


1, INTRODUCTION

This paper starts a series of applications of the transports
along paths introduced in [1,2] in fibre bundles to certain physi-
cal problems.

All considerations in the present work .are made in a {real)
differentiable manifold M [3,4] whose tangent bundle (T{M),n, M} is

endowed with a transport aleng paths [1)]. Here T{(M):= uTx(M).
xCH

T (M)} being the tangent to M space at xeM and m:T(M) —M is such
that n(V):=x for VeTX(M).
The set of all sections of a fibre bundle £ [3,4] is denoted
by Sec(€); e.g. Sec(T(M),n,M) is the module of vector fields on M.
By J and 7:J ——M denoted are, respectively, an arbitrary real
interval and a path in M. If y is of class C', its tangent vector
is written as 7.

The transport along paths in (T(M),m,M} {(cf. [1]) is a map

I:zo——»IW, Iwz(s,t) |—)I: L s,t€J being the transport along 7,
¥ . s PR
where ]:5 l.Tar”',(ll[) —>T?(U{H), satisfy the equalities
17 017 =17 , T.s,tel, (1.1)
t —r 8 —3t | —r
¥ s
I =id , S€J. {1.2)
5 —F3 T (M)
¥yls)

Here idx is the identity map of the set X.
A linear transport (L-transport} along paths L in (T{(M),n, M)

satisfies, besides (1.1) and {(1.2), the egquality (cf. [2])

LI (u'e (s)=H! (t,sinu'e (1), s, te), u'er. (1.3)

Here and henceforth in our text the Latin indices run from 1 to

n:=dim(M) and summation from 1 to n is assumed over repeated



indices on different levels; {ei(s)} is a basis in T ](M): and

¥ls
H(t,s:?):zuﬂfj(t,s;y)ﬂ is -the matrix of the L-transport, in terms

of which {1.2) reads

H(S,s;§)=n::diag(1,...1)::"6}", (1.2°)

5; being the Kronecker's delta symbols,

This work is organized as follows. In Sect. 2, based on the
ideas of [5,6], a strict definition is given of the displacement
vector in a manifold with a transport along paths in its tangent
bundle.The deviation vector between two paths with respect to a
third one is introduced on the ground of this concept. Sect. 3,
which follows the works [5,7-10], 1s devoted to the deviation equa-
tion, satisfied by the deviation vector, which is a generalization
of the geodesic deviation equation (known also in the mathematical
literature as a Jacobi equation). Special cases of this equation
are considered. In particular, it is proved that it generalizes the
equation of motion of two point particles, i.e. the second Newton’'s

low of mechanics.
2. DISPLACEMENT AND DEVIATION VECTORS
Let in the tangent fibre bundie {T{M),n,M) to the differen-

tiable manifold M there be given a transport along paths I and

7:J ——M be a smooth, of class c', path in M. We define maps

aliy o (=T (w(s)), sed, (2.1a)
such that
t
d:(t)::J(Iz__ﬁsé(u))du, s, tel. (2.1h)

)

-

Proposition 2.1. If I coincides with some linear transport

along paths L, then
Teay—g? 7 ¥
al(s)=al(V)+L] _, (a/(s)), T8, tel. (2.2)

Proof. (2.2) follows from (2.1b) and (1.1):

s t 5
a¥(sy:=[(L7 #(u) )dus=[(L? yluyydus [{L oY F{u))du=
r u ——Ir w ——3r Lt 3 u-.—-N-

E r t

Y ¥ ¥
=d (t)+L __,r(dL(S)). r,s,teJ. =

pDefinition 2.1, The vector d:(t) will be called a displacement
vector of »(t) with respect to y(s)y if d:. seJ maps J homeomor-
phicly onto its image d:(J).

Generally, for an arbitrary transport along paths and a path ¥
the condition in this definition is not fulfilled. Butiﬁt happens
that under sufficiently general conditions there exist suitable
combinations of I and y for which it is true. Without going into
details of this problem, we shall present only two examples for
such cases. They are expressed by the proved below propositioen 2.3
and corollary 2.1 and practically include all combinations essen-
tial for physical application. For the first example we need

Definition 2.2. Let I be a transport along paths in
(T{M),n,M). An I-path is a smooth, of class C‘, path y:J —M the
tangent vector field yeSec(T(y(J)),m, ¥(J)) of which is transported

by means of 1 aloﬁg ¥, i.e.
. .y .
r(t)—Is__“w(s), 3,ted. (2.3}

The existence problem for the I-paths in the case of L-
transports along paths, -i.e. for L-paths, is shortly formulated in
Ref. [11].

