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1. Introduction

Interest in the time-dependent currents flowing in the toroidal
coils is due to the fcllowing remark made by James Clerk Maxwell in
his mehoir " On physical lines of force " / 1 / :

" Let B, fig.3, be a circular ring of uniform section, lapped
uniformly with covered wire. It may be shewn that if an electric
current is passed through this wire, a magnet placed within the coil
of wire will be strongly affected, but no magnetic effect will be
produced on any external point. The effect will be that of magnet bent
round till its two poles are in contact.

If the coil is properly made, no effect on a magnet placed outside
it can be discovered, whether the current is kept constant or made
to vary in strength; but if a conducting wire C be made to embrace the
ring any number of times, an electromotive force will act on this wire
whenever the current in the coil is made to vary; and if the circuit
be closed, there will be an actual current in the wire C.»

Fig.3 mentioned in this passage shows the torus with a poloidal
winding on its surface. At the present time, it is known that in
general this Maxwell assgertion is not correct. It turns out that
for the time-dependent current in the toroidal coil the )
electromagnetic field strengths appear outside it. Qualitatively
this was shown by Mitkevich / 2 / and Page / 3 /. The corresponding
experiments were performed by Mitkevich / 2 /, Ryazanov / 4 /,
Bartlett and Ward / % / and many others. The quantitative results
were obtained in ref./ 6 / where the eleotromagnetic fields were

evaluated for a number of time dependences of the ocurrent flowing
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in the toroildal coil. After all, experimentalists widely use the
toroidal transformers for their own purposes without philosophizing
on this subject. The sole exception for whien Maxwell's claim holds
is the current linearly rising in time which flows in the toroidal
coil.In this case H=0 and E is independent of time outside the torus
(see,e.g., Miller / 7 /). The question of the energy transfer into the
the wire ¢ embracing the torus was considered by Heald / 8 / (the dif-
ficulty is that the Poynting vector equals zero for the treated case).
In the previous paper / 3 /, we have studied the electromagnetioc
field ( ENF ) of the static toroidal-like configurations, their inter-
aotions with the external EMP and possible physical applications. It
is the goal of the present consideration to study nonstatic current
gonfigurations. Probably, it would be appropriate to explain the
meaning of the words " elementary toroidal sources " in the title of
this paper. The words " toroidal source " mean the poloidal current
flowing in the winding of the ﬁoroidal solenoid (T8), which in turn
may be an element of a more complex configuration. When the dimensions
of this configuration tend to zero, we obtain an "elementary toroidal
source”. The TS with finite dimensions has a number of nontrivial
topological properties (see,e.g., review papers / 10 / ). Suppose
that these properties survive when the TS dimensions tend to zero.
The reason for the treatment of an elementary toroidal source
is due to the coﬁsiderable simplification of the theoretical
oonsideration. Thus, if we find some interesting property for thé
elementary toroidal source, there is a chance for it to be survivéd
for the finite toroidal configuration. This is confirmed for the

simplest toroidal configurations for which the analytical solutions

i .

can be found. As an example, mention the configuration consisting of
the TS with'q linearly growing current flowing in its winding and the
double charged layer lying at the hole of TS. Outside this configu~
ration, electromégnetic strengths disappear but the nontrivial ( i.e.,
unrgmovable by the gauge transformation ) time- dependent vector
potential survives. Thus, the possibility arises to perform a time-
-dependent Aharonov-Bohm-1like experiment. However,the linear time-
~vdependence of the current is unrealistic. It is the aim of this
paperqto find elementary‘charge—current configurations possessing
radiationless properties mentioned above but with a rather arbitrary
time dependence. The plan of our exposition is as follows.

The radiation of elementary time-dependent toroidal-like configu-
rations, in the winding of which the time-dependent current flows,
is studied in sect. 2. It turns out that two different branches of
these configurations generate essentially different EMF. On the
other hand, the current sources of the.same family generate the

same EMF if their time dependences are properly adjusted. We give
an example of the radiationless charge—current source having the
property that electromagnetic field strengths disappear outside it
but the nontrivial time-dependent potentials survi&e there. The
extended toroidal-like current sources are considered in sect. 3.

