapidity inter-
vals and intervals separated by empty gaps [11]. o e

~ Eqgs.(9) can be averaged over n (F, is the probablllty of an

event with multiplicity n):

Y Paba(yn gz m) =) Pnpi;(w)p'n(yz) A (10)

n=t n=i )

For proBabilistlc reasons one can also ol)tain relations for “more
inclusive” events, howeyer for that one has to use the same semi—‘
inclusive cross sections. The p'robabzhty denszty that one particle,

randomly chosen from a random event (but with 7 > 1) has Y1, is



equal to (averaging over n):
Aly) = ZPn/)n(Jl /~/3(y1)dy1 =1. (11)

Here P, is the multlphclty dlstrlbutlon for a sub-set of events with
n > 1. The probability density that i random particles, successively
chosen from a random event, have respectively yi,ys,...y;, is equal
to: '

Jl;-'- ZP,pn J17 ) /ﬁ(ylayz)dyl d’l, - 1

Usmg the theorem of the product of mdependent probablhty densi-

tles we obtam

If p/,(y) did not depend on n, then these equahtles would coincide
with (10) v / ' '

Certainly, equahtles (10) and (13) can be shghtly altered. For

example, one can try to start summation in (11)~(13) from n = 1.

Averaging in (10) can be performed with"a Welght e.g. propor-

tional to statistics at each multiplicity: n(n'—1)...(n — i+ 1), then

the left hand side of (10) will be equal to the left hand side of (1):
p(y Ty y;). However, in any case these equations cannot be re-

duced to (1) or only constructed of 111c1uswe spectra in any othier way.

F ormulatlng a(‘curately the statement of pzutlcle 1ndependenw one

has’ to use semi- Inclusive probability densities. Thuefore no (onso
quences “relative to multlphclty (hstubutlous are obtmnc(l f1 om the

independence of paltlcleq

6 .

(12)"

ZPPn(Jh i) ‘ZP’anl ZP’p(y,, (13)

o Howéver, the Poisson 111111ti§1icity distribution for indepéudent _
particle 1)1'odllcti011 can be obtained in the following case. For events
wifh fixed total inultjpli/citﬁ the ‘multiplicity distribution within a
limited phase volume is a binomial one. If this volume is very small,
i.e,,_ if for randomly chosen particle the probability to fall into-this
volume is very small, then the distribution turns into the. Poisson

one. The distribution over the number of decays of a radioactive

source over an-interval of time is an accurate analogy to this case if

the:time nterval is mmch smaller than the source. lifetime.

The author is gratéful to M.I. Podgowtslﬂ and S A I\110107ov

for numnerous uqeful discussions.
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