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1, INTRODUCTION 

This paper starts a series of applications of the transports 

along paths introduced in [1,2] in fibre bundles to certain physi-

cal problems, 

All considerations in the present work are made in a (real) 

differentiable manifold M [3,4] whose tangent bundle (T(M),rr,M) is 

endowed with a transport along paths [ 1]. Here T( H):= v T ( M), 
' •E• 

Tx(H) being the tangent to M space at xEM and n:T(M) ~M is such 

that n(V):=x for VET (M). 
' 

The set of all sections of a fibre bundle ~ [ 3, 4] is denoted 

by Sec(€); e.g. Sec(T(H),rr,M) is the module of vector fields on M. 

By J and r:J~M denoted are, respectively, an arbitrary real 

interval and a path in H. If 'I is of class c 1
, its tangent vector 

is written as ;r. 

The transport along paths in (T(H),n:,H) (cf. [1]) is a map 

r:r~r1 , r 1 : (s,t) 1-----)!r , s,tEJ being the transport along r . . _,, 
where r 1 :T (H) ----+T (H), satisfy the equalities 

s --H ;r(s) ;y(t) 

1 7 oi 7 =! 7 , r,s,tEJ, 
t ---+r s ---+t s ---+r 

! 7 =id I SEJ. 
s ---+s T 00 

7( s) 

Here idx is the identity map of the set X. 

( 1 . 1) 

(1. 2) 

A linear transport (L-transport) along paths L in (T(M), n:, M) 

satisfies, besides (1.1) and (1.2), the equality (cf. [2]) 

Lr (u 1 e (s))=H 1 (t,s;1)uJe (t), s,tEJ, u 1 EIR. 
s---+t l .J l 

( 1. 3) 

Here and henceforth in our text the Latin indices run from 1 to 

n: =dim(M) and summation from 1 to n is assumed over repeated 
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indices on different levels; {e
1
(s)} is a basis in T1"lsl(M); and 

H(t,s;1"):=IIH
1 

(t,s;1"lll is -the matrix of the L-transport, in terms 
. j 

of which (1.2) reads 

H(s, s;r)=D' =diag(1, ... 1)' =II•; II· ( 1. 2') 

' b . OJ e1ng the Kronecker's delta symbols. 

This work is organized as follows. In Sect. 2, based on the 

ideas of [5,6], a strict definition is given of the displacement 

vector in a manifold with a transport along paths in its tangent 

bundle. The deviation vector between two paths with respect to a 

third one is introduced on the ground of this concept, Sect. 3, 

which follows the works [5,7-10], is devoted to the deviation equa-

tion, satisfied by the deviation vector, which is a generalization 

of the geodesic deviation equation (known also in the mathematical 

literature as a Jacobi equation). Special cases of this equation 

are considered, In particular, it is proved that it generalizes the 

equation of motion of two point particles, i.e. the second Newton's 

low of mechanics. 

2, DISPLACEMENT AND DEVIATION VECTORS 

Let in the tangent fibre bundle (T(M), n, M) to the differen-

tiable manifold M there be given a transport along paths I and 

r: J ~M be a smooth, of class c 1
, path in M. We define maps 

dr:J~T (M)=n:- 1 (r(s)), sEJ, 
s '1 ( s ) 

(2.1a) 

such that 

d 7(t):=J<rr i(u))du, s,tEJ. . ·- (2.1b) 

2 

• 

' ~ 

Proposition 2.1. If I coincides with some linear transport 

along paths L, then 

dr(s)=d'l(t)+Lr (d1(s)), r,s,tEJ. 
r r t---------?r t 

( 2. 2) 

Proof. (2.2) follows from (2.1b) and (1.1): 

ct7(s)'=J(L7 ><u))du=J(L7 ><u))du•J(L •L' ;(u))du= 
r u---------?r u---------?r t--)r u---------?t 

=dr(t)+Lr (dr(s)), r,s,tEJ. • 
r t ---------?r. t 

Definition 2.1. The vector d!(t) will be called a displacement 

vector of r( t) with respect to r( s) if d!, SEJ maps J homeomor

phicly onto its image d:(J). 

Generally, for an arbitrary transport along paths and a path r 

the condition in this definition is not fulfilled. But-.it happens 

that under sufficiently general conditions there exist suitable 

combinations of I and r for which it is true, Without going into 

details of this problem, we shall present only two examples for 

such cases. They are expressed by the proved below proposition 2.3 

and corollary 2.1 and practically include all combinations essen-

tial for physical application. For the first example we need 

Definition 2. 2. Let I be a transport along paths in 

(T(M),n,M). AnI-path is a smooth, of class C1
, path r:J---------?M the 

tangent vector field lESec(T(r(J)),n,r(J)) of which is transported 

by means of I along r, i.e. 

~(t)=I 1 ;Y(s), s,tEJ. 
o-H 

(2.3) 

The existence problem for the !-paths in the case of L-

transports along paths, i.e. for L-paths, is shortly formulated in 

Ref. [ 11}. 

As the theory of !-paths is not in the main direction of this 
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investigation, we shall only remark that an evident special case of 

the !-paths (in affine parameterization) in manifolds with connec

tion is the geodesic paths, whose tangent vector undergoes a para

llel transport (defined by the manifold's connection) along them-

selves (3,4]. 