By using the Neumann-Helmholtz parametrization for the current
density the convenient formulas for the time-dependent EMF are
obtained. Basing on them, the radiationless charge-current sources
of higher multipolarities are constructed and their possible appli~-
cations are considered. Particularly, it is shown that the elementary

time-dependent charge distribution and poloidal current produce the



same electromagnetic strengths in the surrounding them space provided
their multipolarities and time dependences are properly‘édjusted.
Thus, ;he multipole expansion of these strengths is the same and
this in turn justifies the use of double names ( known in physical
literature as electric and toroidal multipoles ) for the particular
terms occurring in this expansion.

2. The radiation of the elementary toroidal sources.
4 pedagogical example: time-dependent circular current. ,
According to the Ampere hypothesis the distribution of the magnetic
dipoles F« (q') is equivalent to the current distribution J{r)=
= rot M(r). For example, the oircular current flowing in the Z=0
plane

o - =

Voo lNg - Sp-d)- S

(2.1)

is equivalent to the the magnetized sheet
- T -
Mo 1N Qa-p) S

lying in the same plane ( @(’L)

the radius d of the circumference along which the current flows

(2.2)

is a step function ). When

tends to zero, the curgent J becomes ill-defined ( it is not clear
what does thg»vector TLQ mean at the origin). On the other hand,
the vector P« is still well-defined. In this limit the elementary
current (2.1) turns out to be equivalent to the magnetic dipole orien-
ted normally to the plane of this current. It is convenient to
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limit d >0 one gets
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instead of I in Egs.(2.1),(2.2). Then, in the’
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It turns out that Egs.(2.3) and (2.4) give the magnetization and

(2-4)

current density corresponding to the elementary magnetic dipole.
These questions were considered in detail in ref./ 9 /. Now let
the 1nten31ty of the elementary current change with time
5 §, ) ot A §>61) (2.5)
( the factor I is absorbed into fo ({)). The vector potential (VP)

corresponding to this uurrent is elementarily obtained:
- 4 (Tx® - c
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Here and hereafter the time derivative will be denoted either by

(2.6)

the point above the letter or (espeulally for hlgher derivatives)
5

by the superscripts.For example, gkﬂ- { d f /df .The

argument of the & functions, if not indicated, means ‘t -7/¢

everywhere in this section. The electromagnetic field strengths

( FS ) are
= Al 7 pF
}:o‘ox"(‘bo 1””? HO c’>'L o —CT'LGD‘h
' (2.7)
where for brevity we put
. ¢ . o ' . 2
F\<:§\t\+3i:§\‘s+3}'}-&\ﬁ) G'\«:SV\*"%&K"'%L}K
The flux of the electromagnetic energy through the sphere of the
radius r is
. - -5 a3
- [ -2 . -L(F
S— Sp-r_ (AQ —%cggjo GU) \_‘{;’(\-.’OXHO) 2.8)



This flux is positive for large distances and determined by the second
derivative of §0 ( g"’ 2 S g ) -However, for small distances

it may be negative. These results are well known and may be found in
many text-books (see,e.g., Stratton / 11 / ).

The elementary radiating torotdal solenotid.

The next in complexity case is the radiation of the current flowing

in the winding of elementary ( i.e.infinitely ) small toroidal solenoid

( TS ). According to / 9 /, this elementary current is given by
= L) - 8 rel
A\ - g\(lcs-'loJL n (L)
(2.9)
O =
where'lb't :TOt"-O't and YL means the normal to the equatorial plane
of TS. The VP and FS are equal to

. A \ ,
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(2.10)

In this and the following equations occurring in this section we

omit the % function terms giving the field values at the origin

( to which the current is confined ). Thus, Egs. (2.10) are valid

everywhere except for the origin.