As the theory of I-paths is not in the main direction of this



investigation, we shall only remark that an evident special case of
the I-paths (in affine parameterization) in manifolds with connec-
tion is the geodesic paths, whose tangent vector undergoes a para-
llel transport (defined by the manifold's connection) along them-—
selves [3,41].

Proposition 2,2, If y:J-—M is an I-path, then
a’(t)=(t-s)y(s), s, ted. (2.4a)

Proof., (2.4a) follows from the substitution of (2.3) for s=u
and t=s into (2.1bd).m

Corollary 2.1. If 7:J-—M is a regular I-path, then d:(t) is a
displacement vector of (i) with respect to y(s), 1.e. the condi-
tion in definition 2.1 is fulfilled.

Proof. From (2.4a) it follows that for any se€J the mapping
(2.1a) is linear, so, due to the regularity of ¥ (i.e. y(s)#0), it
is a diffeomorphism, and consequently homeomorphism, from J onto
a’(J). =

Proposition 2.3. If 7 is a c path without self-intersections,
then in the case of L-transports along paths the mappings d:, seJ
map J locally homeomorphicly on its image d:(J), i.e. locally d:(t)
is a displacement vector of y(t) with respect to y(s).

Remark. In this case the word "locally" means in some part of
(or over the whole) set ¥(J) in a neighborhood of which there exist
local coordinates with the properties described in [12], lemma 7.
(See also below the proof of this proposition.}

Proof. Firstly we shall prove that d:, seJ are locally injec-
tive, i.e. if tl#tz, then d:(tl)¢d:(t2). In fact, for linear trans-
ports along paths, by proposition 3.1 of [2] in (T(M),n,M) along »
there exists a basis {El,}, which by [12], lemma 7 is (locally) ho-

lonomic and in which the matrix of the transport is

i

|H ’j'(t’S;T)”=n=“6;ﬂ' In this basis, if y(s8) and ¥(t) belong to

one and the same coordinate neighborhood, we have
t t
I ’ . r . i 7 - 4
(alften’ =fu' L (sowpy’ (wau=fil (wdusr' (D= (), (204D

&
where the validity of the last equality follows from the fact that
¥ is without self-intersections. Consequently, if (s}, w(tl) and
v(ta) belong to one and the same coordinate neighborhood, then

i

x T - . I ! 3 .
ds(t1)¢ds(t2) is equivalent to ¥ (tl)#r (tz), tl,tZEJ, which is

equivalent to tl#t2 only if the path y is without selfintersections
in the mentioned coordinate neighborhood, as is supposed here.

The maps dZ’ evidently, are locally (in the above neighbor—
hood) unique and differentiable, besides, due to (2.1b), we have
d

¥ —77
qrealey) =17

(a’)"':a¥(J) —>J follows from the representation (2.4b) of @’ (1)

___%si(t). The existence and the continuity of
in the basis {El,}.

Analogously the proposition can be proved when only the points
7(t1) and 7(t2) lie in the same coordinate neighborhood with the
needed properties. The only difference now is that if »{s) is out
of this neighborhood, then in the right-hand-side of the last equa-
ity in (2.4b) there appear terms independent of t, which does not
change the validity of the above considerations.m

Remark. If the path y has self-intersections, in the right-

;
hand-side of (2.4b) the term } § 7' (wdu appears, where the summa-
k¥
k

tion is taken over all closed loops y, formed by the restriction of
¥y on the interval‘ [min{s,t),max(s,t}]. Therefore in the general
case, from (2.4b) it does not follow that d: are injective maps.
Further, the transport I and the path ¥ are supposed to be
chosen so that the condition in definition 2.1 would be true, i.e.

a¥(t) would be a displacement vector of y{t) with respect to y(s).
1)



The displacement vector, a direct generalization of the diffe-
rence of two Euclidean radius-vectors (see below Sect. 4), finds
application due to the property that it has the meaning of "vector
relative coordinate' on the one-dimensional submanifold (J), i.e.
if a point y{s)ey(J) for fixed seJ is given, then from the Know-
ledge of the displacement vector d:(t) for any teJ one can define
(recover} the point »(t) and vice versa. In fact, if teJ, then by