Proposition 2.2. If r:J---JoM is an !-path, then 

. ) . ds(t =(t-s)r(s), s,teJ. (2.4a) 

Proof. (2.4a) follows from the substitution of (2.3) for s=u 

and t=s into (2.1b).• 

Corollary 2.1. If r:J---JoM is a regular 1-path, then d!(t) is a 

displacement vector of r(t) with respect to r(s), i.e. the condi

tion in definition 2.1 is fulfilled. 

Proof. From (2. 4a) it follows that for any seJ the mapping 

(2.1a) is linear, so, due to the regularity of r (i.e. i(s)#O), it 

is a diffeomorphism, and consequently homeomorphism, from J onto 

d! ( J) .• 

Proposition 2.3. If r is a c 1 path without self-intersections, 

then in the case of L-transports along paths the mappings d!, seJ 

map J locally homeomorphicly on its image ct!(J), i.e. locally d:(t) 

is a displacement vector of r(t) with respect to r(s). 

Remark. In this case the word "locally" means in some part of 

(or over the whole) set r(J) in a neighborhood of which there exist 

local coordinates with the properties described in [ 12], lemma 7. 

(See also below the proof of this proposition.) 

Proof. Firstly we shall prove that ct!, sEJ are locally injec

tive, i.e. if t :;tt, then ct1(t ):;td1(t ). In fact, for linear trans-
1 2 s 1 s 2 

ports along paths, by proposition 3.1 of [2] in (T(M),n,M) along r 

there exists a basis {E
1
,}, which by [12], lemma 7 is (locally) ho-

lonomic and in which the matrix of the transport is 

4 
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~ 

[[H'' ,(t,s:<)[[=D=[[o'[[. In this basis, 
•. J J 

if r(s) and r(t) belong to 

one and the same coordinate neighborhood, we have 

' ' 
\

1 
1

1 
• J I I. 1

1 
1

1 ~ 1
1 

(d~(t)) =JH.,,(s,u;•)r (u)du= • (u)du=r (t)-r (s), ( 2. 4b) 

where the validity of the last equality follows from the fact that 

r is without self-intersections. Consequently, if r(s), r(t
1

) and 

;r(t) belong to one and the same coordinate neighborhood, then 

d•(t )*d'(t ) 
. ' ' 

equivalent to r (t ):;tr 1 (t ), 
' ' 

t
1
,t

2
EJ, which is is 

s 1 s 2 

equivalent to t
1
:;tt

2 
only if the path r is without selfintersections 

in the mentioned coordinate neighborhood, as is supposed here. 

The maps d!, evidently, are locally (in the above neighbor

hood) unique and differentiable, besides, due to (2.1b), we have 

d 7 r · 
dt(ds(t) )=It ~,r(t). The existence and the continuity of 

(d1 )-
1 :ct1 (J) ~J follows from the representation (2.4b) of d 1 (t) 

s s s 

in the basis {E
1
,}. 

Analogously the proposition can be proved when only the points 

r(t
1

) and r(t
2

) lie in the same coordinate neighborhood with the 

needed properties. The only difference now is that if r(s) is out 

of this neighborhood, then in the right-hand-side of the last equa

lity in (2.4b) there appear terms independent of t, which does not 

change the validity of the above considerations.• 

Remark. If the path r has self-intersections, in the right

hand-side of cz.4b) the term L i 11 cu)du appears, where the summa-

• .. 
tion is taken over all closed loops rk formed by the restriction of 

ron the interval [min(s,t),max(s,t)]. Therefore in the general 

case, from (2.4b) it does not follow that d: are injective maps. 

Further, the transport I and the path r are supposed to be 

chosen so that the condition in definition 2.1 would be true, i.e. 

d!(t) would be a displacement vector of r(t) with respect to ;r(s). 
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The displacement vector, a direct generalization of the diffe

rence of two Euclidean radius-vectors (see below Sect. 4), finds 

application due t9 the property that it has the meaning of "vector 

relative coordinate" on the one-dimensional submanifold r(J), i.e. 

if a point r(s)er(J) for fixed seJ is given, then from the know

ledge of the displacement vector d!{t) for any teJ one can define 

(recover) the point r{t) and vice versa. In fact, if tEJ, then by 

( 2. 1b) to it there corresponds a unique vector d1 (t)eT (M) and 
s '1( s) 

on the opposite, if ll.edr(J), then as d1 :J-----?dr(J) are homeomor-
" " " 

phisms there exists a unique tEJ, and so a point r(t)ed!(J), with 

the property ct!(t):=ll.. For the same reason, with the help of a dis

placement vector there can be defined also a (global) chart on 

>( J): because d!:J-----?d:(J) is a homeomorphism, the set 

dr{J)cT , (M) is one dimensional submanifold and, hence, there 
s r s) 

exists a homeomorphism (/) :dr(J) ---+IR1, as a consequence of which . " 
(r{J),(/) odror-1), 

" " 
where r- 1 r(J) ~J and r- 1 (r(t)):=t 1 teJ, is a 

global chart on r(J). 

Using the displacement vector one can construct the so-called 

deviation vector between two paths with respect to a third one. 

This is done as follows. 