Digresaton on the radfattonless gources of electromagnetic fields.
Consider the eleoctric dipole oriented in the n direction.Its

charge density is

Py [ Ql+an) - C(i-ad)]

For small separatlon O\r this reduces. to

Pa= lea (RV) S (T)
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Let the intensity of this dipole change with time
- = LY -1
§alt) (R V) § (D
( the factor 'l,O«Q is absorbed into S—d ). The corresponding

current density is given by
Sz - §a A 83D)

These densities generate the following potentials and PS ( see,

e.g., Weinstein / 12 / ):

(Pd:—é,—lq_(n.i)(%d')' \) ﬁ:—ngd /'ZC
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(2.11)

= L, . o 5o . K
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From the comparison of Egqs. ( 2.10 ) and ( 2.11 ) we conclude that
FS of the time—-dependent current flowing in the winding of the
infinitely small TS coincide with that of the electric dipole

if their time dependences are properly adjusted
L]
- °
§az Sy /e

This means that the eleotromagnetic strengths of the time-dependent

(2.12)

electric dipole and TS can be mutually compensated if -g:- f—( /C
d

Then, in the surrounding spaoe E=H =0 and
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It is remarkable that outside this composite object ( electric

dipole and TS placed at the same point ) there are nonvanishing time
dependent electric and vector potentials despite disappearance of the
field strengths. This can be used to carry out time-dependent Aharonov-

~Bohm like experiments. The simplest example ocorresponds to S\ = const.

Then, I -
4 A (h) -n

(v - 0 ) SX - e

that coincides with VP of the elementary (i.e., infinitely small )

static TS. The next in complexity case is the composite object con-
sisting of the static electric dipole ( fd = f = const) and the
linearly changing with time current flowing in the winding of TS

p= AT &MY Te-cttut® A e,
Q- _g.(ﬁ:i)/zi |

= L v 7 S

R wg YR SR 1

The TS of finite dimensions was considered in ref. / 9 /. Another

interesting case is the compensation of the EMF generated.by the

flowing in the winding of the TS:

9= Paz 5 wsut 800

oscillating eleciric dipole by that of the periodical current
—_ -5 =

1.1 TR0

= Ja+ AL, )
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It turns out that the PS are compensated if the charge density of the
electric dipole oscillates in the counter—phase with the TS current.’
Nonvanishing electromagnetic potentials can be used as a new

channel for the information transfer ( by modulating the phase of
the charge particle wave function ).
More complicated elementary toroidal sources. .

We consider the hierarchy of TS each turn of which is again TS.
The simplest example is the usual TS ( which is obtained by the
installing of the infinitely thin TS into the single turn with
current ( 2.5 ) in it ). We denote this TS by T, ( the initial
current source (2.5) will be denoted by T0 ). The next in complexity
case 1s obtained when each turn of T, is replaced by the infinitely
thin TS with alternating current in its winding. Thus obtained
aurrent configuration is denoted by T, . ¥When ifs dimensions

tend to zero, we get / 9 /
s

Jo7 50) PR L)

(2.15)
Theycorresponding VP and PS are given by
- -
&qq,: ’Ei—:'—
o LR G - d D) (Y
S L B (2.16)

By comparing Eqs.(2.6), (2.7) with (2.16) we conclude that the EMF



coincide for the current configurations T, and T, ( everywhere
except for the origin ) if the following relation between time-
Y _ ° R

-dependent intensities is fulfilled 1-;7. I- &o /C - This means,
particularly, that the EMF of the static magnetic dipole ( fo = const)
coincides with the EMF of the current configuration T if the current
in it quadratically varies with time (SL:-S'O c%’/z, ). It follows
from this that the magnetic field of the usual magnetic dipole can be
compensated everywhers (exoept for the origin) by the time-dependent
current flowing in T, . Consider now the periodical currents