(2.1b) to it there corresponds a unique vector d:(t)ET S)(M) and

¥t
on the opposite, if Aedz(J), then as dZ:J———ad:(J) are homeomor—
phisms there exists a unique teJ, and so a point y(t)ed:(J), with
the property d:(t):=A. For the same reason, with the help of a dis-
placement vector there can be defined also a (global) chart on
¥(J}: because dz:J—Agad:(J) is a homeomorphism, the set

dZ(J)CTr sl(M) is one dimensional submanifold and, hence, there

(
exists a homeomorphism wS:dZ(J)-—eml, as a consequence of which
(7(J).w5°d:°w_l). where 2 't #(J) —J and 7 '{¥(t)):=t, teJ, is a
global chart on ¥(J).

Using the displacement vector one can construct the so-called
deviation vector between two paths with respect to a third one.
This is done as follows.

Let there be given paths xa:Ja——aM. a=1,2 and x:J—M. Let
there be fixed one-to-one maps Ta:J—AaJa, a=1,2. (These maps always
exit as all real intervals are equipollent.) Let alsc be given the
one parameter families of paths {75: 7S:J;44au, s€J} and {ns
ns:J:-—eM. s€J} having the properties 7s(r;):=x1(tl(s)):=ns(t;),
1s(r:)::x2(r2(s)) and ns(t:):zx(s) for some r;,r:EJ; and t;,t:eJ:.
5€J. The paths L s€J are supposed smooth and such that the maps
drs, reJ;, seJ determined by them from (2.1) define corresponding

displacement vectors.

Definition 2.3. The deviation vector of x, with respect to X

relatively to x at the point x{s), s&J is the vector

n ¥

_ . . E B " -

hzl._th(s,x).—[IL, tu"dr;](r‘s)
5 5

”
r
s

¥
=1 3 b | (T o7 (w))au €T (M), (2.5)

(=}

The deviation vector and the objects involved in iﬁs definition
can be interpreted from the view point of the physical applications
as follows. (Anything written below needs many additional defini-
tions and precise statements as to have a strict meaning. For this
reason one may think that M in it is the 4-dimensicnal space-time
V4 of general relativity - see e.g. [13].) We can interpret the
paths ¥, and %, as trajectories (world lines) of two observed point
particles, the path x - as a trajectory of an observer "studying”
their behavior. The parameters s €], s e] and sel may he consi-
dered as "proper times" of the corresponding particles. The maps T,
and T, give the connection between these proper times, define the
"observation process" in this concrete situation, and, in a certain
sense, they give some "simultaneity" between all particles: T, and
T, define a simultaneity between the observer and the observed par-
ticles and rzorzl — between the observed particles.. For a fixed seJ
the paths ¥, and n_ can be regarded as trajectories (world lines)
of "gignals" which "physically realize" the maps TEOTII and T
(For instance, in V4 if 7 and @ are isotropic geodesic paths,
then the above described construction corresponds to the definition
of simultaneity with the:help of light signals - see [13].) In this
context the deviation vector hasthe meaning of a vector describing the
relative position of the second observed particle with respect to
the first one as this is "seen" from an observer.

At the end of this section we want to present the lowest and,



respectively, the most used approximations when one works with the
displacement and deviation vectors.‘

If the transport I has a continuous dependence on (one of) its
parameters, then using the formula I:f(u)du=f(a)(bfa)+0((b—a)z) for

any continuous function f:[a,b] —R, from (2.1b) and (1.2), we find
a’(t)=(t-5)5(s)+0((t-8)7). (2.6)

If the points y(s) and ¥(t) are "sufficiently" (infinitesi-

mally) close, then the vector
Tty =(t-5)3(s) (2.7)

is a "good" (of first order with respect to t-s) approximation to
the displacement vector (2.1b). By definition it is called the in-
finitesimal displaceﬁent vector. Evidently, in the case of I-paths,
due to proposition 2.2, the vector (2.7) coincides (globally) with
the displacement vector.

