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11ayqeHhI noJISI H3JiyqeHHSI aaBHCSI~Hx OT apeMeHH ~opo~aJibHhIX TOKo~ 
BhIX pacnpeAeJieHHii. HaimeHhI aaBHCSI~He OT ·apeMeHH pacnpeAeJieHHSI TOKOB · 
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1. Introduction 

Interest in the time-dependent currents flowing in the toroidal 

coils is due to the following remark made by James Clerk Maxwell in 

his memoir II On physical lines of force 11 
/ 1 /: 

11 Let B, fig.3, be a circular ring of uniform section, lapped 

uniformly with covered wire. It may be shewn that if an electric 

current is passed through this wire, a magnet placed within the coil 

of wire will be strongly affected, but no magnetic effect will be 

produced on any external point. The effect will be that of magnet bent 

round till its two poles are in contact. 

If the coil is properly made, no effect on a magnet placed·outside 

it can be discovered, whether the current is kept constant or made 

to vary in strength; but if a conducting wire C be made to embrace the 

ring any number of times, an electromotive force will act on this wire 

whenever the current in the coil is made to vary; and if the circuit 

be closed, there will be an actual current in the wire C. 11 

Fig.3 mentioned in this passage shows the torus with a poloidal 

winding on its surface. At the present time, it is known that in 

general this Maxwell assertion is not correct. It turns out that 

for the time-dependent current in the toroidal coil the 

electromagnetfo field strengths appear outside it. Qualitatively 

this was shown by Mitkevich / 2 / and Page/ 3 /. The corresponding 

experiments were performed by Mitkevich / 2 /, Ryazanov / 4 /, 

Bartlett and Ward/ 5 / and many others. The quantitative results 

were obtained in ref./ 6 / where the electromagnetic fields were 

evaluated for a number of time dependences of the current flowing 
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in the toroidal coil. After all, experimentalists widely use the 

toroidal transformers for their own purposes without philosophizing 

on this subject. The sole exception for whicn Maxwell's claim holds 

is the current linearly rising in time which flows in the toroidal 

coil.In this case H=O and Eis independent of time outside the torus 

(see,e.g., Miller / 7 /). The question of tl1e energy transfer into the 

the wire C embracing the torus was considered by Heald/ 8 / (the dif

ficulty is that the Poynting vector equals zero for the treated case). 

In the previous paper/ 9 /, we have studied the electromagnetic 

field ( EMF ) of the static toroidal-like configurations, their inter

actions with the external EMF and possible physical applications. It 

is the goal of the present consideration to study nonstatic current 

configurations. Probably, it would be appropriate to explain the 

meaning of the words II elementary toroidal sources" in the title of 

this paper. The words II toroidal source II mean the poloidal current 

flowing in the winding of the toroidal solenoid (TS), which in turn 

may be an element of a more complex configuration. When the dimensions 

of this configuration tend to zero, we obtain an "elementary toroidal 

source". The TS with finite dimensions has a number of nontrivial 

topological properties (see,e.g., review papers / 10 / ) . Suppose 

that these properties survive when the TS dimensions tend to zero. 

The reason for the treatment of an elementary toroidal souree 

is due to the considerable simplification of the theoretical 

consideration. Thus, if we find some interesting property for the 

elementary toroidal source, there is a chance for it to be survived 

for the finite toroidal configuration. This is confirmed for the 

simplest toroidal configurations for which the analytical solutions 

2 

I 

\ 

ij 

I 

\ 
if 
I 
I 

fi 
;j 

can be found. As an example, mention the configuration consisting of 

the TS wi th·ct linearly growing current flowing in its winding and the 

double charged layer lying at the hole of TS. Outside this configu

ration, electromagnetic strengths disappear but the nontrivial ( i.e., 

unremovable by the gauge transformation) time- dependent vector 

potential survives. Thus, the possibility arises to perform a time

-dependent Aharonov-Bohm-like experiment. However,the linear time-

- dependence of the current is unrealistic. It is the aim of this 

paper to find elementary_charge-eurrent configurations possecsing 

radiationless properties mentioned above but with a rather arbitrary 

time dependence. The plan of our exposition is as follows. 

The radiation of elementary time-dependent toroidal-like configu

rations, in the winding of which the time-dependent current flows, 

is studied in sect. 2. It turns out that two different branches of 

these configurations generate essentially different EMF. On the 

other hand, the current sources of the.same family generate the 

same EMF if their time dependences are properly adjusted. We give 

an example of the radiationless charge-current source having the 

property that electromagnetic field strengths disappear outside it 

but the nontrivial time-dependent potentials survive there. The 

extended toroidal-like current sources are considered in sect. 3. 