‘go: Soo‘@”‘)t and §,: &10‘(4’“"{: . Clearly, the EMF of 1o
and ‘TL coincide if gw:gno-(}/wz . Now we are able to write out

the EMF for the point-like toroidal configuration of the arbitrary

order. Let
>
A\M b4 §M~7.0

Then, for m even ( m=2k, k 7 O )

t(hmi-i) = 83 (;LG‘)

- (~l)‘“\ Ayh %LL\L\

91\4 = CIR+L 1 AN

- (=¥ Fl'_\"‘;\r (Lw+d)

\T_w\ = TR - v ! (2.17)
(O™ 1o (Qh)Fz\c) 2 LU.\:]

Hm = "1\2;,3 LS E Sp1 3

The flux of the electromagnetic energy through the sphere of the

radius T is equal to

1 (12 mm\ (e (1%+1) u(mJ
S‘ kS C“‘L‘H_[ 2k, “' u +~L §‘L\¢ 1 ['&m +7_f,m v
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On the other.hand, for m odd ( m = 2k+1, mwO )

- (-0 R e \ UJL\X
Akr T TTERS X v-l}rl’ i h) wn T g " G‘nﬂh

a1y

W) - Q2K+ 1K+
B s SO TRy R 17 GO
1wl C"K*-L‘ r-L'B ¥+ a8 YRTE Y )
- ® (k)
(G}
Hown = TR ¥ G ‘ (’L ) %”‘*‘
¢ 5) (1¢41) e
2 \ u\u- ¢ (e 42) (L Ky (1%+D) ¢ \1K+2)
S BN CH\L\-T(%Q.\L\-\ 'gut-\-\ 1““" )( 'gun ta ﬁill*‘ )

We see that there are two branches of toroidal point-1ike currents
generating essentially different EMP. A representative of the first
branch is the usual magnetic dipole. The EMF of the k-th member of
this family reduces to the EMP of the circular current if the time

dependences of these currents are properly adjusted:

gmc\ - ) JS'D(&)/C“‘ (k>0) (2.19)

i
We remember that the lower index of the -g functions selects a

particular member of the first branch, while the upper one means
the time derivative. The representative of the second branch is the
elementary TS. Again, the EMF of this family are the same if the

time dependences of currents are properly adjusted:
(Led

el ("‘)\( l(l.‘\“)/(“C (‘4’/0)

From the equations defining the energy flux it follows that for high

{2.20)

frequencies the toroidal emitters of the higher order are more
effective ( as the time derivatives of higher orders contribute
to the energy flux). i

So far we have used the usual TS as a corner-stone for the

11



construction of more complicated current configurations. Under

the term "usual" we mean the torus (P—d)"-)- 2¥ = Rq’

with the poloidal current flowing on its surface. The VP

corresponding to t@is current falls as 'L at large distances
A~ [3R0R)- H’Lﬂ/ M5 for

Here ?i is the unit vector normal to the equatorial plane. It has

been shown in ref. / 13 / that it is possible to distribute the

currents inside the torus in such a way as to cancel the leading

term ( ~ "l_"’5 ) in the expansion of the VP. Then the first non-

vanishing term in the expansion of the VP has the form

('}
Ao~ T 0 Wi /79
(ul (2.21)
where QC&V\Q is the following symmetric traceless form
W Cne \ .. Y
':(S\‘O. = X xt\'x\kxe = ;( S,(\’X\«xq‘\‘ %\\Af‘xhxe +

. kR
+ 60 XX + Sy i Ko+ S5 WiXw+ Sy XX T ¥

i (S ke v Six Sjo + Gie S ) T

This VP falls 1ike "L ° for X< ® | With this TS taken
as a corner-stone and using the procvedure described above we can
construct a new hierarchy of TS. This game may be continued further.
More complicated current configuration may be found inside the
torus for which the VP falls like 'L This current confi-
éuration may be in turn used as a corner-stone for the construc-
tion of the TS installed in each other. These corner-stone current

configurations correspond to higher order toroidal multipoles / 13 /.

