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TonoxBaCToB A.11. E2:..94_43 
EacnpeAe.JJ.eHHe IlyaccoHa H He3aBHCHMOe pO)KAeHHe 

l13BeCTHOe yTBep)KAeHHe O cpaKTOpH3aD;HH HHKJII03HBHbIX CelleHHH B CJiy­
·lla_e He3aBHCHMOI'O pO)KAeHHSI llaCTHD; (HJIH KJiaCTepoB, CTpyif HT.A;) H BhlTeKa­
IO~H H3 Hero BhlBOA O nyacCOHOBOM pacnpeAe.JJ.eHHH no HX MHO)KeCTBeHHOCTH . 
HHKaK ae.CJieAYIOT H3 TeOpHH'BepOSITHOCTeH •. IlpH, aKKypaTHOM·npHMeHeHHH 
TeopeMhl O · npoH3BeAeHHH He3aBHCHMhlX BepOSITHOCTeH noJiyllaIOTCSI COBCCM 
APYrHC ypaBHeHHSI H 'He nonyqaeTCSI HHKaKHX' CJieACTBHH OTHOCHTe.JJ.bHO ·pac­
npeAe.JJ.eHHH no MHO)KeCTBeHHOCTH. 

Pa6oTa BhlnOJIHeHa B Jla6opaTOpHH BhlCOKHX suepmif 0115111. 

IlpenpHHT 06he,nJ.111e1111oro l!HCTMTYTa 11,nepHblX MCCJie,noBaHMH. J:zy6ua, 1994 

Golokhvastov A.I. E2.:.94_43 
Independent ·Production and Poisson Distribution 

The well-known statement of factorization of inclusive cross-sections in 
case of independent .production of particles (or clusters, jets etc.) and the 
conclusion of Poisson distribution over their multiplicity arising from it do not 
follow from the probability theory in any way. Using accurately the theorem of 
the product of independent probabilities, quite different equations are obtained 

.and no consequences relative to multiplicity distributions are obtained. 

The investigation has been performed at the Laboratory of High Energies, 
JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna, 1994 



In the physics of multiple processes it is customary to assume 

that the multiplicity distribution of particles ( as well as clans, clus.:. 

ters, jets and other objects of multiplicity production) must be the 

Poisson one if they are produced independently (e.g., [1-3]). 

It is "proved" with the help of inclusive cross-section factor-'­

ization: if the particles are independent, then,• e.g:, rapidity many­

particle distribution can be presented as a product of one-particle 

distributions (e.g., [4,5]): 

where: (1) 

l dO' l di (J' 

p(y1) = - -; P(Y1, Y2, ···Yi) = - d d d (2) 
O'in dy1 O'in Y1 Y2 · · · Yi 

And as the integrals of these quantities over the whole rapidity space 

are equal respectively to 

j p(y1)dy1 "."'<n>; '" 

J p(y1,Y2, .. · Yi)dy1dy2 ... dyi =<n(n - l) .: . (n ~ i+ 1)>·,· ,(3) 

then integration of eqs.(1) results in simultaneous equations which 

are equivalent to the Poisson distribution.( e.g., (6,7]): 

<n(n - 1) ... (n - i + l)>=<n>i. (4) 

The result of integration over the whole interval of Yk variation 

(3), ( 4) will not change if instead of particle rapidity, by Yk in (2) 

is meant its momentum, velocity, exit angle or any other variable 

connected with it, e.g., a random number generated by a computer 

and attributed to this particle. But the results (3), (4), i.e., the Pois­

son distribution, will not be any longer obtained.· if, e.'g., a constant 

factor is introduced into the right hand side of·(l) although it *ill 
not affect factorizability. 
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The point is that the factorizability of just probabilities and not 

of any quantities follows from independence. The probability density 

of a composite event is equal to the product of elementary ones if 

they are independent. Eqs.(1) and hence the Poisson distribution 

( 4) do not arise from particle independence as quantities (2) are not 

probability densities even if because the integrals of these quantities 

are not equal to 1. 