From (2.5) and (2.6), we find the following representation of

the deviation vector

ns
h =TI,
E

e WAy (rrl-r ) o(ri-r)*) ], (2.8)

]

—3t

which for L-transports in local coordinates, as a consequence of

(1.2), is equivalent to

RY =31 (r)) (rf=r ) +0(L =t ) s0((r7-1)?), (2.9)
5 5 5 s LS s Ed 3

Here we see that within the quantities of first order with respect
to (t:ﬁt;) and second order with respect to (r:—r;) the vector
¢ i=(r’-r')y (r'), (2.10)
21 s E] s 8
which, though beiing defined at another peint, by its components

is an approximation to the deviation vector (2.5). In this case the

vector (2.10) is called the infinitesimal deviation vector [13].

]

3. DEVIATION EQUATIONS

Let the manifold M be endowed with an affine connection with
local coefficients {sz{x)} and let V denote it covariant diffe-
rentiation defined by (cf. [3,4]). If X,Y,ZeSec{T(M),n,M), then

the tensors (operators) of torsion T and curvature R are

T(x,v)::vxyuvvx-'[x.\'], (3.1)

R(X,Y)Z:=V,¥ 2-V V. 2-V .7, (3.2)

where [X,Y] is the commutator of X and Y, and in any local basis
{El} we have [Ei,Ej]::CliEk, so their components, respectively,

are:

1 1 i
=— - 3.3
T.}k 2r.[jk} C.}k’ ( )

1 i m 1 § m
== - r -r C . 3.4
R.Jkl zr.j[k,l} zr.J[k Sqm Ll gm Lk ( )

Let us express V Z from (3.1) for Y=Z, substitute the obtained

x
result into (3.2), and put in the thus found equality X=g, Y=Z=U
for £,UeSec(T(M),n,M). Thus using the skewsymmetry of T, R and the

commutator on their first two arguments, we get the equality

V2E=R(U, £) U+V

E(VUU)+VU(T(U’E))+VU[U'E]+V[U,E]U' (3.5)

In [14] this equality is called the “basic equation” as from
it by imposing additional condition on the quantities involved in
it the deviation equations used in the literature can be obtained
(for geodesic as well as for nongeodesic paths) [14,7,8].

The physical meaning and interpretation of the equality (3.5)

can be obtained as follows.



Let besides the connection in (T{M),xn,M) there be defined a
transport along paths I and there be given the construction of
paths, Rfinterﬁals and maps between them appearing in definition
2.3 of the deviation vector (2.5), for which we suppose to have a
c? dependence on se&lJ.

Let us put U in (3.5) to be the tangent vector field teo the
path x and £ to be the field of the ﬁeviation vector of x, with

respect to X, i.e,

Ux‘s)=x(s), ﬁx(s):h21(s;x). (3.6)
Then on x(J)

_D
Yv=as |« (s.7)

is the covariant differentiation along x and {(3.5) takes the form

2
- D D
G%E x] hzl_R(U'hat)u+vh21(3§]xq)+ds LT B, 00+
+2 ] [u,n 1+v u (3.8)
ds{x- "' 21 (u,h 1 * )

The equalitf (3.8) is called the generalized deviation equa-
tion. In the local case, i.e. when h21 is an infinitesimal vector,
which usually is identified with the infinitesimal deviation vector
(2.10), this name was introduced in [15,8,14], and in the global
case, i.e. for an arbitrary deviation vector hz1' in {5].

The physical interpretation of the generalized deviation equa-
tion (3.8) may be found, for example, in [5,8,9] and it is based on
the physical interpfetation of the deviation vector given in Sect.
2. Due to it h21. Vuh21 and V3h21 are interpreted, respectively, as
relative coordinate, velocity and acceleration (or, more precisely,

these are the deviation vector, the deviation velocity and the de-

viation acceleration, but for the moment this is not essential) of

10

the second observed particle with respect to the first one relati-
vely to the observer. The quantities U and VUU are interpreted, re-
spectively, as the velocity and force per unit mass acting on the
observer. As a consequence of this we can say that the generalized
deviation equation (3.8) gives the relative acceleration Vlzlh21 be-
tween the observed particles as a function of the characteristics
of the maﬁifold M (R, T and Fbk), the trajectory {the world line)
of an observer (s, X, U and VUU) and the relative movement of the
observed particles (h  and VUhZIL

Example 3.1. Now, analogously to the investigations in {9}, on
the basis of the above general considerations, we shall derive the
noniocal (noninfinitesimal) deviation equation of the geodesics.