By using the Neumann-Helmholtz parametrization for the current 

density the convenient formulas for the time-dependent EMF are 

obtained. Basing on them, the radiationless charge-current sources 

of higher multipolarities are constructed and their possible appli

cations are considered. Particularly, it is shown that the elementary 

time-dependent charge distribution and poloidal current produce the 
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same electromagnetic strengths in the surrounding them space provided 

their multipolarities and time dependences are properly adjusted. 

Thus, the multipole expansion of these strengths is the same and 

this in turn justifies the use of double names 

literature as electric and toroidal multipoles 

terms occurring in this expansion. 

known in physical 

for the particular 

2. The radiation of the elementary toroidal sources. 

A pedagogicai exampie: time-dependent circuiar current. 

According to the Ampere hypothesis the distribution of the magnetic 
-'t .... ) 

dipoles M l "l is equivalent to the current distribution J(r )= 

= rot M(r). !!'or example, the circular current flowing in the Z=O 

plane 
-, ➔ 

~: l·Y1~ -~IJ-o{)-~tc) 

is equivalent to the the magnetized sheet 

(2 .1) 

M::l-Vlc•Gtc1-2) ~(1-) 
(2.2) 

lying in the same plane ( 8 t ~) is a step function). When 

the radius d of the circumference along which the current flows 

tends to zero, the cur_:;ent J becomes ill-defined ( it is not clear 

what does the vector 
~ 

n~ mean at the origin). On the other hand, 

the vector M is still well-defined. In this limit the elementary 

current (2.1) turns out to be equivalent to the magnetic dipole orien-

ted normally to the plane of this current. It is convenient to 
-; 1.. introduce l rr d instead of I in Eqs.(2.1 ),(2.2). Then, in the 

limit d ➔ O one gets 
➔ - ...o; ') .... M-= t·n.•b t'1.) l ',/'('t): ~IJ)-&(1t)j21,y) '(2.3) 
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and 
➔ 

~ l · 1D t h b,; ( "{ ) 
It turns out that Eqs.(2.3) and (2.4) give the magnetization and 

current density corresponding to the elementary magnetic dipole. 

These questions were considered in detail in ref./ 9 /. Now let 

the intensity of the elementary current change with time 
~ ➔ 

~~:: ~IJ lt.) -1.ot y{ ~">t't) 

(2.4) 

(2.5) 

( the factor I is absorbed into 10 ( t) ) . The vector potential (VP) 

corresponding to this current is elementarily obtained: 
-. I ... :., 
(\ __ CT\ -1-l'l)(.h) 
llllJ - o.Jo c_'t.1. ) <;I)1,.-= :f1i. + t s1" 

(2.6) 

Here and hereafter the time derivative will be denoted either by 

the point above the letter or (especially for higher derivatives) ... ~ ~ 

by the superscripts.:Por example, ~l',)= ~=cl f / d-{; .The 

argument of the 3 functiQns, if not indicated, means f - 7/C. 

everywhere in this section. The electromagnetic field strengths 

( PS ) are 

.... . 
E-- I 0\ ..., --r 

o- c.;1.Ld..Jo·('lxn.) 

-, 

t-10 _ tin)1- .t[ _..LG -~ 
t'> t; ,o (!•'t o 

where for brevity we put 

F,~ : f 1, t ) t 5 \', t 3 i"~ h, ) G"' = iv, + t ~ ~ t t~ :fv, 

The flux of the electromagnetic energy through the sphere of the 

radius r is 

s~ c p't- t\H2 = ~ ~o-Go .) '.) t ) 
-,;- C. ;:! -
P=4rv l Co X \-\o) 

II 
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This flux is positive for large distances and determined by the second 

derivative of jo ( S ':::::: :>~.,; &~) .However, for small distances 

it may be negative. These results are well lrnown and may be found in 

many text-books (see,e.g., Stratton/ 11 / ). 

The elementary radiating toroidal solenoid. 

The next in complexity case is the radiation of the current flowing 

in the winding of elementary ( i.e.infinitely) small toroidal solenoid 

TS ). According to/ 9 /, this elementary current is given by 
-=" 

cl I = 5 \ It) · 1.0-\:?-) ~ b'>({) 
(2.9) , tt) 

where 11il =.1ol 1ot and Y\. means the normal to the equatorial plane 

of TS. The VP and FS are equal to 
-'I (\ ~ \ r ...,, ' ➔ ..;,\F 
-Jl 1 ::. - Y\ c.'>'Z. \Ji T '1, C..,'t~t'Lh ) .1. q\ = 0 

. 
2 -. I G. ~ I --. -;-) C t, :: h - - 1 - '1. 4 '? l 'l h I~ 1 

·~ ( 4 1 C. 1 

➔ 

1-L - \ I..; --; 

C.L''L'I.. \ 'l'l.h) g) I 
(2 .10) 

In this and the following equations occurring in this section we 

omit the ~ function terms giving the field values at the origin 

( to which the current is confined ) • Thus, Eqs. (2 .1 O) are valid 

everywhere except for the origin. 