If these quantities (2) are normalized, i.e., divided by their 

integrals (3) and then s_ubstituted into (1), the Poisson distribution 

(4) will disappear. Moreover, all the same there are no grounds 

to _substite them in~o (1) as normalization does not yet make them 

pr?babilities. _ 

Interpretation of quantities (2) as densities of probability to 

find at least one ( or. exactly one) of particles at given value of Yk 

deprives these quantities of additivity property with respect to yk, 

. inalienable property of probability density ( e.g._, [8]). For example, 

the:probability of at least one of the particles to' fall into the whole 

phase volume is not equal to the sum of probabilities to fall into 

each of its halves. That is, not only the results of integration (3) cind 

hence the Poisson distribution ( 4) disappear but even the possibility 
-t-· 

of integration. 

Qtiantities (2) are measured experimentally as (.6.yk --+ 0): 

( ) 
A Nparticles i~ Lly1 ~ P, 

P YI• D-YI = N = L....t nI n, =<nI>Lly1 , 

events n, 
(5) 

Pn1 )s. the probability of event (interaction) where n1 particles fall 
. . 

int_o /fYI· That is, p(yi) is the density of mean multiplicity at the 

po~~t YI· Certainly, when .6.yI --+ 0, the mean multiplicity is equal 

to the probability of at least one ( or exactly one) of the particles to 

J 
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fall into .6.y1: L n1P,1, -· L I'i11 --t Pi because then P2, P3 ... --t o. · 

However, ui1like these probabilities, tl~e density of mean muitiplic­

ity is additive ,vith respect to y1, and when integrating it over the 

whole rapidity interval, the mean multiplicity (3) is obtained. By 

the way, the probability of at least one of the J)aiticles to fall into 

the whole interval is equal to 1, and the proba:bility of exact.I~· one 

of the particles to fall there equals O ( for 11. > l). 

. In the same way: 

p(y1, ... Yi).6.y1 ... c..y; -:L n1 ... 11;Pn 1 ... 11;=<n1 ... ni>Lly1 ... Ll1j;, (6) 
711, ... ni 

P,,, ... n; is the probability of an event ,vhere 111 particles fall.into c..y1. 

... and n; particles into L!i!J;. So, p(!J1, ... !};) is many-particle mul­

tiplicity density; JJ(Y1, !}2) is the multiplicity den~ity of pairs <;>f par­

ticles when one of the part,icles of a pair is within .6.y1 and other 

oue is within .6.y2; p(y1, !J2, y:3) is the density of threes aud so on. 

The_ many-particle multiplicity density is also additive ,vith respect 

to each yk, and when integrating it over the wholq phase volume, 

the mean many-particle multiplicity (3) is obtained: <n 1 ••• n;>= 

<n(n -1) ... (n - i + l)>, where n is the number of particles in a~1 

event. Each of n particles can he the first one in a pair, in a three 

etc., each of ( n - l) remaining particles can bP the second one and 

so on to ( n - i + l). 

So, cqs.(1 )-( 4) are o-bt.ainccl from the statement of indepen­

dence of mean multiplicity densities at diffrrent. points of t.lw phase 

volume and not of prob,:bility densities independence•: 

One can simulate a set. of events with wit.tingly independent. 

particles and spectra indepeudcun' of multiplicity giving ,l multi­

plicity distribution ;u{d si~unlating Pach part.id<' in random niauner 
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over the same one-particle spectrum. Despite this, trivial reasons for 

correlatI~ns of mean multiplicity at different points of the phase vol­

ume wiH remain. For example. ( i = 2), selecting a sub-set of events 

wi~h large multiplicity within D.y1, we thereby,select the. events with 

large total multiplicity, and hence we increase multiplicity within 
, ·, ' ' ' . 

· f:ly2. On the other, .hand, selecting the events with large multiplic-

ity within f:ly1 at fixed total multiplicity, we decrease multiplicity 

within D.y2. So, this multiplicity correlation is negative at a very 

narrow total multiplicity distribution, and it is positive at a very 

wide one. In case of the multiplicity distribution with D2 =< n >, 
i.e. < n(n - 1) >=< n >2

, these contrary tendencies are precisely 

compensated; according to ( 4). 