Let there be given paths X :J ~M 1 . . a=1, 2 and x: J ~M. Let 

there be fixed one-to-one maps ~ :J-~J 1 a=1,2. (These maps always . . 
exit as all real intervals are equipollent.) Let also be given the 

one parameter families (>: 
" 

paths of 

11 : J" ~M 
" " ' 

SEJ} having the properties 

r :J' ~H. 
" " 

SEJ} and { lJS: 

r ( r' ) : =x ( ~ ( s)): =11 ( t') 1 
s s 1 1 s s 

r (r"):-=x ('r (s)) and lJ (t"):=x{s) for some r' ,r"eJ' and t' ,t"eJ", 
ss 22 ss sss sss 

seJ. The paths r seJ are supposed smooth and such that the maps 

' " 
d s, reJ', seJ determined by them from (2.1) define corresponding 
" " 

displacement vectors. 

Definition 2. 3. The deviation vector of x
2 

with respect to X
1 
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relatively to x at the point x(s), seJ is the vector 

h :=h (s;x):=[I 11~ ,od'I~J(r")= 
21 21 t ~t r s 

" " ' 

" J r =I~ , {Is ,~ (u))du ET (M)-
t ~t u~r s x(s} . ' 

(2.5) 

The deviation vector and the objects involved in its definition 

can be interpreted from the view point of the physical applications 

as follows. (Anything written below needs many additional defini-

tions and precise statements as to have a strict meaning. For this 

reason one may think that M in it is the 4-dimensional space-time 

V 
4 

of general relativity - see e.g. [ 13]. ) We can interpret the 

paths x
1 

and x
2 

as trajectories {world lines) of two observed point 

particles, the path x - as a trajectory of an observer "studying" 

their behavior. The parameters s
1 
EJ 11 s

2
eJ

2 
and seJ may be consi-

dered as "proper times" of the corresponding particles. The maps ~ 1 
define the and ~ 2 give the connection between these proper times, 

"observation process" in this concrete situation, and, in a certain 

sense, they give some "simultaneity" between all particles: ~ and 
{ 

T
2 

define a simultaneity between the observer and the observed par

ticles and T o~-t -between the observed particles.· For a fixed sEJ 
' 1 

the paths r and 11 can be regarded as trajectories (world lines) 
' " 

of "signals" which "physically realize" 

(For instance, in V if r and 11 ' ' . are 

the maps 

isotropic 

-1 
< o< 

' 1 

and ~ . 
1 

geodesic paths, 

then the above described construction corresponds to the definition 

of simultaneity with the help of light signals- see [13].) In this 

context the deviation vector has the meaning of a vector describing the 

relative position of the second observed particle with respect to 

the first one as this is "seen" from an observer. 

At the end of this section we want to present the lowest and, 
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respectively, the most used approximations when one works with the 

displacement and deviation vectors. 

If the transport I has a continuous dependence on (one of) its 
0 

parameters, then using the formula Jaf(u)du=f(a)(b-a)+O((b-a)
2

) for 

any continuous function f:[a,b]~. from (2.1b) and (1.2), we find 

r . ' ct.(t)=(t-s)r(s)+O((t-s) ). (2.6) 

If the points r(s) and r(t) are "sufficiently" ( infinitesi-

mally) close, then the vector 

(~(tJ,=(t-s)r(sJ (2.7) 

is a "good" (of first order with respect to t-s) approximation to 

the displacement vector (2.1b). By definition it is called the in-

finitesimat displacement vector. Evidently, in the case of 1-paths, 

due to proposition 2. 2, the vector (2. 7) coincides (globally) with 

the displacement vector. 

From (2.5) and (2.6), we find the following representation of 

the deviation vector 

" h =I~ ,[)- (r')(r"-r')+O((r"-r') 2)], 
21 t ----+t !l !l !l !l !l !l 

(2.8) 

" " 
which for L-transports in local coordinates, as a consequence of 

(1.2), is equivalent to 

h 1 =)- 1 (r')(r"-r' )+O(t"-t')+O((r"-r') 2
). 

21 !l !l !l !l .. !l !l !l 
( 2. 9) 

Here we see that within the quantities of first order with respect 

to (t~-t:) and second order with respect to (r:-r:) the vector 

(
21

:=(r;-r:>t,.<r:). (2.10) 

which, though beiing defined at another point, by its components 

is an approximation to the deviation vector (2.5). In this case the 

vector (2.10) is called the infinitesimal deviation vector [13]. 

8 
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3. DEVIATION EQUATIONS 

Let the manifold M be endowed with an affine connection with 

local coefficients {r1 (x)} and let V denote it covariant diffe
. J' 

rentiation defined by (cf. [3,4]). If X,Y,ZESec(T(M),n,M), then 

the tensors (operators) of torsion T and curvature R are 

T(X, Y): =VxY-VvX-'[X, Y], ( 3. 1) 

R(X, Y)Z:=VxVvZ-VYVXZ-V 1x,vJZ, ( 3. 2) 

where [X, Y] is the commutator of X and Y, and in any local_ basis 

{E
1

} we have ' [E 1 ,EJ]=:C_ 1JEk, so their components, respectively, 

are: 

T 1 =-zr 1 -c 1 
, 

. j k . ( j k J • J k 
( 3. 3) 

R1 =-2r 1 -zrm r 1 -r 1 Cm 
.jkl .j[k,ll J(k 1 n~ 1 tl Jm .kl 

(3.4) 

Let us express VxZ from (3.1) for Y=Z, substitute the obtained 

result into (3. 2), and put in the thus found equality X=~. Y=Z=U 

for ~.UESec(T(M),n,M). Thus using the skewsymrnetry of T, Rand the 

commutator on their first two arguments, we get the equality 

V't;=R(U,I;)U+V
0

(V U)+V (T(U,t;))+V [U,I;]+V cU. 
U , U U U IU,sl 

(3.5) 

In [14] this equality is called the "basic equation" as from 

it by imposing additional condition on the quantities involved in 

it the deviation equations used in the literature can be obtained 

(for geodesic as well as for nongeodesic paths) [14,7,8]. 