Digression on the radiationless sources of electromagnetic fields. 

Consider the electric dipole oriented in then direction.Its 

charge density is 

9o1: Q. [ ~'(1+o~) - &\"i-a.;l] 

For small separation 0.... this reduces to 
~ ➔ ";:, --1'" 

P<A= le.Ct.lh'v)~ ('l) 
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Let the intensity of this dipole change with time 

f>c1-: ~ol·t) ln ~) S">({l 

( the factor 'l, o...e. is absorbed into 5 J 

current density is given by 

). The corresponding 

~ J = - ~ ~ U:) n b ~(tt ) 
These densities generate the following potentials and FS ( see, 

e.g., Weinstein/ 12 / ): 

(i'\ ' ..,-; ( •. C, \ 
't' c:A -:: - c.'t'l.. l h. 't) f c.l t "t. °S<> > 

- . 
15if -Yl jd I 'l( 

- .. 
Ha,: t~'l'l.. lit.;,<~) (!<A+ t !cA )l 

(2 .11 ) 

€"' ~ t~./~(fcH•t ~~+ ~rJ)-c.~'l.,t{~)-.r·tfcA+:iffcA-1-~~ti) 

From the comparison of Eqs. ( 2.10) and ( 2.11 ) we conclude that 

FS of the time-dependent current flowing in the winding of the 

infinitely small TS coincide with that of the electric dipole 

if their time dependences are properly adjusted 
• 

5c1.= 5i /c?... 
(2.12) 

This means that the electromagnetic strengths of the time-dependent 
• '2,.-

elect r i o dipole and TS can be mutually compensated if j:- :f
1 

/C 
" Then, in the surrounding space E = H = O and 

m r ... ..,)°' ..,· 1 -r \ .. -r ➔ F 
'l':-T-i-(n't a..11 C'l:--n~ -\-- .. ('LY\)'1.·, 

( 'l. ) Jl ('L12- I t~ 't' 
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It is remarkable that outside this composite object ( electric 

dipole and TS placed at the same point ) there are nonvanishing time 

dependent.electric and vector potentials despite disappearance of the 

field strengths. This can be used to carry out time-dependent Aharonov

-Bohm like experiments. The simplest example corresponds to j 1 = const. 

Then, 

qi : 0 S\ -
- ...,. . 

~"ii.t'1.n)-tt11.h 
C 'ts-

that coincides with VP of the elementary (i.e., infinitely small ) 

static TS. The next in complexity case is the composite object con-

sisting of the static electric dipole ( f~ = f = const) and the 

linearly changing with time current flowing in the winding of TS 

.?= ~ tn~) ~?6) 

<\): -5.(r.'1)/7.\ 
! :- c.'l,~t 'tct(l.) n ~'.!>(it.)J 

~ ~ ~~ ➔ 

~ -=-d. 1 t')'"lll"lti)-'l'l,Y\.J /15" 
(2.13) 

The TS of finite dimensions was considered in ref./ 9 /. Another 

interesting case is the compensation of the EMF generated by the 

oscillating electric dipole by that of the periodical current 

flowing in the winding of the TS: 

_? = J o1 :. 5 • 4)s~t • & 'l c >i > J J= lj~ I.1. t=-~\=O ) ) 

!o\ .:: 1W Siv,w-C · ~'!.(i)J 
-i Q.... \ - - H r· .L t(l.)..; C3(;:) 
~I - - :.l"'l,JL-1_() h c <-

W J 

(\):: -L (.;;_h)-L (w-!.ivdl- ~,.co.d1' Jl=w~-t;-1-) 
C. 't'I, :r ) ) c... } 

8 

.l 

I 

.I 
I 

( 
! 

