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Low energy theorems for pion decays (z -» uv, & -» yy) are considered in
the framework of the quark potential models. It is shown that the separable
approximation to the class of potentials leads to self-consistent reproducing of
these thcorems. It is found that the-generalization of the approach to the
arbitrary potential of the quark interaction requires redefinition of the quark
condensate by taking into account the form of the potential.
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1 Introduction

The low energy theorems of hadron physics are independent of any model of hadrons.
Consequently; they play a role of a pure toal to test the QCD-inspired models. These
models (for example, the QCD sum rules [1], Nambu - Jona - Lasinio (NJL) model [2],
QCD lattice calculations [3], nonrelativistic quark potential models [4, 5]) relate the

‘PCAC in hadron physics, induced by the spontaneous chiral symmetry breakdawn, to-. -

the quark condensate. It should be noted that in all these quark models the deﬁmtlon
of the local qua.rk condensa.te is used.

“In the present paper we discuss the validity of the notion of the local condensate in
the quark potential model within the low energy theorems. Since a wide class of nonlo-
cal potentials used in the model lead to equations that are unsolvable by an analytical
method,; we investigate the problem by means of the separablé approximation.

In section 2, we give formulae of the quark potential model used in this work: -In
section 3, we consider the model in the separable approximation and apply it to obtain
the low energy theorems for pions. In section 4, we try to reproduce these theorems
beyond the separable approximation, in-the framework of the quark potential model,
and discuss the arguments for redefinition” of the quark condensate when the quark
mtera.ctlon 1s nonlocal

2 Quark potential model .

The quark potential model has ongma.lly been proposed in. refs. (4] on the basis of
the QCD effective Hamiltonian in the Coulomh gauge. In this model one considers
the hadron ‘as a bound state of the quarks formed due to the instantaneous dominant
potent1a1 like an atom in quantum’ ‘QED. One of the important issues of the model is
that the same’ nonrelatwlstlc potential used in the Schrodinger equation for descrlbmg
heavy quarkonia leads to the spontaneous breakdown of the-chiral symmetry which is
a pure relativistic effect. In the framework of this model with the” confining” potential -
a qualitative descrlptmn of the mass’ spectra of hght mesons is obtained [5] However,




for the leptonic decay constants of pseudoscalar mesons and the quark condensate the
estimations obtained in these works are considerably smaller than the available data.
There are several attempts in the literature to solve this problem, in particular, by
including the short-range Coulomb interaction as well as by choosmg an "appropriate”
confining potential [6, 7].

The relativistic covariant quark potential model has been proposed recently in refs.
[8]. In the present work we use the formulae of these latest papers, namely, explicit
forms of the Schwinger - Dyson (SD) and Bethe - Salpeter (BS) equations in the rest
frame of the quark-antiquark bound state (in ! Sp- channel), and the amplitudes for the
constants of pion decays # — pv and © — 7.

In the quark potential model the ”constituent” quarks and thelr bound states arc
described by the following SD and BS coupled equations [8]:" )
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Here m? is, the "current” quark mass, F; = E; +4E2, Ey and E, are the encrgies,
respectively, of the quark and antiquark, and 9(p) is the solution to the SD equation,
Ly, Ly and My are the eigenfunctions and eigenvalue of the BS equation, respectively,
identified by the  wavefunctions and mass of. pseudoscalar meson, (II), and the following
abbreviations are used: o P ;

o) = cos[91(p) £ 9a(p)], 51D ='sin[y(p) £9(p)], P-d=2, p=pl,
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where V(| p — q|) is the potential. We define the mass function as’

m(p) = E(p)cos2(p). (2)

The solutions of the BS equation satisfy the normalization condition %

. 4N, dgq : . T
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In the chiral hmlt these equatlons admlt the SOlllthIlS satisfying the. Goldstone
,theorern In other words if a solution to the SD equation for the massless quark (m° =
0) exists, then the same solution’ satisfies the BS equation for a massless (M, = -.0)
pseudoscalar meson too: ‘
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where ¢g is the constant 7
G = fr : . (5)
and [, is the pion leptonic decay constant having the experimeutal value 132 MceV.
The latter equation is obtained from the amplitude of the decay # — g v in the

- chiral limit and normalization condition (4). In the potential modecl, the pion Ieptomc

decay constant is defined as [b]
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where J(p) = —“ﬂﬂl@—, Mz is the pion mass. . .
Notice that in thc limit of heavy quarks (£ << 1) the BS cqudtmn reduccs to the
Schrodinger equation :
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whereas equation (7) comculcs with the nonrelativistic. definition of the meson decay

constant
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Thus, we can see that the quark potcntml model reflects the propertics of the QCD
at long and short dlstanccs

3 Separable apprbximation to the poiﬁential

The §del‘ﬁ.|)|0 approximation to the potential consists in the follo\\mg h(‘t()ll/dtlon of.
the potcntm]

, P o a

Vip— q) ()f() fO)=1. (7)

where ¢ is the coupling (:k)xlstRXIt, J is the form factor, and L is the cut-off parameter.