The physical meaning and interpretation of the equality {3.5) 

can be obtained as follows. 
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Let besides the connection in (T(M),n,M) there be defined a 

transport along paths I and there be given the construction of 

paths, IR-intervals and maps between them appearing in definition 

2.3 of the deviation vector (2.5), for which we suppose to have a 

C2 dependence on sEJ. 

Let us put U in (3. 5) to be the tangent vector field to the 

path x and € to be the field of the deviation vector of x 2 with 

respect to x
1

, i.e. 

U =X(s), li; =h (s;x). 
x{ s) x { s) 21 

(3.6) 

Then on x(J) 

Vu=~s~x ( 3. 7) 

is the covariant differentiation along x and (3.5) takes the form 

(I>___ I )\ =R(U, h )U+O (Dd I U)+dD I (T(U, h ) )+ lds X 21 21 h S X S X 21 
" 

+~s~)U,h21]+V[U,h JU. 

" 
(3.8) 

The equalitY (3. 8) is called the generalized deui.ati.on equa-

tion. In the local case, i.e. when h 21 is an infinitesimal vector, 

which usually is identified with the infinitesimal deviation vector 

(2.10), this name was introduced in [15,8,14], and in the global 

case, i.e. for an arbitrary deviation vector h 21 , in [5]. 

The physical interpretation of the generalized deviation equa-

tion (3.8) may be found, for example, in [5,8,9] and it is based on 

the physical interpretation of the deviation vector given in Sect. 

2. Due to it h , V h and V2h are interpreted, respectively, as 21 u 21 u 21 

relati've coordinate, velocity and acceleration (or, more precisely, 

these are the deviation vector, the deviation velocity and the de-

viation acceleration, but for the moment this is not essential) of 

10 
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the second observed particle with respect to the first one relati-

vely to the observer. The quantities U and VuU are int~rpreted, re

spectively, as the velocity and force per unit mass acting on the 

observer. As a consequence of this we can say that the generalized 

deviation equation (3.8) gives the relative acceleration V~h21 be

tween the observed particles as a function of the characteristics 

of the manifold M (R, T and r 1 
) , the trajectory (the world line) 

. J' 

of an observer (s, x, U and VuU) and the relative movement of the 

observed particles (h
21 

and Vuh21 ) · 

Example 3.1. Now, analogously to the investigations in [9], on 

the basis of the above general considerations, we shall derive the 

nonlocal (noninfinitesimal) deviation equation of the geodesics. 

Let y: A
2 

------)M, where A
2 

is a neighborhood in lll, be a C
2 

con

gruence of geodesics (with respect to the connection of M) paths. 

This means that the tangent vectors U and V, respectively, to the 

u-paths y(·,v), v=const and v-paths y{u, ·), u=const, (u,v)EA
2 

which 

are geodesics, satisfy the equalities 

• u1 =f (u)UI , • VI =g (v)VI . U {u,v) v {u,v) V (u,v) u {u,v) 
( 3. 9) 

Here the restriction I means that the corresponding quanti ties 
( u' v l 

are taken at the point y(u,v), (u,v)EA2 and the functions fv and gu 

depend only on the choice of the parameters u and v (for instance, 

if u is an affine parameter, then by definition fv{u)=O). 

We have to find the deviation equation of two arbitrary u-paths 

from the family y(·,v), v=const, (u,v)EA
2

• For this purpose, in the 

above general construction, we substitute: y(·,v
1

) and y(·,V
2

) for 

some fixed values v
1 

and v
2 

of the parameter v, respectively, for 

x, and 

for 7". 

X • 

'' 
y(. 'v 1) for x (and consequently -r 1=-r 2=id); and y(u, ·) 

As a concrete and "most natural" realization of the trans-

ll 



port I we shall use the parallel transport defined by the connec

tion of H· 

As y(u, ·) is a geodesic, we have 

Iy(u, ·>(vi )=1-l (v ,v)VI v --+v (u,v) u 0 (u,v) 
0 0 

for some scalar function 1-l of u, v
0 

and v, which due to (1.2) has 

the property 11u(V
0

,V
0

)=1. On the other hand, (cf. [2], proposition 

4.1), the fact that Iy(u, ·J is a parallel transport along g'(u, ·) 

leads to VI oly(u, •) :=0. 
V (u,v) v --+ v 

0 

Combining these equalities with the 

second equation from (3.9), we get J.l. (v ,v)=exp(~Jv g (w)dw). 
u 0 v u 

0 

Due 

to this from (2.5) we find the deviation vector of y( ·, v ) with 
' 

respect toy( ·,v
1

) at the point y(u,v
1

) as 

h:=h(u,v ,v ):=A·VI , 
I 2 ( u, v l 

' 
'2 

., =;\(v,. v,), =I (•xp(-J 
. 
' 