12
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At large distances they may be expressed in the form

) . ;
A0 30 g, e i e [t
where QEQ\ CQ is the sMetric traceless form of the order € .
Clearly, \Qée\ fall as '*(_'Q—\ for M = 00,
Only even valuesg- of Q/ correspond to the toroidal multipoles.
As div A = 0, rot A = O for any value of P, , S0 the question arises
on the existence of finite toroidal current configurations corres-—
ponding to odd Q, . So far we did not identify them.

3. The finite toroidal-like configurations.

The Neumann - Helmholtz parametrization for the electromagnetic
potentiala and strengths. Consider now the time-dependent ourrent

distribution confined to the finite region of space
hred -—
) - Y —

An arbitrary vector function and, paricularly, the current distribution

can be presented in the form ( Neumann-Helmholtz parametrization)

X({) squad ¥+ ot (T W) + wtod (7 U45)

(3.2)
The VP corresponding to the current.density (3.1) is given by
-~ - = G
A = qred o, + "ot U10L) + 0t w0t (T Gs)
(3.3)

Clearly, Eq.(3.3) is the Neumann-Helmholtz parametrization for VP.
The functions entering into it are - |
- - \ 1
2 - (L -8 () dy
Q= ¢ & l\«-g& §it <_>1\fK -
3.4

-~ 4‘\‘
Here RZ \PL"PL . To be complete, we write out the corres-

13



ponding scalar electric potential t
=- ¢ 1, AR R ) + ®we Fre)= (swyat o,
Here the pomt above l\c, means the time derivative, and (Psta .
is the scalar potential originating from the time independent
part of the charge density ( Qstgf - g @L Pstat (7”) d VI ).

It is convenient to represent the FS in the same form as j and A:

F = gqued & + 0t T ) + Wttt (T L),
Hozqued by 0t (The) +otwt (T hs)

(3.6)
It turns out that R \ . ‘ '
- CpStct -4 Fl{-)hf\(l)) =~ 1, Q's-'- %‘15)
NI ML:-{l SO WD), bz 2T,
| (3.7)

These representations are convenient because the potentials and FS
are obtained from the relatively simple integrals, their time and

space derivatives. It steams from Eg.(3.4) that if

V('i\: AQ?(;{,) then
_ \ Ll N ~r
LWy s 2 L) - by Sy W)
It follows from this that two different sources

W) L TR e

give the same FMF everywhere except for thgr space region where (\5-‘#0

(3.8)

In general, for the given current density A confined to the finite
space region S, the functions ¢ entering into Eq.(3.2) are

defined with some ambiguity and may be different outside S

14

(see,e.g., / 9 / ). On the other hand, J certainly vanishes in
those space regions where M - 0 . It is known / 9 / that the
functions w’_ and 1‘% carry information on the magnetic and
toroidal (electric) moments, resp.'Thus, putting
WY =W Y08 ana W T WD) Y, (8,8)
we obtain the formulas describing the radiation of particular
magnetlc and toroidal (eleotric) multipoles. The functions I\S;_\"l)
and 'Ll);u.) define the radial distribution of the current sources.

Developing the function a— f ""— RIC)/Q over the spherical
armonics \ ’¥ '
R N P %, 01T 4 Ve 18,8) Yo (©591)
for the particular ‘Qr‘”\ multipole we obtain

- L | 12 !
L) = 35 Y89 (a1t t) Wy et

{ no sum over 1,m here ).

