

# объвдиненный ИНСтитУт адерных исөледований 

E2-94-391

Z.K.Silagadze*

## PIONIUM IN THE ELEMENTARY PARTICLE DECAYS

Submitted to «Письма в ЖЭТФ»

[^0]
## 1 Introduction

The pioniam ( $\pi^{4} \pi^{-}$-dimesoatom) was firstly comsidered by ('retsky ated
 Coulomb, dimenoatoms. initiated greatly be L. L. Nemenove [2], became real. Recently about 200 pionium atoms. produced in a Ta target by To (ife protons. Were observed [3]. But an accutate pionima lifetime mosasmement i. still absent, and it is expected that this will be done in a more elaboran version of this [4] or other [5] properarl experiments. From this mensume ment a model independent informatoon about pion sattering lengths ran beextracted [1. 6. 7].

Alreaty in [1] it was realized that pioninea "an be formed in the dh mentary particle dreays. Among then the $K^{-3} \rightarrow \pi^{+} A_{2 \pi}$ deray is most pronising: [8]. The branding ration of this and other similar atomir derats are wry small. making their experimemal study an clatootat task. In the case of pionimm, matters are further complicated be the fact that it is a very short lived object.

Let us mote that the only atomic der ays of mesons, experinentally stind. ied at ret, are $\pi^{\prime \prime} \rightarrow \mathcal{A}_{2 t}[9]$ and $K_{2} \rightarrow \mu_{\mu=}\{10]$. Their measured branching ratios agrees wrll to what is יxpected theoreticaliy [2, 11, 12]. Even $O(a)$ corrections for them were calculated [13. 1.1], althongh some part of $O(\alpha)$ corrections for $K_{L} \rightarrow \psi A_{\mu \pi}$. originated from the normalization constant. was omitted in [14].

It is expected that suremal monsiof fartorios with very high luminesity will begin to operate in a norar future. The study of atomic decays. even with phonime in a final state, com becomer real at these factories. Below we will consider some atomic dece:s of the elementary partictes which wat be interesting in this respect.

Further information about dimesatoms, not premented in his artole. a an be forond in [15.16.17].

## 2 Pionium in the $\eta, \eta \eta^{\prime}$ and $K$-meson decays

 iirelrvent phase factor) to the following superposition [12]:

$$
\begin{equation*}
\left|P_{A}: A_{2 \pi}\right\rangle=\int \frac{d \vec{q}}{(2 \pi]^{3}}\left|\frac{P_{4}}{2}+q: \pi^{+}\right\rangle\left|\frac{P_{4}}{2}-\eta: \pi^{-}\right\rangle \frac{\Psi(\overrightarrow{\vec{q}})}{\sqrt{m}}, \tag{1}
\end{equation*}
$$

watre $\Psi(\vec{q})$ is a momentum spare waw function for $A_{2 \pi}$ Conlombiton and $\sqrt{1 /} \equiv \sqrt{m_{\pi^{+}}} \approx \sqrt{\frac{M_{A}}{2}}$ appors becanse of mativistic normatioation

$$
\begin{equation*}
\langle\vec{p} \mid \vec{\eta}\rangle=2 F_{p}(2 \pi)^{3} 8(\vec{p}-\vec{\eta}) \quad . \quad E_{p}=\sqrt{\vec{p}^{2}+m^{2}} \tag{2}
\end{equation*}
$$

which we will use throughout this paper for any one-particle (composed or elementary) state vector.
(1) means that an amplitude for the atomic decay $P_{1} \longrightarrow P_{2}+A_{2 \pi}$ is giwen by the following expression

$$
\begin{equation*}
\left.\left\langle P_{2}, A_{2 \pi} \mid P_{1}\right\rangle=I\left(Q_{1}, \frac{P_{4}}{2}, \frac{P_{A}}{2}, Q_{2}\right) \frac{i \Psi(\vec{r}}{\sqrt{m}}=0\right) \tag{3}
\end{equation*}
$$

where $\Psi(\vec{x}=0)$ is a Schrödinger wave function for a liydrogenlike atom at the origin, and $I\left(Q_{!}, p_{+}, p_{-} Q_{2}\right)$ is an amplitude for the nonatomic decay $P_{1}\left(Q_{1}\right) \longrightarrow \pi^{+}\left(p_{+}\right)+\pi^{-}\left(p_{-}\right)+P_{2}\left(Q_{2}\right)$. If this amplitude is known, (3) allows us to calculate a ratio of atomic and nonatomic decay widths.