) 

a ( v ) -a ( v ) 
g (w)dw} dv u 2 u 1 

u aa (v )/av 
" ' ' 

(3.10) 

(3.11) 

where a (v):=C (u)J' (exp(-Jt g (w)dw))dt+C (u), with c ~o. and c u 1 v vu 2 1 2 
0 0 

being arbitrary functions, is any affine parameter of y(u, ·), 

The form of the deviation equation (3.8) in the considered case 

is defined by two additional conditions. First, on y(·,v
1

) the 

first equation of (3.9) gives 

v u1 =f (u)ul U (u,v) v (u,v) 
' ' ' 

( 3. 12) 

Second, as u and v are independent parameters of the C2 congruence 

y, in local coordinates, we get a 2 y 1 (u,v)/auav= =8
2 y 1 (u,v)javau, 

which on y( ·,v
1

) reduces to 

[h,Ull =Lui o-<'vl =-h<'/<, (u,v
1

) h (u,v
1

l (u,v
1

l 
( 3. 13) 

where A':=8A/8u and LhU:=[h,U] is the commutator of hand U (or the 

12 
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t 
J 

Lie derivative of U with respect to h). Substituting (3.12) and 

(3.13) into (3.8) and using the notation A":=aA' ;au and the rela-

tionship LhU=VhU-Vuh-T(h,U), which is true for any vector fields h 

and U (see (3.1)), we find the geodesic deviation equation as 

(oct I )\1 =R(U,h)UI 1 + [r (u)T(U,h)+(V T)(U,h)+ U y(·,v) (u,v) (u,v v U 
1 1 l I 

+T(U,Q_I h)] I +<· du y( ·,,v
1

l (u,v
1

l (Q_I (f (u)u))l + dv y(u, ·) v (u,v l 

' 

<' D I A' A" +--·(2-- h-2--·h+T(h,U)] I +--·hi . A du y{·,v
1

) 1\ (u,v
1

l 1\ (u,v
1

J 
( 3. 14) 

If the parameter v is affine, then (by definition) gu(v)=O, so 

now (3.10), (3.11) and (3.14) take, respectively, the form: 

h=(v -v )VI , A=v -v , 
2 1 ( u' v 1 ) 2 1 

(3.15) 

(~ I )\1 =R(U,h)UI 1 + [r (u)T(U,h)+(V T)(U,h)+ U y( ·,v
1

) {u,,v
1

J (u,v
1 

v
1 

U 

+T(U,~ I h)] I +(v -v )· U y( ·,v
1

l (u,v
1

l 2 1 (Il_l (f (u)u))l . dv y(u, •) v (u,v) 
' 

( 3. 16) 

If, besides, u is affine too, then (by definition) fv(u)=O and 

(3.16) reduces to the equation 

( I ) 
2 

Q_ h =R(U,h)U +(V T)(U,h) + dU y{ ·,v) l(u,v) l(u,v) U l(u,v) 
1 1 1 I 

+T(U Q_l h) I . 'du y( ·,v
1

J (u,vl 
(3.17) 

Analogously one can get the deviation equation for the con-

gruence y: A
2 

----+H in the case when only the v-paths y(u, ·) are geo

desics. Then, as there remains only the additional condition (3.13) 

the deviation vector is also given by (3.10)-(3.11). So 

( I 2 I Q_ h =R(U,h)U + Q_ [T(U,h) + du y( ·,v )) l(u,v) l(u,v) dU y( ·,v) l(u,v) 
1 1 I 1 1 
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+ (~u~y( ·,v)~v~y(u, ·lu) l(u,v) 
+-·[2- h->' D I 

A du y( ·,v
1

l 
>' 

2x-·h + 

' 

+ T(h,U)] l(u,vl) + ~~~ hl(u,vt)' (3.18) 

If we impose also the condition {3.12), we see that (3.18) reduces 

to (3. 14). 

Example 3,2. In this example, based on the work [10), we shall 

show that the deviation equation (3.8) contains as its special case 

the equation of relative motion of two point particles. In this 

sense the deviation equation is a generalization of the second New-

ton's law of the dynamics. 

Let the C2 trajectory x: J ~M of the observer be given as a 

solution of the following initial-value problem: 

V Ul =F(s,x,U)eT (M), U:=X, seJ, 
U >< ( s) X ( S) 

(3.19a) 

x(s )=x EM, U :=X(s )=U ET (M), 
o o x

0 
o o x(s

0
l 

S
0
EJ, ( 3. 19b) 

where x
0 

and U
0 

are fixed, and F is a continuous function of its 

arguments. Physically this means to consider a (point) observer that 

passes through the point x
0 

with velocity U
0 

and undergoes a force 

per unit mass F. 

Let the family of C2 paths {r,: seJ} be given as the unique 

solution of the following initial-value problem: 

V ,,' 1 =F (r):=F (r,r (r),r'(r))ET ( )(H), sEJ, 
~ r (rl s s s s r r 

" " 
(3.20a) 

r (r)=t(r)EM, r' (r)=rp(r)ET (M), s eJ, 
s

0 
s

0 
t(r) o (3.20b) 

where r' is the tangent vector field to the s-paths- r ( r)' 
r=consteJ:, seJ (i.e. (>' 1 

1 1
)

1
:=ar

1
(r)/as), and F, r,. r s ,. 

t and 'fJ are 

continuous functions of their arguments. Physically F is interpre-

14 

ted as a force field (force per unit mass) 

dimensional region{~ (r), reJ, seJ}. 

acting in the two-

Let us remind 

: =x (' ( s) ) : =" ( t' ) , 
l 1 s s 

" " 
(see Sect. 2) that 

r ( r") : =x ( -r ( s) ) and 
s s 2 2 

r' ,r"eJ' K t',t11 EJ", seJ. 
" " s s s s 

by definition r (r'): = 
" " 

lJ,(t~): =x(s) for some 

Further in this example we suppose that the transport I is 

linear, i.e. we shall work with L-transports (see [2]). 