.':'-' 

--~ : ~1.. 5 h ( c.odl t- w\ Slkil) + 

~-- ➔ .t( f!..C c..'\, ) t J_ l '1. h )'1. .J w -~i"J1 - :J;; CosJl - '!l -;:- C-OSJ1 
Cl:' '- • 't w 

(2.14) 

It turns out that the FS are compensated if the charge density of the 

electric dipole oscillates in the counter-phase with the TS current.· 

Nonvanishing electromagnetic potentials can be used as a new 

channel for the information transfer ( by modulating the phase of 

the charge particle wave: function ) • 

More complicated elementary toroidal sources.· 

We consider the hierarchy of TS each turn of which is again TS. 

The simplest example is the usual TS ( which is obtained by the 

installing of the infinitely thin TS into the single turn with 

current ( 2.5 ) in it ). We denote this TS by T1 ( the initial 

current source (2.5) will be denoted by T0 ). The next in complexity 

case is obtained when each turn of T1 is replaced by the infinitely 

thin TS with alternating current in its winding. Thus obtained 

current configuration is denoted by TL 

tend to zero, we get / 9 / ... 
~~= fi.t-U ·10tl;)h-~J(ii) 

The corresponding VP and FS are given by 

• When its dimensions 

(\ \ ....- ..; Cl'-. (1..) ➔ I ...- - CJ\ C">) 
si '1-:- 1.~c. ... l tt.,: h) d.Ji. , E'l., =- - ref ('l. x h) clJ ~ i 

-r H =- .L h f' ti) - _1 - -r ( .... -J rt 'l) 
1.. b-2.. ~ ~- 'l V\ 7.. r1.-(..s-t '1; C. 

(2.15) 

(2 .16) 

By comparing Eqs.(2.6),(2.7) with (2.16) we conclude that the EMF 
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coincide for the current configurations T
0 

and T~ ( everywhere 

except for the origin) if the following relation between time~ 

-dependent intensities is fulfilled ~~l.) = -10 /c'I., . This means, 

particularly, that the EMF of the static magnetic dipole ( fo = const) 

coincides with the EMF of the current configuration T if the current 

in it quadratically varies with time ( jt. :-:r
0 

(2.t,2. / 2.., ). It follows 

from this that the magnetic field of the usual magnetic dipole can be 

compensated everywhere (except for the origin) by the time-dependent 

current flowing in Tt • Consider now the periodical currents 

~o: 500 · (Q~i.>t and 5i.= 510 -~~Wt Clearly, the EMF of lo 

and It. coincide if ~l.o:. ~00 ·t1 /i.,i. . Now we are able to write out 

the EMF for the point-like toroidal configuration of the arbitrary 

order. Let ..,. 
<l ,,._, : j-.,.,._ · 1o t,(1-,,+i) ~ S3 (;{.) 

Then, for m even ( m=2k, k ..,, 0 ) 
➔ l -1) \',\- 1 -t -. <lJ l 'l.11.) 
8')_\( -:. tt )I h 

C.1-"-+t. -'l 'l., 'l.\~ ) 

l-1)"' 
- -r tlJ',+1) ...... >i_ '/. h 

t1.v- :. 'l 'l- l:) 'l. IL. ' C. l.l(.+) (2 .17) 

....; t-,l· ( _, ( ;r ~ ) \= l lit) - ~ l G l t I'..\ ] \-1 'l.\l,. : C. 1.1<-+, >-t 'l '!, l. \(_ 'Z. -1,c. 

The flux of the electromagnetic energy through the sphere of the 

radius '1. is equal to 

r ~ l .l.r- [ <' t2.\(-t2l r.. t.t1.1<+1\ _ t.'l,, rt 'l.t.l J. [ ! t'l."+"-J c L,4:'+oJ 
~- ~ e,41L-+~ J'l.l( + 't~-l.ll +'t"-31.1<. S:i.K +'2.}_'ll<-

10 

I. 
(jl 
i 

) 

I 

J .,,. 

On the other· hand, for m odd ( m = 2k+1, l'n 7/ 0 ) 
(\ _ ( -1) \<- i.l { .... h - 1 l~) \ "T G-l 'l.Y..) I 
,l-l'l.\'-+I - (:_'l.l'-+'> l 'l."' \.'t. )-~'l,y..\-1 - 1. ~ 'l.'t'-H 1 

E (-\\~ti [ l .... -,-..., F \2.\l+I) -; G-(tKtl\] 
-- -'l(tf\'\)· _\h 

'1.\1.·H. - (. 'l.V-+L\ 'l., 'l.'HI i=j__ t1<-+ I J 

-r- t-1/· I --. ~ l'li<-+t) 
\-\1\l--\"t :. 2.1<-+'-' ~ ( 'l '/. ) ti 'l.1<--H J 

(. 'l (2.18) 
'l, J__ (t ll\lt->) t _i:_\l-1'+1) t't. ~ll.\(tl)) 111<+>) \lK+.2.) s :_ ~ (4\0r'> )1\l.\-1 t 'i--S-t\£.-\-1 t-::c- 111-+1 ·( ~'l.lC~l t ~ _1 'llC+I ) 