If $P_{1}$ and $P_{2}$ are pseudoscalar mesons, then in a $P_{1}$-meson rest frame $\left.I ; Q_{1,} p_{+}, p_{-}, Q_{2}\right)$ depends only on two independent energirs, and it is convenient to use instead of them the conventional Dalitz variables:

$$
\begin{equation*}
x=\frac{\sqrt{3}\left(E_{+}-E_{-}\right)}{M_{1}-2 m-M_{2}} \quad y=3 \frac{M_{1}-E_{+}-E_{-}-M_{2}}{M_{1}-2 m-M_{2}}-1 . \tag{4}
\end{equation*}
$$

If $M_{1}-2 m-M_{2} \ll M_{1}$. it is expected [18] that higher order terms, in a power series expansion of $I(x, y)$ will be suppressed and in a good approximation

$$
|I(x . y)|^{2} \sim 1+a y+b y^{2}+c x^{2}
$$

Note that terms linear in $x$ are forbidden by CP -insariance. After integrating over two and three particle phase spaces:

$$
\begin{gathered}
\Gamma\left(P_{1} \rightarrow P_{2} A_{2 \pi}\right)= \\
=\left.\int\left|\left\langle P_{2} A_{2 \pi}\right| \Gamma_{1}\right)\right|^{2} \frac{1}{2 M_{1}}(2 \pi)^{4} \delta\left(Q_{1}-Q_{2}-P_{A}\right)-\frac{d \overrightarrow{Q_{2}}}{(2 \pi)^{3} 2 E_{2}} \frac{d \overrightarrow{P_{2}}}{2} \cdot \frac{1}{2 \pi)^{3} 2} \overrightarrow{E_{A}} \\
=\int\left(P_{1} \rightarrow P_{2} \pi^{+} \pi^{-}\right)= \\
=\left.\int\left(Q_{1}, p_{+}, p_{-}, Q_{2}\right)\right|^{2} \frac{1}{2 M_{1}}(2 \pi)^{4} \delta\left(Q_{1}-Q_{2}-p_{+}-p_{-}\right) \frac{d \overrightarrow{Q_{2}} d \overrightarrow{p_{+}} d \overrightarrow{p_{-}}}{(2 \pi)^{9} 8 E_{2} E_{+} E_{-}}
\end{gathered}
$$

and using $|\Psi(\vec{x}=0)|=\frac{u^{3} m^{3}}{8 \pi}$, we obtain:

$$
\begin{equation*}
\frac{\Gamma\left(P_{1} \rightarrow P_{2} A_{2 \pi}\right)}{\Gamma\left(\Gamma_{1} \rightarrow P_{2} \pi^{+} \pi^{-}\right)}=\frac{\pi}{R} \alpha^{3}\left(\frac{m}{M_{1}}\right)^{2}|I(\tilde{x}, \bar{y})|^{2} \sqrt{r^{2}-\frac{M_{2}^{2}}{M_{1}^{2}}} . \tag{5}
\end{equation*}
$$

$\bar{x}$ and $\bar{y}$ are Dalitz variables, which correspond to the atomic decay:

$$
\begin{equation*}
\dot{x}=0 \quad \bar{y}=3 \frac{\dot{E}_{2}-M_{2}}{M_{1}-\frac{M_{2}}{2 m}-M_{2}} \quad \dot{E}_{2}=\frac{M_{1}^{2}-4 m n^{2}+M_{2}^{2}}{2 M_{1}} . \tag{6}
\end{equation*}
$$