The following purpose is to write, in the considered case, the 

deviation equation for the deviation vector h
21 

of x
2 

with respect 

to x
1 

relatively to x in the form of equation of motion that is 

"most close" to the second law of the Newton's mechanics. It "more 

clearly" shows the dependence of the relative (deviation) accelera

tion between the observed particles on the force fields F and F s. 

(This intention comes from the above given physical interpretation 

of the deviation equation.) 

To write certain formulae compactly, we shall generalize the 

operation of differentiation of vector fields along paths (see e.g. 

(3.7)). Let p,q~O be integers, z.a:J---)M, a=1, ... ,p+q be C
1 

paths, 

with z : J -----tMX · · · xM (p+q times) z(s):=(z (s), ... ,z (s)), sEJ 
1 p+q 

T' (z(s);H):=T (H)®· 
. q z 1 ( s) 

·®T (M)®T* (H)®·· ·®T (H). 
z(s) z (s) z (s) 

p p+1 p+q 

For every seJ, we define the map 

D 
ds Sec( U 

<E' 
TP (z(t);M),n,z(J)) ~TP (z(s);M), 

• q . q 

where n(A ):=z(s) for A ETP (z(s);M), in such a 
z(s) z(s) .q 

AeSec( U TP (z(t);M),n,z(J)), in local coordinates 
tEJ . q 

(
Q_A) >I ... I P. _<!.__(A I' . 

ds J .•• J ·-ds J . 
I P ' 

. tP(z(s)) + 

. J 
p 

• l: 
p I I , .. I ki . 

r a (z (s))A 1 a-t a+t 
• k I a J . J 

' ' 

. . 
a=t 
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P(z(s))Z:(s) 

way as 

and 

for 



b=1 

\' k 11 .. I. ·I 

L r.J l(zp+b(s))AJ ... / kJ ... j- (z(s))zP+b(s), 
b 1 b-1 b+1 q 

q 

(3.21) 

where z is the tangent vector field to za, a=1, ... ,p+q. 

With the help of (3.21) it is easy to check that D/ds is a de-

rivation of the (many-point) tensor algebra over z(J), i.e. this 

operator is linear, commutes with the contraction operator (defined 

now only on indices referring to dual spaces) and satisfies the re-

lation D/ds(A®B)=(DA/ds)®B+A®(DB/ds). 

If p+q=1, then from (3.21) follows D/ds=d/dslz, i.e. when 

' 
acting on vector fields or 1-forms defined over z

1
(J) the above de

fined operator reduces to a covariant differentiation along z
1

• 

Let the L-transport along r: J -----7H from s to t, s, tEJ in 

(T(H),n:,H) be defined by the matrix IIH 1 (t,s:r>ll through (1.3) and 
. J 

{E
1

IY} be a basis in TY(H), yeM. We put 

H:=H
1 

(t",t':ll )E I "®Ejl , ET , (H)®T* J (H), 
.jsssll)(t) 1}(t)1}(t) l)(t) 

!IS SS SS SS 

H- 1 :=H 1 (t',t":ll )E I '®Ejl , ET ,,(H)®T* , (M), 
.Jsssll)(t) Tj(t)l)(t Tj(t) 

ss "" "" s 

A(r):=H 1 (r',r:r )E 1 , ®EJI eT 
1

, (M)®T* (M). 
,J s s I 1 (r ) '1 {r) '1 r ) 1 (r) 

s " " !I s " 

For brevity with a point (•) the contracted tensor product will 

be denoted, i.e. if XETP I (M), YETp' 'I (H), p' ,q<!!O and p,q'<!!1, 
.q y .. q y 

then X•Y: =CP (X®Y), cP being the contraction operator on the p-th 
q+ 1 q 

super- and q-th subscript. 

Using the above notions, we can write the deviation vector 

(2.5) as 
," 

h~H·J, A(u)•r,(u)du. (3.22) 

' 
Hance, we find: 
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(n I ) ' (D ) ' n'H ds x h= ds h=ds2·H-l•h + 
DH I (DA(u) . nr (u) 2ds• , -as--·~,.(u)+A(u)•--as--)du+ 

" ' 
' 

+H•J ~2/\(u).,;. (u)+2DA(u)._ n1,.(u) D21,.(u) 
l- d 2 s ds ds +A(u) •--

r ' S r1<> 

Jdu +p, (3.23) 

where 

p:=H·{~s 
dr" 

[ds"A(r:>•1,.<r:)-
dr' dr" 

s · , s D · 
d"S'r,<r,))+dS"" [d

8
(A(u) •r,.(u))) lu=r" 

dr' . 
dS 

dr" 
[d

0 
(A(u)•r (u))ll ,}+2d

0
s"·[-d 'A(r")•r (r")-s s u= r S .<. s s 

• 

dr' 
ds' r ( r' ) l . . 

arises from the differentiation with respect to s of the boundaries 

of integration r: and r". . Let us note that usually [ 13-16) the 

statement of the problem is such that r: 

therefore p=O. 

and r" do not depend on s, 

By its essence the equation (3.23) gives an answer to the prob

lem stated above. In particular, if we write the term D2 H/ds 2 in 

detail, we shall see the "major" dependence of the relative accele

ration D
2
h/ds 2 on the force F acting on the observer. But more 

essential is the dependence on the force field F, and to write it 

we shall transform the derivative D21/ds2 in (3.23) as follows. 