We see that there are two branches of toroidal point-like currents 

generating essentially different EMF. A representative of the first 

branch is the usual magnetic dipole. The EMF of the k-th member of 

this family reduces to the EMF of the circular current if the time 

dependences of these currents are properly adjusted: -s(~:):: (-l)IL folt) jc21c (l(:.>,Q) 

We remember that the lower index of the 1 functions selects a 

particular member of the first branch, while the upper one means 

(2.19) 

the time derivative. The representative of the second branch is the 

elementary TS. Again, the EMF of this family are the same if the 

time dependences of currents are properly adjusted: 

r lt1n 1< 
11.ll-H = l-1) }, (0 /Ca ( ~~0) 

(2.20) 

From the equations defining the energy flux it follows that for high 

frequencies the toroidal emitters of the higher order are more 

effective ( as the time derivatives of higher orders contribute 

to the energy flux). 

So far we have used the usual TS as a corner-stone for the 
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construction or more complicated current configurations. Under 

the term "usual" we mean the torus ( J- d) 7.. +- 't ~ = R'l...-
with the poloidal current flowing on its surface. The VP 

N-~ 
corresponding to this current falls as L at large distances 

➔ 

Jl ~ [ ~ ;{ (it h) - Y1 It. 1 J / 11 S- for 

Here V\. is the unit vector normal to the equatorial plane. It has 

been shown in ref./ 13 / that it is possible to distribute the 

currents inside the torus in such a way as to cancel the leading 

term ( "- 11-'> ) in the expansion or the VP. Then the first non

vanishing term in the expansion of the VP has the form 

(\ \ . Q (Li) / ~ 
-rh"' L nlinv..th L~\{Q. 7. 

Q tli' where L~~Q. is the following symmetric traceless form 

Q~~:Q. ::'JC.:'.)(~X,<-'.'(e - {( ~i&x"'x(!_;- bii~hx~ + 

+ <;iQ '1..i ')(,, + ~~~'Xi Xe + ~~Q. 'Xi 1..,<. + b ½Q 'X; ')Ci) 'l'L + 

+ ~s ( ~ii ~v.Q. + ~i~ ~ iQ. + &(Q. ~~"') 1l' 
. -~ 

(2 .21) 

This VP falls like 't for 't--. 00 With this TS taken 

as a corner-stone and using the procedure described above we can 

construct a new hierarchy of TS. This game may be continued further. 

More complicated current configuration may be round inside the 

torus for which the VP falls like '1.-'t This current confi

guration may be in turn used as a corner-stone for the construc

tion of the TS installed in each other. These corner-stone current 

configurations correspond to higher order toroidal multipoles / 13 /. 
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At large distances they may be expressed in the form 

~) (Q) n 1 _ 2 Q . · Yl . 1/'\ • I/'\ • I,., it t! J1. - . . L . l.1. I l. ~.., ... l I Lt l. 
1. t L1. ; ... Le_ 

(2.22) 

Q(e) 
where • • 

~, ... LQ.. 
is tlie symmetric traceless form of the order e . 

Clearly, Ji:€) ,-.,-e.-1 fall as 1. for "1 ....; C() . 

Only even values of l correspond to the toroidal multipoles • 

As div A= O, rot A= 0 for any value oft so the question arises 

on the existence of finite toroidal current configurations corres-

ponding to odd ~ • So far we did not identify them. 

3. The finite toroidal-like configurations. 

The Neumann - Helmholtz parametrization for the electromagnetic 

potentials and strengths. Consider now the time-dependent current 

distribution confined to the finite region of space -j (1it) -
.... -; 

j l t) . d l 1. ) 
(3.1) 

An arbitrary vector function and, paricularly, the current distribution 

can be presented in the form ( Neumann-Helmholtz parametrization) -~ ( {):: ~1.ocllJ{ t 'lot t7. ~) + 1ot 101 (q ~) 
(3.2) 

The VP corresponding to the current density (3.1) is given by 

- ~Hc,\0
1

t '"totl'l~d+'lo1'1oi(1o.,J -J-1 
(3.3) 

Clearly, Eq.(3.3) is the Neumann-Helmholtz parametrization for VP. 