(3.9)

Trangition to the point - like limit. Egs. (3.9) define the
integrals I\g, for the finite spatial current distribution. It
would not be right to put /\\j\,\ ('Y ~ S(?_‘X in (3.9)

to obtain the point current limit. There are two ways to reach it.
The first one is essentially the sa_rﬂne as used by EV.G.,P.Rowe / 14 /
for the evaluation of the integral-\-1 entering into the definition

of q) (see Eg.(3.5)). One simply puts
~r n oL
wv‘ &:Lr) ~ \/Q\M \-—V) g (??_ )

(3.11)
1t should be clarified what does (Q\m( V) mean in the RHS of ’

this equation. We write

YQ\M(X) :rl-e \/Q\m(e)‘&) (3.12)

15



where YQ\M\?,‘B) is the usual spherical harmonic. Clearly,

YQ\MUC) is the homogeneous function (of the order e, ) of

the cartesian variables x,\b,% . For example,

(W v 2
\(U,) ~ LRV nvoy

= 3
To obtainYQ\M\‘\—’) we change K¢ by (‘ 3—921.) in Eq. (3.12).

For example, . v
1 S 9F
Vo G ~ L5~ a5

Many of the properties of the fu.nctions\(p_hbq and their physical
applications may be found in ref. / 15 /. Now we substitute (3.11)
into ( 3.4 ) and integrate by parts
("‘) L E~Ye)
~ Y’Lh\ v ~7
(3.13)
An alternative way is to start from Eq. (3.9). But for this,
one should know how the radial functions W('Z_) behave for

small 1 - It turns out that in all cases which we were able

to verify

-¢-2
W) ~ LW
(3.14)
The functiongq("l 1‘ 'Ufor small I‘ falls as 'l,‘e ( for example,
it is proportional to the spherical Bessel function AQL\VL ) for
{—(0 pr(lwé) - Substituting (3.14) into (3.11) we get
~ VY, 10,9 Lim [ fetmn,e) /78]
2wm ) )

AU - 0 (3.15)

However, we did not suocceed in obtaining Eq.(3.15) in full

generality.

16

New digression on the radiationless sources.

Having obtained the explicit expressions for the extended and
point-like sources, we try now to construct the radiationless
sources of higher multipolarities;. Consider charge and current

densities corresponding to the oscillating quadrupole moment:

gqm[(ﬁ\”-%a]gﬁ),
,gq:—%o\(’d[ R (Y)- 37 ] @)

(3.16)
They generate the follownlg potuntlals and fleld strengths
- __ 2 lu (l)
& - o 4
QA ‘L) “‘ (3.17)
| e —r-’ L ] [

Ho o oy (RA). [s‘;”ig msg—’:f‘%‘l

A ALICLICANPARY §q+€ Vit bS5

Uy [%M bS5 +15 55, +\5§,‘§q]
" ,

( The argument of the .g functions, if not indicated, means

t - r/¢ everywhere in this section). On the other hand, consider

the current density (3.1) with
- -
Y420 L W [RE- 8] §e)
\

p)

Or, explicitly,

17



;\: %'A(t) oot (TUS) (3.18) 3 £\ 2ot wt (T and (3.21)

The corresponding potentials and field strengths are given by
4T Iz 30 e rr2 V2
§'(\ [RDR-3T I 5ty [E-g7 1

Ly
c,'l. (3.22)

- 2 — T !
R AIGCALMLAIE Y N R T

g -\
This VP falling at large distances as 1 corresponds to P/ =3

2 ol LV C a . . . .
+C""Z“'1.[(h "L) —-—’L] [-%5 +‘o §E*\5 1_%&_\_\56 6] in Fq.(2.22). As we have mentioned, we did not succeed in
Ev‘ q, T ) . identifying the finite static current configuration whose
T = g V] (n !
8 C"-'L“[(h ’L)h 3 ] [gé ‘\'36 S’A +Lca_§(\ < (: ¢ ] ] infinitesimal 1imit coincides with (3.21). The next in complexity
N . * ds to octupole oscillations of the charge density
L o Ry @) ) l , case 0OOrrespon
- "L (h"L t ~ 7’ - 3 () _ - - 1,0 2, =
Gk [ 31}[ c\~\-67_ A+‘5 f \5%@&& ]) P {YH‘) (Kv)[(hv)-——‘;:A]S&("L),
—r . —
e (1; - N R A 57
Hy- 2 S () [ 5536 65700 £ == fW R LEVT- 0] o) (3.23)
L
4
(3 13) The elementary toroidal current distribution giving the same ES
From th b .
om He cogparlson of Egs. (3.17) and (7—3 .19) we see that L‘« \13 (after readjustment of time dependences) corresponds to
a._r}d - 4 N 4 when_ &‘\' A S’d /¢ Correspondingly, u 3
C: - : = ~9) [ (RY) - %)
B4+ =0 and\'-—\-lq\-ud 0 1z g—q,iﬂ-d/c W 0, Y, ~ (X 9) [ (#9)*- 2008 (3.24)