Let y:Az——aM, where A; is a neighborhood in Pg, be a C2 con—
gruence of geodesics {with respect to the connection of M) paths.
This means that the tangent vectors U and V, respectively, to the
u-paths y(-:,v), v=const and v-paths ¥{u, -), u=const, (u,v)el\2 which

are geodesics, satisfy the equalities

vu v)=fv(u)U (3.9)

oV . vV =g (V)V

(u,v)' v (u,v)

(u, vy’

Here the restriction lfmvi means that the corresponding quantities
are taken at the point y(u,v), (u,v)e!\2 and the functions f and g
depend only on the choice of the parameters u and v (for instance,
if u is an affine parameter, then by definition fv(u)EO).

We have to find the deviation equation of two arbitrary u-paths
from the family y(.,v), v=const, (u,v)eA . For this purpose, in the
above general construction, we substitute: y(-,vl) and y(-,vz) for
some fixed values V; and v2 of the parameter v, respectively, for
X and X, y(~,v1) for x (and consequently t1:5=id); and y(u,-)

1

for y . As a concrete and "most natural" realization of the trans-
s

1t



port I we shall use the parallel transport defined by the connec—

tion of M.
As y(u, ) is a geodesic, we have
ylu, v} . _
Ivn-—av(v (u.vo))’“u(vo’v)v (u, v}

for some scalar function u of u, v, and v, which due to (1.2) has

the property ud(va.vo):i. On the other hand, (cf. [2], propositicn

-]

4.1), the fact that I¥'% is a parallel transport along #(u,:)
P

u, *)

leads to V¥ oI”
v —r v

S D =0. Combining these equalities with the
’ o

second equation from (3.9), we get uu(vD.V)=eXp(“J; g {(w)dw). Due
0 .

to this from (2.5) we find the deviation vector of y(-,v?) with

respect to y(-,vl) at the point y(u,v’) as

h:=h(u.v‘.v2):=A-V . L {3.10)
on
v2 v
a (v )-a (v)
Ar=A (vl,vz):=J [exp(—[ g (w)dw))dv=ff‘~fL~—Ji——L— , (3.11)
b " da (v )/av,

1 1
v t .
where au(v)::Cl(u)IVO[exp(-Jvugu(w)dw))dt+cz(u). with C #0, and C,
being arbitrary functions, is any affine parameter of y(u,-).
The form of the deviation equation (3.8) in the considered case
is defined by two additional conditions. First, on y(-,vi) the

first equation of (3.9) gives

vu

u (u.vlszv (u)u ' (3.12)

(u,v

1 1
. 2 .
Second, as u and v are independent parameters of the C° congruence

¥, in local coordinates, we get azy’(u,v)lauav: =aayi(u,v)/av6u,

which on y(v,vl) reduces to

[h,U] =L U =-A'V
{u,

- s .
vll h (u.vll (u.v])— hA* /3, (3'13)

where a’::aa/au and LhU:=[h,U] is the commutator of h and VU (or the

12

Lie derivative of U with respect to h). Substituting (3.12) and
(3.13) into (3.8) and using the notation A”:=3r’/8u and the rela-
tionship LhU:thwvuhgT(h,U). which is true for any vector fields h

and U (see (3.1)), we find the geodesic deviation egquation as

D 2 _ )
[Eﬁ y(..vllJ hl(u’vl)wR(U.h)Ul(u’vll + [fvl(u)T(U,h)+(VUT)(U,h)+
+ru, 2 n) o [ (f (WU) +

' du ylrev ) (u,vl) dv |y(u, ) v (u,v{
RI D AI AH
+?\_“[2ﬁ|y€-,vllh_zr.h-'-T(h'U)] (u,v1)+r.h (u,vl)' (3'14)

If the parameter v is affine, then (by definition) g (v)=0, so

now (3.10), (3.11) and (3.14) take, respectively, the form:

h:(vz—vl)V{(u,VI), A:vz—vt, (3.15)
D 2
{ﬁ y(‘,vll] h (u,‘\rl]:R(U'h)UI(u‘vl) + [fv1(U)T(U,h)+(VUT)(U,h)+
sy, n) v -v ) (2 (f (WU) (3.16)
'du y('.vi) (u.\fi) 2 1 dv|ytu, -2 " v I(u.v‘)' .