Let tis obtain accurately the consequences from independence 

of particles' at first' for· semy-inclusive events containing exactly n. 

particles which independence is being investigated. The probability 

density that one particle, randomly chosen from an event with n 

particles (e.g., by means of a random number choosing the particle 

number), has rapidity YI is equal to · 

l dO'n. 
p~(yi) = nO'n dy1' j p~(YI)dyI = l. (7) 

The probability density that i random particles, successively chosen 

fro~'an event with n parti~les (n 2: i), have respectively YI, Y2, ... Yi 

( each following particle. is chosen from the lesser.number of remaining 

on~s) is written as [9]: · 

1 ( . 1 diO'n 
Pn YI,Y2, ... yi) = ( ) ( . ) -----; 

n n - l . . . n - i + l (J' n dyI dy2 ... dyi 

J p~(YI,Y2,··•Yi)dyidy2 ... dy;=l.· 

', 4 

(8) 
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If all particles are produced independently, i.e. ·if in a sub­

ensemble of eyents, where the first randomly chosen particle has 

rapidity YI, the second one Y2 and so on to Yi-I, the y distribution 

of the rest of particles is the same as in the total ensemble, then the 

compound probability density is equal to the product of elementary 

ones: 

P~1(YI,'Y2, ···Yi)= P~(YI)P~(Y2) · · · p~(Yi)- (9) 

These equalities correspond to the well-known procedure of studying 

correlations when real events are compared with mixed ones consist­

ing of particles randomly chosen from different events [10] (but with 

the same n). 

From (9), i.e. assuming the ind,~pendence of p~~duc~d par-
i. 

tides, using approximations of one-particle semi-inclusive spectra 

(7) ,only (and multiplicity distributions), a good description of ex-

peri:rnental data on diverse incl~sive "correlations" of 7r- mesons in 

pp interactions is obtained: two-particle C, C', Csh, R correlations, 
< • j 

forward-backward correlations with different rapidity cuts, right-left 

correlations, multiplicity distributions within diverse rapidity inter­

vals and intervals separated by empty gaps [11]. 
.Eqs.(9) can be averaged over n (Pn is the probability of an 

event with multiplicity n): 

00 00 

b Pnp~(YI, Y2, •••Yi) = L Pnp~(YI)P~(Y2) • • • P~(y;). (10) 
n=i n=i 

For probabilistic reasons one can also obtain relations for "more 

inclusive" events, however for that one has to use the same semi­

inclusive cross sections. The probability density that one particle, 

randomly chosen from a random event (but with n 2: i) has YI, is 
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equal to (averaging over n): 

00 

P(Y1) = L P~p~(Y1); 
n=i 

j p(y1)dy1 = l. (11) 

Here P~ is the multiplicity distribution for a sub-set of events with 

n 2:: i. The probability density that i random particles, successively 

chosen from a random event, have respectively YI, Y2, ... y;, is equal 
to: 

00 

. p(y1; ···Yi)= L P~p~(Y1, ·'··Yi); 
n=i 

J P(YI, · · · y;)dy1.:. dy;. l. 

(12) 
Using the the?rem of the_ product of independent probability densi-
ties, we obtain: 

00 00 '00 

L P~p~(yl', •·•Yi)= L P~p~(Y1) • · · L P~p~JYi): (13) 
n=i n=i · n=i 

If p~ (y) did not depend on n, then these equalities would coincide 
with (10).· 

Certainly, equalities (10) and (13) can be slightly altered. For 

example, one can try to start summation in (11 )-(13) from n = l. 

Averaging in (10) can be performed with a weight, e.g. propor­

tional to statistics at each multiplicity: n( n - 1) ... ( n - i + 1), then 

the left hand side of ( 10) will be equal to the left hand side of ( 1): 

P(Y1, Y2 ... Yi)- However, iii any case these equations cannot be re­

duced to (1) or only constructed of inclusive spectra in an,v other way. 

Forrri11lating accurately the statement of particle independence, one 

has to use semi-inclusive probability densities. Theref~re no conse-
_ 1 _ • 

quences relative to multiplicity distributions are obtained from the 

independence of particles. 

6 
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. However, the Poisson multiplicity distribution for independent 

particle production can be obtained in the following case. For events 

with fixl'd total multiplicity, the multiplicity distribution within a 

limited phase volume is a binomial one. If this volume is very small, 

i.e'. if for randomly chosen particle the probability to fall into-this 

volume is very small, then the distribution turns into the, Poisson 

one. The distribution over the number of decays of a fadioactive 

source over an interval of time is au accurate analogy to this case if 

the: timl' interval is nmd1 smallPr than the source lifetime. 

, The author is grateful to ?vl.I. Pcidgoretsky and S.A; Khorozov 

for numerous useful disnissioi1s. ' 
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