This means that the oscillati uadrupole char -
ng q p ge—ourrent configu The finite poloidal current distribution whose infinitesimal limit

ration (3.16) and a pure ourrent confi ti
iguration (3.18) generate is given by Eq.(3.24) was obtained in ref. / 13 /. Its asymptotical

field strengths equal to zero everywhere (except for the origin). behaviour is determined by Eq.(2.21 ). In general, there is one-to-

Nevertheless, the otentlals are not zero:
’ p -one correspondence between the EMF generated by the.oscillating

-2 (3 2
q) - Qc\ = h C) > i [IS + '5% S‘A + 3 'S"‘- & J " charge distributions and the elementary toroidal current sources.
= _r. P T () -J But only half of them corresponds to the known finite distributions
‘Q . '9‘(4’- ‘Qé‘ - ﬁ3 tn 1)h h T'; ) [% * 13 Sa-\- > "&A * of poloidal currents ingide the TS. As we have mentioned, they
N " T (’_L; Y %1,_][-% S— + \5 & -\- s ‘S‘ ] sorrespond. to even values of Q/ in Eq.(2.22). Since the electro-
(?1“ [ 6 3 3 '11' 4 magnetic strengths produced by the oscillating charge densities and
(3.20) ) the elementary toroidal sources are the. same ( if their time

Consider the particular time de . y = (0"5'(-
P pendence. If '&A then dependences and multipolarities are properly adjusted), particular
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terms of the multipole expansions defining these sirengths have the
double names known in a physical literature as electric (see, e.g.,
Rose book / 16 / ) or toroidal / 17 / multipoles. Despite the
coincidence of the electromagnetic strengths, the corresponding
potentials are essentially different. Particularly, the elementary
toroidal sources ( at least, part of them ) are the limiting cases
of the finite topologically nontrivial current configurations.

In conclusion, there is a hierarchy of the elementary charge-
~current configurations outside which the electromagnetic

strentghs disappear but the potentials survive. The main problem

is to find the corresponding configuration with finite dimensions.
Up to now we have proved / 9, 13 / the existence of such finite
oonfigurations for the charge-current densities (2.13),(3.23) and
(3.24). In this case, the corresponding electromagnetic ﬁotentials
cannot be removed by the gauge transformation. Thus, they have the
physical meaning and can be used for the carrying out time-dependent
Aharonov-Bohm like experiments and the information transfer. It

would be ihteresfing to find finite charge-current time-dependent

radiationless configurations corresponding to higher multipolarities.

4. Conclusion.
We briefly summarize the main results obtained:
1. There are found time-dependent charge-current sources outside
which the electromagnetic field strengths disappear but the poten-
tials survive. They can be used for performing time-dependent
Aharonov-Bohm-1ike experiments and the information transfer
( modulating the phase of the charge particle wave function ).

2. The radiation field of toroidal-like ourrent configurations is

20

investigaéed. Por a given multipole there are two different
representatives which generate essentially different electro-
magnetic fields.
3. Using the Neumann-Helmholtz pa}ametrimation of the current
density we present the electromagnetic field of the arbitrary
time—dependent charge—current density in a form convenient for
applications. The contributions of different multipoles in it
are explicitly separated.
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