““In this approximation onc neglects the dependence of the speetra on the angular

momeéntum, and the integral of equation (Ib) equals zero due to theangular asymmetry.
As a result, the SD equation takes the following simple form:

m(p)=m® 4+ mf(?) . {(8)



or
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where the following abbreviations are used:

_ - [ da
m= ﬁ(O), < F>= / ()W)sl‘
lt should be noted that the separable approximation prompts also insuflicient role of
the integral in equation (1b), which can be useful in 1nvcst|gat1ng of the renormahzat:on
problem of the SD equation. ' :
Let us consider the solution of this equation in the low energy limit, more exactly,
when m®/L — 0. In this limit, equation (9) can be solved under the coupling constant

'2_ . = Zfz(-”’-') _IN x = 2z f2(z o
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where the approximation for the integral is valid as the dependence ony=m/Lis

weak.
We define the "averaged” qua.rk Green function G(q) with the density functlon S

as follows: :
4_(1(9)G(q)) = —4N. < e an B (11)
2myt (9)610)) = g T e
In the separable approximation, the BS equation also takes the form of the usual
algebraic one
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In the low energy hm1t M << 4E*(0), one obtains the following so]utxons to the
equation:
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Now using egs. (4),(10), and (12) we arrive at the following relation:

—4my << g7 >>= fIM? . (15)
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We sce that this equation turns out into the well known low enegry theorem of the
local theory if one replaces the averaged Green function, << ¢§ >>, with the quark
condensate, < ¢§ >. The quantities included in this relatlon can be estimated if the
form of the potential and the current quark mass are given.

To study the relation of the averaged Green function of the quark to the usual
quark condensate, we consider the local NJL model type potential, f(z) = 0(1 — z),
and use the conventional values for the free parameters, namely, - - oL

: =950MeV, md =4MeV, o (16)
then we obtain the followmg numencal estlmatlons ’ -

M, = 140MeV ; fr =132MeV ; S
(17)
<<gg>> = (=250MeV)® ; D‘“:D:é DY = 119 .

So, we see that these estimations are in agreement with the conventional values
for the mass and decay constant of the pion as well as the quark condensate. We
can conclude that equation (12) defines the quark condensate formed of the quark -
antiquark pair due to the nonlocal interaction in the separable.approximation.

Let us now consider the mode of the pion decay, # — 77, induced by vector current.
The amplitude of this process in the potential model is written as [9]

(@n)'8(P~ ki~ ky)
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where 3 (k;) is the photon polarization tensor (i = 1,2), e, are the quark charges, and
N, is the number of colors. The integral of thlS equation in the limit of zero photon
momenta has the form

dq m(q) ‘ 1 1 4E(q)
@n)? B(q) Bo(g) - 2 3 Ly )] (19)

where the epproximation of equal masses of the quarks is used, E(q) = /¢ + m(q)?
is the quark energy, P and ky, k, are the 4 - momenta of the initial and final particles,

respectively.
In the sepa.rable approximation the above 1ntegral takes the form

1 3-D  fyz)
k=0, =0)= o ,J = <___) dz : o=
w7, =i ( x"-l—f’('y:c))? |
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where for the numerical estimation the values of the parameters (18) are used.

I(ky =0,k = 0) =

(20)




So, the separable approximation for the integral J leads to the the Bell - Jackiw
theoretical estimation [10] (J?? =:1) and the experimental result (J*P ~ 1.04).

4 The status of the local quark condensate in the

potential model

Let us now consider the low energy theorems in the 'imark potential model by using
equations (1), (2), (4) and (5). .

We investigate whether one can self-con51stently reproduce the low energy theorems
for the pion decays using the conventional definition of the local quark condensate,
namely,

d
< q3 >= ithr/( q)4G q) = =2N. / ——=cos(d(] p 1)) (2])
It is easy to see.that the low energy theorem ‘can be obtained from equations (4),

(), and (22) if the "small” component of the bound wave. function (Lz(p)) in. this
energy scale has the behavior .

. o , ) ,
L? = 2;:1;[“ = const (22)

However, this asymptotic function contradicts the Bell-Jackiw estimation. Indeed,
substitution of

Ll(p:O)NF N L2=0 5 (23)
into (20) leads to
‘ ‘ 1 00 .’122 T ’ . ‘
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Notice that by using
1 m v
LT e

¥

instead of the value (24)one would obtam J=1
Thus, a straightforward apphcatlon of the local quark condensate in the nonlo-
cal potential model'does not provide a self-cpnmstent reproduction of the low energy

theorems for the pion decays.
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5 Conclusions

In the present paper, we have considered the low energy theorems for the pion decays
(7 = pv, 7 — 5 ) in the framework of the potential model.

The scparable approximation to the potential indicates that the quark condensate
in. the nonlocal theory should be redefined by taking into account the form of the
interaction potential. This redefinition provides the nonlocal generalization of the low
energy theorems for the pion decays. .

"To summarize, we have verified that the potential model is able to reproduce the
low energy theorems only if the nonlocal notion of the quark condensate is used.
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