R is a dimensionalless remnant of the threr-particle phase space integral:

$$
\begin{equation*}
R=\int_{\left(x_{+}\right)_{\max }}^{\left(x_{+}\right)_{\max }} d x_{+} \int_{\left(x_{-}\right)_{\operatorname{mux}}}^{\left(x_{-}\right)_{\mathrm{max}}} d x_{-}\left|I\left(x_{+}, x_{-}\right)\right|^{2}, \tag{7}
\end{equation*}
$$

where $r_{+}=\frac{E_{+}}{M_{1}}, x_{-}=\frac{E_{-}}{M_{1}}$, and the integration limits in (7) are given by

$$
\begin{gather*}
\left(x_{+}\right)_{\min }=\frac{m}{M_{1}} \quad\left(x_{+}\right)_{\max }=\frac{1}{2}\left(1-\frac{M_{2}\left(2 m+M_{2}\right)}{M_{1}^{2}}\right) \\
\left(x_{-}\right)_{\operatorname{man}}=\frac{1}{2\left(1-2 x_{+}+\frac{m^{2}}{M_{1}^{2}}\right)}\left\{\left(1-x_{+}\right)\left(1-2 x_{+}+\frac{2 m^{2}-M_{2}^{2}}{M_{1}^{2}}\right) \mp\right. \\
\mp \sqrt{\left.\left(x_{+}^{2}-\frac{m^{2}}{M_{1}^{2}}\right)\left(1-2 x_{+}+\frac{M_{2}\left(2 m-M_{2}\right)}{M_{1}^{2}}\right)\left(1-2 x_{+}-\frac{M_{2}\left(2 m+M_{2}\right)}{M_{1}^{2}}\right)\right\} .} \tag{8}
\end{gather*}
$$

At last

$$
\begin{equation*}
r=\frac{1}{2}\left(1-4 \frac{m^{2}}{M_{1}^{2}}+\frac{M_{2}^{2}}{M_{1}^{2}}\right) . \tag{9}
\end{equation*}
$$

The Dalitz-plot distribution for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay had been measured [19] and the result is

$$
\begin{equation*}
\left|I_{\eta}(x, y)\right|^{2} \sim 1-(1.08 \pm 0.014) y+(0.03 \pm 0.03) y^{2}+(0.05 \pm 0.03) x^{2} \tag{10}
\end{equation*}
$$

Inserting this into (5) and (7), we get (it is assumed that $A_{2 \pi}$ is produced in a $1 S$ state. If we sum up over all $n S$ states, the result will increase $\sum_{n=1}^{\infty} \frac{1}{n^{J}} \approx 1.2$ times):

$$
\begin{equation*}
\frac{\Gamma\left(\eta \rightarrow \pi^{0} A_{2 \pi}\right)}{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)} \approx 0.91 \cdot 10^{-5} \tag{11}
\end{equation*}
$$

Let us note, that a value $3.9 \cdot 10^{-7}$, cited in [16], corresponds to a theoretical prediction from effective chiral lagrangian [20] $I(x, y) \sim 1-0.55 y$ and seems to be too optimistic, though the accuracy of quadratic terms determination in (10) allows, in principle, to increase (11) several times.

The results, analogous to (10), exist for $K^{++} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decay [21]:

$$
\begin{aligned}
& \left|I_{K^{+}}(x, y)\right|^{2} \sim 1+(0.2814 \pm 0.0082) y-(0.001 \pm 0.023) y^{2}- \\
& -(0.099 \pm 0.019) x^{2}
\end{aligned}
$$

for $K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay [22]:

$$
\begin{aligned}
& \left|I_{K_{L}}(x, y)\right|^{2} \sim 1-(0.917 \pm 0.013) y+(0.149 \pm 0.013) y^{2}+ \\
& +(0.055 \pm 0.010) x^{2},
\end{aligned}
$$

and for $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$decay [23]:

$$
\left.\left|I_{p^{\prime}}(x, y)\right|^{2} \sim \mid 1-(0.08 \pm 0.03) y\right)\left.\right|^{2} .
$$

Using them, we get

$$
\begin{gather*}
\frac{\Gamma\left(K^{+} \rightarrow \pi^{+} A_{2 \pi}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)} \approx 10^{-5} \\
\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} A_{2 \pi}\right)}{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)} \approx 8.6 \cdot 10^{-7} \quad \frac{\Gamma\left(\eta^{\prime} \rightarrow \eta A_{2 \pi}\right)}{\Gamma\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right)} \approx 1.4 \cdot 10^{-6} \tag{12}
\end{gather*}
$$

For $K^{+} \rightarrow \pi^{+} A_{2 \pi}$ decay, it is necessary to take into account the identity of $\pi^{+}$-mesons, which increases the result two times. An extra $\sim 5$ times
difference between $K^{+}$and $K_{L}$ decays is due to $I_{K^{+}}(\bar{x}, \tilde{y}) / I_{K_{L}}(\tilde{x}, \tilde{y}) \approx 2.15$. Note that $K^{++} \rightarrow \pi^{+} ._{2 x}$ decay was considered earlier in [8] with slightly different result.