The functions entering into it are 

\ - ( ~1lt-B)VKtrf')c\V 1 
.lit, - _j t\ J <'... Q \'i: 

I -
C. 111 

() -; ~, I 
Here I\ ::. \ '1 - 'l . To be complete, we write out tl1e corres-

(3 .4) 
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ponding scalar electric potential t 

C\J = - t .L + Li f( Fl t) 1ft ( ti ) -t CD Hd- , F(t)= ~5lt)Jt (3.5) 

Here the point above l \(.... means the time derivative, and <p~tc, l-

is the scalar potential originating from the time independent 

part of the charge density ( qJ~tc.t: ~ ~ .?s-1:c-c l i'J c,/ V1 

It is convenient to represent the FS in the same form as j and A: 

~-:: 0.7,,c.J.. e, + 10-t. l1 Q'l..) + 1ot 1\Jt ( t[ .e~)
1 

H ::-q'l.e.c-1~, \-1ott{\'I.) +1.ot1ot (ik":>) 

). 

(3 .6) 

It turns out that • • 
t :- q)Shl _·4\\ Flt) ¼J; (:f°) 

1 
I -1 fl - I -

Q t..:=- - z'l.. 'l.. ) t. "> - - c- l. ~ ) 

h, = 0 
- \ - 4/1' 1,f .... I _ I -h1.- - 0 1~+ c:: f(tl'Vs(ri)) 11~- c_l(t... 

(3.7) 

These representations are convenient because the potentials and FS 

are obtained from the relatively simple integrals, their time and 

space derivatives. It steams from Eq.(3.4) that if 

V ( 'l \ :: 6 1f ( ii) then 

(3.8) 

._~ (V ,.....,. 

l ('\if): ~ l ('lf) - 4\1 _5-lt) ¾)"(ri) 

It follows from this that two different sources 

V(~) f(t) and {if l ri_) · X l t) / (_ L 

give the same EMF everywhere except for the space region where {v.:1:-Q 
~ 

In general, for the given current density <l confined to the finite 

space region S, the functions ¾5i, entering into Eq. (3.2) are 

defined with some ambiguity and may be different outside S 
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(see,e.g., / 9 / ). On the other hand, J certainly vanishes in 

those space regions where Vi~: 0 It is lmown / 9 / that the 

functions lµ'L and 'l\f) carry information on the magnetic and 

toroidal (electric) moments, resp. 
0

Thus, putting 

4)1.. \tt):: lVi_ l'l) Y1t~(8,~) and '\\5, t°tf\: ¾\ l7-) · YQ1--(8,~} 

we obtain the formulas describing the radiation of particular 

magnetic and toroidal (electric) multipoles. The functions¥~\~) 

and 1/,,1) define the radial distribution of the current sources. 

Developing the function 9= 5 ( t - R fc.) / R over the spherical 

harmonics ~:Li.n 2 i~;-i ~2-l't,1\f.) Y~l<.l81~) y;""' {g~iy,J 

for the particular t.'M multipole we obtain 

It\'-\ {'\\f) =- ~\~~, Yev.J 8, \J) ~ ~.e. l '1, 7.
1

) t) ¥\'I ('"l. 
1

) 't
1

2. cA r' 
( no sum over l ,m here ) • 

Trana!tton to the po!nt - ltke l!m!t. Eqs. (3.9) define the 

integrals I,(... for the finite spatial current distribution. It 

would not be right to put V"' ( It I) "v ~ { z.' I in (3.9) 

(3.9) 

to obtain the point current limit. There are two ways to reach it. 

The first one is essentially the same as used by E.G.P.Rowe / 14 / 

for the evaluation of the integra1l I entering into the definition 

of ~ (see Eq.(3.5)). One simply puts 

Vi ,{)"' 
Ii\ 

Y~M ~-f) 

It should be clarified what does 

this equation. We write 

~~ (ir) 

\~~J- v) 

y Q. .,.,Jx:. ) ::. 11_ '< Y Q ,...__ l e , ~) 
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(3.11) 

mean in the RHS of 

(3.12) 



where YtM l \9, ~) is the usual spherical harmonic. Clearly, 

Yt,,__\.~l) is the homogeneous function (of the order t ) of 
the cartesian variables X. l ~ 1 t:- • For example, 

y'L'O ~ 2..1'l., - ')C.'l., - l:i '2.--

To obtain Ye_...,..l-~) we change 'lC.t: 

For example, 

\f..._o l-~) -2..~-..Q.1.. 
cl~ oX1- -

by ( - o~ .:) in Eq. (3 • 12 ) • 

~'L 
~'\.. 