Taking into account the evident equality V , 1=D1/ds, from the 

' 
basic equation (3.5) for U=r' and (=-i-, we get 

D
2

-i-/ds 2 =V 2,-i-=R(r',-i-h'+V (V ,r')+V ,(T(r',-i-))+V ,[.,',1J+V '1 
r r '1 '¥ '¥ ('¥ 1 '11 

In this equality the last two terms are zeros because of [~' ,1]=0. 

(In fact, the i-th component of this commutator at rs(r) is 

([ ,.1 ''('')"(''lll ,, '' 1 .rJ 1 tr)) =('¥ r, -., '1 r trl=a r,.(r)/aras-a '1,.(r)/asar=O, . . 
where we suppose a C

2 dependence of '1s(r) on s and r.) So, using 

this, (V ,,' )~D>' /dsl ~F (r) 
r '¥ s ( r l " 
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(see (3.20a)) and V F (r)~ 
;. . 



=DF,(r)/dr, we find 

D
2 fl =R(;r 1 ,f);r 1 

2 ;r ( r) 
ds ' 

D . I +-d F (r)+T(F .r ll + 
1(r) rs s s Q(r) 

' ' 

+ (~; ( ;r I ' r)) I ;r ( r) +T ( ;r' ' ~~) I ;r ( r) 
' ' 

and consequently (3.23) takes the form 

" ' 

[Q_I J'h=n'H.H-'•h 
ds x ds2 

+ 2 oH•J [DA(u) •f (u) 
ds ds " 

or (u) 
+ A(u)·~}du + 

" ' 

' ' 

+ H•J {D
2
A(u).f (U)+2DA(u). 

Dr ( u) DT · 
~+A(u)•[(R(r' ,i)r'+ds(r' ,7) + 

d 
2 s ds 

' s 
' ' 

+T(r' .~~)) lr,.<ul+~uF,(u)+T(F,,i,> I"J,.<ul]}du + p, ( 3. 24) 

This equation is the answer of the problem stated in this 

example problem. It represents the deviation equation in the form 

of an equation of motion in the considered case. 

From a dynamical point of view the most important terms in 

(3.24) are those containing explicitly the force F
9
(r), i.e. 

' ' 
r 

I D . I "· H• A(u)•[-d F (u)+T(F ,r) ]du=L, 
U s s s ;r (u) t 

u(L ~~ ,F (r")-
-------)t r -------)1• s s 

r' s s 

" ' ' 

' ' ' 

F (r 1 ))+H•J [A(u}•T(F ,.(>I - DdA(u).F (u)]du, 
s s s s ;r (u) S s 

', . 
(3.25) 

where we have done an evident integration by parts of the integrand 

A(u)•dD F (u). Let us note that the first term in (3.25), which is 
u ' 

written explicitly by a transport L is simply th~ difference de-

fined by means of L at the point x(s) of the forces F,.(r") and 

F,(r') acting on the observed particles. 

18 

At the end, we are going to consider two important special 

cases of (3.24). 

First, in the Euclidean case (3. 24) reduces to the second law 

of the Newtonian mechanics. In fact, in this case we can put H=~n. 

dr' /ds=dr"/ds=O and H=A(u)=O, where 0 is the unit tensor with com-
' ' 

ponents the Kronecker deltas o~ (see (1.2 1
)), and if we use a basis 

in which r 1 =0, then (3.24) becomes 
. J' 

" ' 

ct'h=[ctD 1]\=f dd F (u)du=F (r")-F (r'). 
d

2 Sx Us s s 
s ,' 

' 

(3.26) 

Second, in the infinitesimal case (3.24) reduces to the equa-

tion known, e.g. from [16], for the relative motion of two "suffi-

ciently near" point particles. 

For brevity and simplicity we shall suppose dr:/ds=dr~/ds=O. As 

a consequence of (1.2), we have 

H=O+O(t"-t 1
), H- 1 =0+0(t"-t'), A(r)=O+O(r-r'). 

s s s s s 

" 
Using these equalities, the formula J:,f(u)du=f(r 1 )(r"-r 1 )+ 

+O((r"-r' ) 2
) for any C

1 function f: [r' ,r"] ~. and the infinite

simal deviation vector (:=((s):=i (r')(r"-r 1
) (see (2.10)) from 

s s s s 

(3.24), we obtain 

n' I DF ( r) I I '=,-R(r',()7 1 

1 
,

1
+-d'r ~(r"-r')+T(F ,() 

1 
,

1
+ 

d 
;r r r=r s s s ;r r s s s s 

+DT(;r',()l , +T(r', 0 '>1 , +O(t"-t')+O((r"-r') 2
). ds r<rl dsr<rl ss ss 

s s s s 

(3.27) 

If here we neglect the terms O(t"-t') and O( (r"-r' ) 2
) and put 

s s s s 

T=O, we get the equation derived in [16], ch. 8, sect. 1 for rela-

tive motion of two "nearly" moving point particles. 
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4. CONCLUDING REMARKS REFERENCES 

The displacement vector introduced in Sect. 2 is a direct ge

neralization of the difference of two Euclidean (radius-)vectors. 