Taking nonatomic decaysbranching ratios from [24]. (11) and (12) can be transformed to

$$
\begin{array}{ll}
\operatorname{Br}\left(\eta \rightarrow \pi^{0} \cdot A_{2 \pi}\right) \approx 2 \cdot 10^{-8} & \operatorname{Br}\left(\eta^{\prime} \rightarrow \eta A_{2 \pi}\right) \approx 6.2 \cdot 10^{-7} \\
\operatorname{Br}\left(K^{-+} \rightarrow \pi^{+} A_{2 \pi}\right) \approx 5.5 \cdot 10^{-7} & \operatorname{Br}\left(K_{L}^{\prime} \rightarrow \pi^{0} A_{2 \pi}\right) \approx 1.1 \cdot 10^{-7} . \tag{13}
\end{array}
$$

For $\phi$-factory (13) mones about $10^{4}$ K-meson atomic decays with pionium per year. So, we think, the study of such atomic decays at $\phi$-factory is not only realistic, but a desirable task.

## 3 Pionium in the $\psi$ and $\Upsilon$-meson decays

For $r-\tau$ and B-factories $\psi(2 S) \rightarrow \psi(1 S) A_{2 \pi}$ and $\Upsilon(2 S) \rightarrow \Upsilon(1 S) A_{2 \pi}$ decays can be interesting since the corresponding nonatomic decays have large branching ratios.

In the nonelativistic approximation the most general form for the $V_{1} \rightarrow$ $V_{2} \pi^{+} \pi^{-}$decay amplitude, which follows from PCAC, is [25]

$$
\begin{align*}
& \left\langle V_{2} \pi^{+} \pi^{-} \mid V_{1}\right\rangle=\overrightarrow{\epsilon_{1}} \cdot \overrightarrow{\epsilon_{2}}\left[-A q_{+} \cdot q_{-}+B E_{+} E_{-}\right]+ \\
& +C\left(\overrightarrow{\epsilon_{1}} \cdot \overrightarrow{q_{1}} \overrightarrow{\epsilon_{2}} \cdot \overrightarrow{q_{2}}+\overrightarrow{\epsilon_{1}} \cdot \overrightarrow{q_{2}} \overrightarrow{\epsilon_{2}} \cdot \overrightarrow{q_{1}}\right), \tag{14}
\end{align*}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are approximately constant and $\epsilon_{1}, \epsilon_{2}$ are $V_{1}, V_{2}$ vector meson polarization vectors.

There are some theoretical indications [26] and experiment confirms [27] that $C=0$. Then to calculate the (5) ratio, we only need $\mathrm{B} / \mathrm{A}$ ratio and it can be extracted from the $\pi^{+} \pi^{-}$invariant mass distribution in the $V_{1} \rightarrow V_{2} \pi^{+} \pi^{-}$decay. The results are [27]:

$$
\begin{equation*}
\frac{B}{A}=-0.21 \pm 0.01 \tag{15}
\end{equation*}
$$

for the $\psi(2 S) \rightarrow \psi(1 S) A_{2 \pi}$ decay, and

$$
\begin{equation*}
\frac{B}{A}=-0.154 \pm 0.019 \tag{16}
\end{equation*}
$$

for the $\Upsilon(2 S) \rightarrow \Upsilon(1 S) A_{2 \pi}$ one.