Q~ 

Many of the properties of the functions\'~-....~) and their physical 

applications may be found in ref./ 15 /. Now we substitute (3.11) 

into ( 3-4) and integrate 

l,~ 'v Viv...(~) 

by parts 

-J-(f- '"l/c) 
7-

An alternative way is to start from Eq. (3.9). But for this, 

one should know how the radial functions '\.Jf ( 7..) behave for 

small L . It turns out that in all cases which we were able 

to verify 
1jf('l.) I'\.. 1-e-l _£ ('l.) 

(3 .13) 

The function~ 12 (1, l ~ t) for small '(,
1 

falls as 't I e_ 
(3.14) 

.< for example, 

it is proportional to the spherical Bessel function Je lWZ.. 1 J for 

{lt):.~i:t\)liWt) ). Substituting (3.14) into (3.11) we get 

I ~ \/ MlG1~) .eiM [ Se('7.,'Z')t) / 7'<!] 
(.Q.. 11..:,0 (3.15) 

However, we did not succeed in obtaining Eq.(3.15) in full 

generality. 
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New digression on the rad.iationless sources . 

Having obtained the explicit expressions for the extended and 

point-like sources, we try now to construct the radiationless 

sources of higher multipolarities·. Consider charge and current 

densities corresponding to the oscillating quadrupole moment: 

0 ('_ [.., .... 't,. \] > ➔) 
.) '\, : 'Sq l-l:) th 'V) - ~ ~ ~ l ~ , 

1 °' = _ ~ '\ l t) [ n t n v ) - ~ v ] s~ ( ~ i 
They generate the following potentials and field strengths 

11'1 _ (hi/·-½t,._[5-l,._) 3 ~ r('\ J c:~:r] 
't'I\, - t. .. 'L~ '1 + 'l "Sq, 'l ~ J 

n l [ --t ~-, I -f] I r l1.) L ~ (I) J 
J1'\, :- c.'1-11.. n(n't)- ~'l . L jq + 'L J"\ J 

-f l ... ... ... .. [ .I' ( 1,) c.. { l) C: 'l.. !. ( 1) J 
~ q : C 1> t> ( h l< 't ) ( h 't ) . J ~ + ~ 1 f 9 + J ?- J 9 , 

(3 .16) 

(3.17) 

r - _I [..,. --r.., I .., ] [ c'!.l t (l.) ('-- <1) C \ 
c~ - - t''t.1. h (n 'l )- 3 '1- · 5-'l +J 1 !qt 61.1- f~ + b~f~J-

_ (h'l)~-{'l.'t.l·[~t~ 6tf~1
)+15 ~:t~1'+ l,S~~-5'1] 

~~ ' 

( The argument of tl1e ~ functions, if not indicated, means 

t - r/c everywhere in this section). On the other hand, consider 

the current density (3.1) with 

V,::V1..:0 \\f ~ : [ l h v ) ~ - { D ] ~ 3 < i J 

Or, explicitly, 
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~ = ~ b { t) · 1ot 'tot l 1 ~) (3.18) 

The corresponding potentials and field strengths are given by 

q> i = 0) 
-. • _ Q_. _,.-, ~ \ --.J l?) c_ ~'l.) c_'I.. (1) ('._1, • J 
~c\ -- ("ti..l(h'l.')'n-~'1, ·tht:i,:10 t~i,,_L+ti05~ ;-

2., ..., .... i., J I~) l l.) 'I.. l I) ", 

+ C"'lL' 't-[(h~) -ii"- ·l ~-~ +bk!~ ;-IS"~,,_-L+\5"\, ~J) 
E...; 'l., [ ..., .. -, -.} [!l4) t\) 'l. l'l.) ", (l)J 

~ = c'>?.'l, l n 'L) h -{ '1. · 1 i +} \ h + b ~,,_ f i + b fi h -
2, ~ [ _,.-< 1. I J 14) \'.. m 'I- tl) ~ 11)] 

- ?1..'" 't· lr."t} -~1.t ·[ L +b1,:!c1 +IS'idj +IS~ ti J 

~. - 'l.. (~i)(-r ..,) [t\4l 3 C. Ll1,) 1C'l. \117 n -- :?:1" 1-1:,1.'1.. J + -y· +-J- '· J o c. 'l J 1 <l 't2.. TJ (3.19) ...,. ..,. 
From uie co~arison of Eqs. (3.17) ~d (3.19) we see that EC\:: E~ 
and \-4 '\ = ~\ ~ when -Sq: -1 ; ci /Ci.. Correspondingly, :!'.._.4, -; _,. _ • '2.-

E: tq+t.J=D and\.-\::: \J.~+ 1-\<l = D if :h:: 'J... ~~ /c 
This means that the oscillating quadrupole charge-current configu

ration (3.16) and a pure current configuration (3.18) generate 

field strengths equal to zero everywhere (except for the origin). 