If, besides, u is affine too, then (by definition) fv(u)zo and

(3.16) reduces to the equation

2
D -
[ﬁ yi, v )] h {u, v )fR(U'h)U|(u.v l+(vUT)(U'h)i(u.v )+
1 1 1 1
D
+T(U, 57 Y"-vl)h)lw,v)' (3.17)

Analogously one can get the deviation equation for the con-
gruence y:Az——aH in the case when only the v-paths y{(u,: ) are geo-
desics. Then, as there remains only the additional condition (3,13)
the deviation vector is also given by (3.10})-(3.11). So

D_ D
du

+ —
,v“ du|yi -,

2
Y(-,vl]] hl[u,vl)zR(U‘h)U (u Vl][T(U,h) (u +

,vll

13



D

D_ D
du|vyio,vide

yiu, ')U]

Ers
Y
(u,v ) A
1

Ca,v ) A Uy, A

+ T(h,U)] ‘h (3.18)

(u.vlﬂ
If we impose also the condition {(3.12), we see that {3.18) reduces
to (3.14). .

Example 3.2, In this example, based on the work {10}, we shall
show that the deviation equation (3.8) contains as its special case
the equation of relative motion of two point particles. In this
sense the deviation equation is a generalization of the second New-
ton’'s law of the dynamics.

Let the ¢° trajectory x:J-—M of the cbserver be given as a

solution of the following initial-value problem:

v U :F(S,x,U)ETx

(M), U:=x, seJ, (3.19a}
U x{s) 5)

{

X(SO):XDEM, Uxo:zx(sc):UGETx

- )(M), s &J, (3.19Db)

where X, and UO are fixed, and F is a continuous function of its
‘arguments. Physically this_means to consider a (point) observer that
passes through the point x with velocity U  and undergoes a force
per unit mass F.

Let the family of ¢° paths {wsz s€J} be given as the unique

solution of the following initial-value problem:

VJ:Z' r)=Fs(r):=Fs(r,xs(r).§;(r))ET )(M), qed, (3.20a)

¥ 7 (r
£ s

(M), s €], (3.20b)
r) 9

¥ (r)=x(r)eM, ¥’ (r)=w(r)€Tx(

a o
where 7’ is the tangent vector field to the s-paths gy (r},

r:constEJ;, sed (i.e. (%' y (H)i::ayl(r)/as), and Fs, x and ¢ are
5

continuous functions of their arguments. Physically FS is interpre-

14

ted as a force field (force per unit mass) acting in the two-
dimensional region {1S(r), rEJB; seJ}.

Let us remind (see Sect. 2) that by definition 7s(r;)::
:=x1(11(s)):=ns(t;), ?5(r:)::X2(T2(S)) and ns(t:):zx(s) for some
ri,riel) x t!,t7el”, sed.

Further in this example we suppose that the transport I is
linear, i.e. we shall work with L-transports (see [2])

The following purpose is to write, in the considered case, the
deviation equation for the deviation vector h21 of x, with respect
to x relatively to x in the form of equation of motion that is
"mast close" to the second law of the Newton's mechanics. It "more
clearly" shows the dependence of the relative (deviation) accelera-
tién between the obéerved particles on the force fields F and'F{
(This intention comes from the above given physical interpretation
of the deviation equation.)

To write certain formulae compactly, we shall generalize the

operation of differentiation of vector fields along paths (see e.qg.

(3.7)). Let p,q=0 be integers, za:J——aM, a=1,...,p+q be ot paths,
Z:J —Mx--->xM (p+qg times) with z(s):=(zl(s),...,zp¢q(s)), se} and
P CMY - — DL * .
T‘q(z(s),M)._Tz[s)(H)a @‘rz(s,(r{)@ﬂz {s)(H)® &T_ (s)(H)‘
1 P pel p+q

For every se€J], we define the map

g- :sec( U TP (z(t);M).m,2(0)) —T® (2(s); M),
& ter 1 -1

where u(Az )y:=z{(s) for Az s)equ(z(s);H), in such a way as for

(s} (

AeSec( U qu(z(t);M),n,z(J)), in local coordinates
LES

o R R I AT
[EA]j '__[A ce (z(s)] *
1 1 p

P L, LPERTE L SRR .
LR R CIPL Y (z(s))z!(s) -

1 'Jp
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q
: k 1 ...
1 [+ +1
- T (z  {s)}A (z(s))z_ (s}, (3.21)
E 23,1 Teen jl...Jb_lka+i...jq p+b
b=1
where z is the tangent vector field to za, a=1,...,p+q.
a

With the help of (3.21) it is easy to check that D/ds is a de-
rivation of the (many-point) tensor algebra over z(J), i.e. this
operator is linear, commutes with the contraction operator (defined
now only on indices referring to dual spaces) and satisfies the re-
lation D/ds(A®B)={(DA/ds)®B+A®(DB/ds).