After summing over vector meson polarizations, it follows from (14) that (if $\mathrm{C}=0$ )

$$
\begin{equation*}
\left\langle V_{2} \pi^{+} \pi^{-} \mid V_{1}\right\rangle \sim \frac{1}{2}\left(1+\frac{M_{2}^{2}}{M_{1}^{2}}-2 \frac{m^{2}}{M_{1}^{2}}\right)-1+x_{+}+x_{-}-\frac{B}{A} x_{+} x_{-}, \tag{17}
\end{equation*}
$$

$x_{+}$and $x_{-}$were defined earlier.
Using this instead of $I(x, y)$ in (5) and (7), we get from (15) and (16)

$$
\begin{align*}
& \frac{\Gamma\left(\psi(2 S) \rightarrow \psi(1 S) A_{2 \pi}\right)}{\Gamma\left(\psi(2 S) \rightarrow \psi(1 S) \pi^{+} \pi^{-}\right)} \approx 4.6 \cdot 10^{-8} \\
& \frac{\Gamma\left(\Upsilon(2 S)-\Upsilon(1 S) A_{2 \pi}\right)}{\Gamma\left(\Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}\right)} \approx 5.2 \cdot 10^{-8} \tag{18}
\end{align*}
$$

which correspond to the following branching ratios

$$
\begin{align*}
& \operatorname{Br}\left(\psi(2 S) \rightarrow \psi(1 S) A_{2 \pi}\right) \approx 1.4 \cdot 10^{-8} \\
& \operatorname{Br}\left(\Upsilon(2 S) \rightarrow \Upsilon(1 S) A_{2 \pi}\right) \approx 10^{-8} \tag{19}
\end{align*}
$$

Uufortunately this is too small for B-factory. We can expect only several events per year. So it seems unreaiistic to study $\Upsilon$-mesou atomic decays at B-factory.

## $4 O(\alpha)$ order corrections to the pionium lifetime

The main decay mode for pionium is $A_{2 \pi} \rightarrow \pi^{0} \pi^{0}$ and its amplitude according to Mandelstam [28] can be expressed in the form

$$
\begin{equation*}
\left\langle\pi^{0} \pi^{0} \mid A_{2 \pi}\right\rangle=\int \frac{d p}{(2 \pi)^{4}} J\left(p_{i}, p_{2}, \frac{P_{A}}{2}+p, \frac{P_{A}}{2}-p\right)_{\lambda}(p) \tag{20}
\end{equation*}
$$

where $\chi(p)$ is $A_{2 \pi}$-dimesoatom bound state Bethe-Salpeter wave function and $J\left(p_{1}, p_{2}, p_{+}, p_{-}\right)$stands for $\pi^{+} \pi^{-}$-irreducible kernel for the reaction $\pi^{+}\left(p_{+}\right)+\pi^{-}\left(p_{-}\right) \rightarrow \pi^{0}\left(p_{1}\right)+\pi^{n}\left(p_{2}\right)$.

Up to $O(\alpha)$ terms, J is constant defined through pion scattering lengths $a_{0}$ and $a_{2}$ [29]:

$$
\begin{equation*}
J=\frac{32}{3} \pi m\left(a_{0}-a_{2}\right) \tag{21}
\end{equation*}
$$

So (20) can be rewritten as

$$
\begin{equation*}
\left\langle\pi^{0} \pi^{0} \mid A_{2 \pi}\right\rangle=J \cdot \chi(x=0) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi(x=0)=\int \frac{d p}{(2 \pi)^{4}} \chi(p) \tag{23}
\end{equation*}
$$

is a configuration space Bethe-Salpeter wave function at the origin.
The Bethe-Salpeter equation for $\chi(p)$ in a $A_{2 \pi}$ rest frame, up to $O(\alpha)$ terms, takes the form

$$
\begin{align*}
& {\left[m^{2}+\vec{p}^{2}-\left(\frac{M_{A}}{2}+p_{0}\right)^{2}\right]\left[m^{2}+\vec{p}^{2}-\left(\frac{M_{A}}{2}-p_{0}\right)^{2}\right] \chi(p)=} \\
& =\frac{i \lambda}{\pi^{2}} \int d \varphi \frac{\chi(q)}{(p-q)^{2}-i \epsilon} \tag{24}
\end{align*}
$$

where $\lambda=\frac{{ }_{i n} M_{A}^{2}}{4 \pi}$.
(24) corresponds to the Wick-Cutkosky model [30]. Let us note that this fact was firstly noticed and used to calculate $O(\alpha)$ order corrections to the $K_{L} \rightarrow \nu A_{\mu \pi}$ decay width in [14].