To show this, we consider the (pseudo-)Euclidean transport genera-

ted by Cartesian coordinates in M=R0 or M=E0
, which is insignifi-

cant now (see [2], definition 3.1), i.e. as a concrete realization 

of I we shall use,the parallel transport in R0 will be used. Then 

in any basis, we have (I;r u) 1 =u 1 

"->t 
for any path ;r: J ~n, every 

uETr<sl(R 0
) and arbitrary s,tEJ. Hence in this case (1.1b) gives 

t 

(d:(t)) 1 :=J~ 1 (u)du=;r 1 (t)-r 1 (s), s,tEJ, ( 4. 1) 

which proves the above statement. 

As it is known to the author, the equality (2.5) is published 

for the first time in (7] (see therein equation (1) in which a 

slightly different notation is used). Its full derivation in local 

coordinates, with the usage of Lie derivatives, is presented in [8] 

(see therein section 1 and the appendix). More precisely, in [7] 

the equation (2.8) is given for an arbitrary path x and vector h
21 

(with the usage of [U,h
21

]=Luh
21 

and F:=VuU), the proof of which 

has been published later in [8]. As a consequence of the arbitra

riness of x and h
21

, for which in [8] (2.8) is proved, in this case 

the qualities (2.8) and (2.5) are equivalent. 

Independently, the equality (2.5) is found in [14] from where 

the presented here its derivation is taken. 
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npHHHM3CTCSI IIO,Jl,IIHCKU Hil npenpHHTbl, C006W,CHHSI 06bC.Jl.HHCHHOrO 

HHCTnTyTa ~epublx HcCJie,IJ,osauuH u <(KpaTKHe coo6IIJ,euust OH51l1». 

YCTUHOBJleHa CJICAYIOlUilSI CTOHMOCTb IIOAIIHCKH Ha 12 MCCSIUCB Ha H3,Jl,3HHSI 

011.5111, BKJII043SI nepeChiJIKy, flO OT)J,CJibHbiM TeMaTH4CCKHM KaTerDpHSIM: 

liH)lCKC TeMaTuKa 

I. 3KcnepnMeuraJI&HU51 <l>H3HKa BhiCOKHX 3HeprHH 

2. Teopent'tleCKa51 <fJn3HKa BhiCOKHX 3ueprnH 

3. 3KCO€pHM€HTaJlbHUSI uei1TpOHH<l51 ¢JH3HKU 

4. TeopernqecKaSI <Pn3nKa HH3KHX 3HeprHH 

5. MareMaTnKa 

6. 51,u;epHUSI CIICKTpOCKODHSI H pa,ll;HOXHMH51 

7. <l>H3HKU TSI:>KeJibiX HOHOB 

8. KpHoreunKa 

9. YcKopnTenu 

10. ABTOMUTH38U,HJI o6pa60TKH 3KCnepHMCHTUJibHbiX ,u;aHHbiX 

11. BbiQHCJIHTeJibHUSI MUTCMfLTHKU H TCXHHKU 

12. XHMHSI 

13. TexunKa <tJugu'tleCKoro 3KCnepHMeHTa 

Ueua no.QrrnCKH 

ua ro,Jl, 

915 p. 

2470 p. 

365 p. 

735 p. 

460 p. 

275 p. 

185 p. 

185 p. 

460 p, 

560 p. 

560 p. 

90 p. 

720 p. 

14. J.icCJJe,!J;OBUHHSI TBCp)l,blX TeJI 1:1 )I(I:I,!J;KOCTeit SI,u;epHblMH MCTO,!J;HMH 460 p. 

15. 3KcnepHMCHTaJlbHUSI <fJH3HKa g,u;epHbiX peaKU,Hit 

DpH HH3KHX 3HepmSIX 

16. ,ll03HMCTpHS1 H qJH3HKU 3/.lUJ.HTbl 

17. TeopHSI KOHACHCHpOBilHHOfO COCTOSIHHSI 

18. Hcnon&aoaauue pe3yJibTI.lTOB 

H MCTO)l,OB <PYHAUMCHT(!JihHbiX tfJH3H1-ICCKHX HCCJIC)lOBUHHii 

8 CMC)I{HblX o6JiaCTSIX HllY KH H TCXHHKH 

19. liHO<jJH3HK3 

«KparKne coo6w.eHHSI Ol1.SI11» (6 BhmycKos) 

fiO)liiHCKU MO)I{CT 6biTh OtfJOpMJICHH C Jll06oro MCCSIUU rO)l,l.l. 

460 p. 

90 p. 

365 p. 

90p. 

185 p. 

560 p. 

no seeM uonpocaM oc:popMJieHHSI no,u;nncKH CJie,u;yer o6paw.aT&eSI a H3,u;a

TeJibCKTHH OTIIeJI OH51H no a11'pecy: 141980, r.,lly6Ha, MocKoscKoi1 o6nacTH 