If p+g=1, then from (3.21) follows D/ds=d/ds|z , 1.e. when
1

acting on vector fields or 1-forms defined over 21(J) the above de-
fined operator reduces to a covariant differentiation along z,.

Let the L-transport along y:J—M from s to t, s,tel in
{T{M),n,M) be defined by the matrix "Hfj(t,s:w)" through (1.3) and

{E!|y} be a basis in Ty(M), yEN. We put

i ] . )] *
HES : " T M)®T
H: H'J(ts.ts "S)Elln (o, B € “u)( ) »
8 E=3 E-) 8 5

it A
E: k1

(t;)(M)'

-1

ERTY) . “, *
H '_H.J(ts’ts‘ns)E1|nstt;

]
®E | l.,)ETTJ t,,(H)STn (o (M)
8 5 5 5

s

) '.qs( (

. =n! L . 3
A(r)-uH.J(rs.r.vs)El |3_g“, ]®E

E]

*
|1 o 5Ty (r')(M)QTz (ry (M2
8 £ 5 2

For brevity with a point (+)} the contracted tensor product will
be denoted, i.e. if xeT?q'y(H). YET?Tq,'y(M). p’,q20 and p,q =1,
then X-Y::CE+I(X®Y), C: being the contraction operator on the p-th
super-~ and g-th subscript.

Using the above notions, we can write the deviation vector

(2.5) as

h:H-J Alu) =7 _(u)du. . (3.22)

Hance, we find:
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2"
r
s

2 2 2 _ ) © Dy _(u)
x] h= [E] ==—eH'eh 4 zgg-J [D—gisu—)'vs(u)+h(u)'%—]du+

r
s

2 Dy _(u) D%7 (u)
+H-I {EL‘;)-&S(quDQ(U)- T HA(u)  —5 ]du+p, (3.23)

. as s ds ds
8
where
D dr” dr’ dr: b
- g " .‘ wy. o S2 ’ L .' -
p'“H'{HE [gg Mr o (rd- g5 (v Y gg gelAlu) ey (u))1| _ v
dr; n OH dr: ) dr;.
- [aE(A(u)-xs(u))]|u=r;}+zds-[ds ACE")og (2= =7 (r0)]

arises from the differentiation with respect to s of the boundaries
of inteérat@on r; and r:. Let us note that usually [13-16] the
statement of the problem is such that r; and r: do not depend on s,
therefore p=0.

By its essence the equation (3.23) gives an answer to the prob-
lem stated above. In particular, if we write the term D°H/ds’ in
detail, we shall see the "major" dependence of the relative accele-
ration D’h/ds® on the force F acting on the observer. But more
essential is the dependence on the force field F‘s and to write it
we shall transform the derivative D®y/ds® in (3.23) as follows.

Taking into account the evident equality Vq,é:D&/ds, from the
basic equation (3.5) for U=y’ and E;i, we get
D*3/as”=V%, y=R(3', 207" +V _(V_,¢')+V_ (T(2',3))+V_,[3', 314V ¥

7 r 7 4 ¥ 7’71
In this equality the last two terms are zeros because of [z’',¥]=0.

(In fact, the i-th component of this commutator at 7y (r)} is
=

(Te" .71, m)‘=(,'(5;)_7}(,"))1 :azyi(r)/arasfazwé(r)/asarso,

¥ ir)
s

where we suppose a c? dependence of ws(r) on s and r.} So, using
this, (v, 7")=Dz'/ds|

T(rles(r) (see (3.20a)) and V_Fs(r):
5 - ¥
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:DFs(r)/dr, we find

D%y

ds?