According to [30] (see also [31] for a review), a ground state ( $1 S$ in the nonrelativistic limit) solution of (24) corresponds to

$$
\begin{equation*}
\chi(p)=\int_{-1}^{1} \frac{g(z) d z}{[A+B z]^{3}} \tag{25}
\end{equation*}
$$

where

$$
A=m^{2}-\frac{1}{4} M_{A}^{2}-p^{2} \equiv \Delta^{2}-p^{2} \quad B=p_{0} M_{A}
$$

and $g(z)$ spectral function satisfies the following integral equation

$$
\begin{equation*}
g(z)=\frac{\lambda}{2} \int_{-1}^{1} \frac{1}{\Delta^{2}+\frac{1}{4} M_{A}^{2} y^{2}}\left[\frac{1-z}{1-y} \Theta(z-y)+\frac{1+z}{1+y} \Theta(y-z)\right] g(y) d y \tag{26}
\end{equation*}
$$

If $M_{A}=2 m-E, E \ll m$, then $\Delta^{2} \approx m E$ and

$$
\begin{equation*}
\frac{1}{\Delta^{2}+\frac{1}{4} M_{A}^{2} y^{2}}=\frac{\pi}{m \sqrt{m E}} \delta(y) \tag{27}
\end{equation*}
$$

because

$$
\frac{\epsilon}{\epsilon^{2}+y^{2}} \longrightarrow \pi \delta(y)
$$

when $\epsilon \rightarrow 0$.
Substituting (27) into (26), we get

$$
\begin{equation*}
g(z)=\frac{\lambda \pi}{2 m \sqrt{m E}}(1-|z|) g(0) \tag{28}
\end{equation*}
$$

So

$$
\frac{\lambda \pi}{2 m \sqrt{m E}}=1
$$

which really gives a hydrogenlike atom nonrelativistic ground state energy level $E=\frac{m+r^{2}}{4}$.

But the solution (28), found in [30), is not a complete $O(\alpha)$ order solution. Indeed, taking $g(z)=g_{0}(z)+\alpha k g_{1}(z)$ and

$$
\begin{equation*}
\frac{1}{\Delta^{2}+\frac{1}{4} M_{A}^{2} y^{2}}=\frac{2 \pi}{m^{2} \alpha} \delta(y)+\sigma(y) \tag{29}
\end{equation*}
$$

where $\sigma(y)$ has $O(\alpha)$ order simallness compared to the first $\sim \delta(y)$ term, we get from (26) ( $N_{0}$ and $N_{1}$ are constants)

$$
\begin{equation*}
g_{0}(z)=N_{0}(1-|z|) \quad g_{1}(z)=N_{1}(1-|z|)+\frac{\lambda}{2 a} \int_{-1}^{1} \sigma(y) R(z, y) g_{0}(y) d y \tag{30}
\end{equation*}
$$

where

$$
R(z, y)=\frac{1-z}{1-y} \Theta(z-y)+\frac{1+z}{1+y} \Theta(y-z)
$$

Calculating in the $\alpha \rightarrow 0$ limit the integral in (30), we get
$g_{1}(z)=N_{1}(1-|z|)+\frac{N_{0}}{\pi}\{(1-|z|) \ln (\alpha)+(1+|z|)[\ln (2|z|)-\ln (1+|z|)]\}$.
Therefore, the complete $O(\alpha)$ order solution of (26) looks like

$$
\begin{equation*}
g(z)=N\left\{(1-|z|)+\frac{\alpha}{\pi}(1+|z|)[\ln (2|z|)-\ln (1+|z|)]\right\} \tag{31}
\end{equation*}
$$