Nevertheless, the potentials are not zero: 

rr,= ro _ l~it.l:i..- {'t"-r _c_\") ~.f r~!l.J 3 c'l. .c.~ 1\J 
'f ,q - l c.1.1't, L)o +. 1 :rc1 + ~ 1 o ,1 

-r -, .... 4 l . J ('l) C (1) c.'2. L J 
.f-\ = S\'i +- SI i : - M~ ( .;{i);: - * -i'. . L-~ i + 1:i -q) ~ + ~ 1'."- ~.i + 

- .., .., 'l,, 1 1. "\ l,) t \:2.\ l.,,__ _t ~I} - c." t.] 
+ ~ 'l" 1. . [ t '1. "' ) - ~ t J . [ 1 ~ + t, 'l. h + 1 s t1. J O t Is i:I, }' d 

( (3.20) 

Consider the particular time dependence. If f i:;. (.)1-~t- then 
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-i . _,. 

~ : ~ i · 10 t 1,Q t ( tt 0''!, ) and (3.21) 

-H =- ~S' h-[t~'l)h-·tIJ +-. !~\1-tt-L [thi)~-~t~] 
(. 't (3.22) 

This VP falling at large distances as 'l- '< corresponds to i = 3 

in Eq.(2.22). As we 11ave mentioned, we did not succeed in 

identifying the finite static current configuration whose 

infinitesimal limit coincides with (3.21). The next in complexity 

case corresponds to octupole oscillations of the charge density 

_p-: flt) th v) [ (h~)'--- { D] Si;t.Z)J 
-f • 
i __ r(t)-h [(~v)'l..-~tJ' S'><i) 

<:.l - j ~ J (3.23) 

The elementary toroidal current distribution giving the same ES 

(after readjustment of time dependences) corresponds to 

'\..v \-:: 'lv1.. = 0 
) 

v>"' <; ~). r {hv) 2 - ~ ti J cS;<ir, 
(3.24) 

The finite poloidal current distribution whose infinitesimal limit 

is given by Eq.(3.24) was obtained in ref./ 13 /. Its asymptotical 

behaviour is determined by Eq.(2.21). In general, there is one-to

-one correspondence between the EMF generated by the.oscillating 

charge distributions and the elementary toroidal current sources. 

But only half of them corresponds to the lmown finite distributions 

of poloidal currents inside the TS. As we have mentioned, they 

correspond.to even values of i in Eq.(2.22). Since the electro

magnetic strengths produced by the oscillating charge densities and 

the elementary toroidal sources are the same ( if their time 

dependences and multipolarities are properly adjusted), particular 
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terms of the multipole expansions defining these strengths have the 

double names known in a physical literature as electric (see, e.g., 

Rose book/ 16 /) or toroidal/ 17 / multipoles. Despite the 

coincidence of the electromagnetic strengths, the corresponding 

potentials are essentially different. Particularly, the elementary 

toroidal sources ( at least, part of them) are the limiting cases 

of the finite topologically nontrivial current configurations. 

In conclusion, there is a hierarchy of the elementary charge

-current configw.•ations outside which the electromagnetic 

strentghs disappear but the potentials survive. The main problem 

is to find the corresponding configuration with finite dimensions. 

Up to now we have proved/ 9, 13 / the existence of such finite 

configurations for the charge-current densities (2.13),(3.23) and 

(3.24). In this case, the corresponding electromagnetic potentials 

cannot be removed by the gauge transformation. Thus, they have the 

physical meaning and can be used for the carrying out time-dependent 

A11aronov-Bohm like experiments and the information transfer. It 

would be interesting to find finite charge-current time-dependent 

radiationless configurations corresponding to higher multipolarities. 

4. Conclusion. 

We briefly summarize the main results obtained: 

1. There are found time-dependent charge-current sources outside 

which the electromagnetic field strengths disappear but the poten

tials survive. They can be used for performing time-dependent 

Allaronov-Bohm-like experiments and the information transfer 

( modulating the phase of the charge particle wave function). 

2. The radiation field of toroidal-like current configurations is 

20 

investigated. For a given multipole there are two different 

representatives whieh generate essentially different electro

magnetic fields. 

3. Using the Neumann-Helmholtz parametrization of the ,J1J.rrent 

density we present the eleotromagneti,J field of the arbitrary 

time-dependent charge-ourrent density in a form convenient for 

applications. The eontributions of different multipoles in it 

are explieitly separated. 
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