DT, , - ‘
+[H§(? ’7)J|1trJ+T(7 ’ds)ly(r)
3 5

- . ’ D -
e R B e i)

+
1’{(r) ¥ (r)
N s

and consequently (3.23) takes the form

"
4
5

2 2 Dy _(u)
FL-X] =2 E-H *h + ZQE.J [DA(U)-is(u) + A(u)'—*5~4~]du +

ds ds

r
E]

Dy (u) ) ]
+ H-J {?;ﬂﬁ!l w22 e A (R 5D R )+

+T(y’ F (u)+T(F L )| }du + p. (3.24)

’ds))|y(u)
This equation is the answer of the problem stated in this
example problem. It represehts the deviation equation in the form
of an equation of motion in the considered case.
From a dynamical point of wview the most important terms in

(3.24) are those containing explicitly the force Fs(r), i.e.

2
r
a

. n ¥ .
H-J A(U)'[gﬁFS(U)+T(FS,?S)!F(u]]du:LtfAA%tM(LriAA#r,FS(r:)—
4 5 s 5 5 k=4
r‘S
"’
rs
—Fs(r;))+H-J [A(u)-T(FS,éS)‘?(u,f DS;F)-FS(u)]du, (3.25)

’
A
L]

where we have done an evident integration by parts of the integrand

A(u)-guF {(u). Let us note that the first term in (3.25), which is
8

written explicitly by a transport L is simply the difference de-
fined by means of L at the point x(s) of the forces Fs(r”) and

Fs(r‘) acting on the observed particles.
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At the end, we are going to consider two important special
cases of (3.24).

First, in the Euclidean case (3.24) reduces to the second law
of the Newtonian mechanics. In fact, in this case we can put M=R",
dr;/ds:dr:/dszﬂ and H=A(u)=8, where & is the unit tensor with com-
ponents the Kronecker deltas 6; (see (1.2')), and if we use a basis
in which Ffjk=0. then (3.24) becomes

"

r
s

2
d h:[g—s x] hrJ- d_F (wausF_(r")-F (r'). (3.26)

r
5

Second, in the infinitesimal case (3.24) reduces to the equa-
tion known, e.qg. from [16], for the relative motion of two "suffi-
ciently near" point particles.

For brevity and simplicity we shall suppose dr;/ds=dr:/ds=0. As

a consequence of (1.2), we have

H=s+0(t”-t!), H":s+o(t:—t;), A(r)=6+0(r-1r').
s s
I

"

Using these equalities, the formula fr,f(u)du:f(r’)(r”fr’)+
+0((r”-r’)*) for any ¢' function f:[r’,r”] —sk, and the infinite-
simal deviation vector C:=c(s)::&s(r;)(r:—r;) (see (2.10)) from

(3.24), we obtain

o2 C DF (r)

. ; 8 L —
a R(? C)T F'a’ (r")+ dr |r:r'(rs l“s).}‘T(Fs'I;) ¥ (r’)+

S s s s

Dy, 0 HTCr 29 +O(L -t ) +0((r -1 )?) (3.27)
ds ' vs(r 'dS ;) s s 5 s ! '

If here we neglect the terms O(t:—t;) and O((r:~r;)2) and put
T=0, we get the equation derived in [16], ch. 8, sect. 1 for rela-

tive motion of two 'nearly"” moving point particles.
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4., CONCLUDING REMARKS

The displacement vector introduced in Sect. 2 is a direct ge-
neralization of the difference of two Euclidean (radius-)vectors.
To show this, we consider the (pseudo-)Euclidean transport genera-
ted by Cartesian coordinates in M=R" or M=E", which is insignifi-
cant now (see [2], definition 3.1), i.e. as a concrete realization
of T we shall uée,the parallel transport in R" will be used. Then

in any basis, we have (I:__ﬁtu)lzu for any path r:J—R", every

UETyel(m“) and arbitrary s,telJ. Hence in this case (1.1b) glves
s
t

(d:(t))'::J?}'(U)du:wi(t)—vl(S). s, tel, (4.1)

s

which proves the above statement.

As it is known to the author, the equality (2.5) is published
for the first time in {[7] (see therein equation (1) in which a
slightly different notation is used). Its full derivation in local
coordinates, with the usage of Lie derivatives, is presented in [8]
(see therein section 1 and the appendix). More precisely, in [7T]
the equation {2.8) is given for an arbitrary path x and vector h21
(with the usage of [U,th]:Luh21 and F:=VUU), the proof of which
has been published later in [8]. As a consequence of the arbitra-
riness of x and hz1’ for which in [8] (2.8) is proved, in this case
the qualities (2.8) and {(2.5) are equivalent.

Independently, the equality (2.5) is found in [14] from where

the presented here its derivation is taken.
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