Substituting this in (25), we get the $O(\alpha)$ order pionium Bethe-Salpeter wave function

$$
\begin{align*}
& \chi\left(p, P_{A}\right)= \\
& =\frac{N}{\left(\Delta^{2}-p^{2}\right)\left[m^{2}-\left(\frac{P_{A}}{2}+p\right)^{2}\right]\left[m^{2}-\left(\frac{P_{A}}{2}-p\right)^{2}\right]}\left\{1+\frac{\alpha}{\pi} \chi_{1}\left(p, P_{A}\right)\right\}, \tag{32}
\end{align*}
$$

where

$$
\begin{align*}
& \chi_{1}\left(p, P_{A}\right)=\frac{m^{2}-\left(\frac{P_{A}}{2}-p\right)^{2}}{2\left(\Delta^{2}-p^{2}\right)} \ln \left(m^{2}-\left(\frac{P_{A}}{2}-p\right)^{-}\right)+ \\
+ & \frac{m^{2}-\left(\frac{P_{A}}{2}+p\right)^{2}}{2\left(\Delta^{2}-p^{2}\right)} \ln \left(m^{2}-\left(\frac{P_{A}}{2}+p\right)^{2}\right)-\ln \left(\Delta^{2}-p^{2}\right)+O(\alpha \ln (\alpha)) . \tag{33}
\end{align*}
$$

A normalization constant $N$ is defined from the normalization condition [32], which in the $O(\Omega)$ order takes the form ( $A_{2 \pi}$ rest frame is assumed)

$$
\begin{align*}
& -2 m^{2} \alpha^{2} \approx \alpha \frac{d M^{2}}{d \alpha}= \\
= & \frac{i N^{2}}{(2 \pi)^{4}} \int \frac{d p}{\left(\Delta^{2}-p^{2}\right)^{2}\left[\left(\frac{M_{A}}{2}+p_{0}\right)^{2}-m^{2}-\vec{p}^{2}\right]\left[\left(\frac{M_{1}}{2}-p_{0}\right)^{2}-m^{2}-\vec{p}^{2}\right]} \tag{34}
\end{align*}
$$

But the integral in the r.h.s. of (34) equats to

$$
\begin{aligned}
& L=-\frac{i \pi}{2} \frac{\partial^{2}}{\partial\left(\Delta^{2}\right)^{2}} \int d \vec{p} \int \frac{d p_{0}}{2 \pi i} \frac{1}{\Delta^{2}+\vec{p}^{2}-p_{0}^{2}}\left[\frac{1}{\left(\frac{M_{A}}{2}+p_{0}\right)^{2}-m^{2}-\vec{p}^{2}}+\right. \\
& \left.+\frac{1}{\left(\frac{M_{A}}{2}-p_{0}\right)^{2}-m^{2}-\vec{p}^{-2}}\right]
\end{aligned}
$$

Rerrembering that in fact $m^{2}$ in the above expression should be replaced by $m^{2}-i \epsilon$, we can perform an integration over $d p_{0}$ and obtain

$$
\begin{aligned}
& L=\frac{2 i \pi^{2}}{M_{A}^{2}} \int_{0}^{\infty} d r \frac{x^{2}}{\left(\Delta^{2}+x^{2}\right)^{2}}\left\{\frac{1}{\sqrt{m^{2}+x^{2}}}\left(\frac{4\left(m^{2}+x^{2}\right)}{\Delta^{2}+x^{2}}-1\right)-\frac{3}{\sqrt{\Delta^{2}+x^{2}}}\right\} \approx \\
& \approx \frac{i \pi^{3}}{m^{4} \alpha^{3}}\left(1-2 \frac{\alpha}{\pi}+O\left(\alpha^{2}\right)\right) .
\end{aligned}
$$

So (34) takes the form

$$
-2 m^{2} \alpha^{2}=\frac{i}{(2 \pi)^{4}} N^{2} \frac{i \pi^{3}}{m^{4} \alpha^{3}}\left(1-2 \frac{\alpha}{\pi}\right)
$$

and therefore

$$
\begin{equation*}
N=32 \sqrt{\pi m}\left(\frac{1}{2} m \alpha\right)^{5 / 2}\left(1+\frac{\alpha}{\pi}\right) \tag{35}
\end{equation*}
$$

Analogously

$$
\begin{aligned}
& \int \frac{d p}{(2 \pi)^{4}} \chi(p)=\frac{i N}{8 \pi^{2} M_{A}^{2}} \int_{0}^{\infty} d x \frac{x^{2}}{\Delta^{2}+x^{2}}\left\{\frac{2}{\sqrt{m^{2}+x^{2}}}-\frac{2}{\sqrt{\Delta^{2}+x^{2}}}+\right. \\
& \left.+\frac{M_{A}^{2}}{\sqrt{\left(m^{2}+x^{2}\right)\left(\Delta^{2}+x^{2}\right)}}\right\} \approx \frac{i N}{16 \pi m^{2} \alpha}\left(1+\frac{\alpha}{\pi}\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\chi(x=0)=\frac{i N}{32 m \pi\left(\frac{1}{2} m \alpha\right)}\left(1+\frac{\alpha}{\pi}\right) \approx \frac{i}{\sqrt{m}} \Psi(\vec{x}=0)\left(1+2 \frac{\alpha}{\pi}\right) \tag{36}
\end{equation*}
$$

Substituting this in (22), we finally get

$$
\begin{equation*}
\Gamma\left(A_{2 \pi} \rightarrow \pi^{0} \pi^{0}\right)=\Gamma_{0}\left(A_{2 \pi} \rightarrow \pi^{0} \pi^{0}\right)\left(1+4 \frac{a}{\pi}\right) \tag{3}
\end{equation*}
$$

where [6]

$$
\left.\Gamma_{0}\left(A_{2 \pi} \rightarrow \pi^{0} \pi^{0}\right)=\frac{16 \pi}{9}\left(a_{0}-a_{2}\right)^{2} \sqrt{\left.\frac{2\left(m_{\pi^{+}}\right.}{m_{\pi^{+}}}-m_{\pi^{0}}\right)} \right\rvert\, \Psi\left(\vec{r}=\left.(0)\right|^{2}\right.
$$

~ 1 part of the Bethe-Salperer wave function contributes mether in its value at the origin nor in its normalization, beanse in the $O(a)$ order

$$
\int \frac{\left(\frac{d p_{0}}{\left[\left(\frac{M_{A}}{2}+p_{0}\right)^{2}-m^{2}-\vec{p}^{2}\right]}\right]\left[\left(\frac{M_{A}}{2}-p_{0}\right)^{2}-m^{2}-\vec{p}^{2}\right]}{\cdots}=\int \frac{i \pi \alpha \delta\left(p_{0}\right) d p_{0}}{M_{A}\left(\Delta^{2}+\vec{p}^{2}\right)} \cdots
$$

and $\delta\left(p_{0}\right)_{\lambda_{1}}\left(p ; P_{A}\right)=0$.
As a last remark, let us note that a nonrelativistir approximation (3) for the $M_{1} \rightarrow M_{2}+A_{2 \pi}$ decay amplitude follows from

$$
\backslash(x=0) \approx \frac{i}{\sqrt{m}} \Psi(\vec{r}=0)
$$

and [28]

$$
\begin{aligned}
& \left.\left\langle P_{2}, A_{2 \pi}\right| P_{1}\right)=\int \frac{d p}{(2 \pi)^{4}} I\left(Q_{1}, \frac{P_{A}}{2}+p, \frac{P_{A}}{2}-p, Q_{2}\right) \backslash(p) \approx \\
& \approx I\left(Q_{1}, \frac{P_{A}}{2}, \frac{P_{A}}{2}, Q_{2}\right) \backslash(x=0) .
\end{aligned}
$$

Author is grateful to A. M. Kherdelidze for helpful discussions and critical remarks and also to N. V. Makhaldiani, E. A. Kuraev, V. N. Pervushin and L. K. Lytkyn for their interest in this work.

## References

[1] J. L. Uretsky, T. R. Palfrey Plỵs. Rev. 121, i 798 (1901) .
[2] L. L. Nemenov Yad. Fi\%. 15. 1047 (1972) .
L. L. Nemenov Yad. Fiz. 16. 125 (1972) .
[3] L. G. Afanasyev at al. Phys. Lett. B308, 200 (1993)
[4] Bern-Dubna Collab, , Lifetime meanmenment of $\pi^{+} \pi^{*}$ - atoms to test low ratrgy (QCD prodictions. Latter of latent SPSLC 92-4/f/ 191 .
[B] H. Nann , in Proc. Workshop on Mrion Promaction, Interaction and Dr(ay (Cracow. Poland, i991). Eds. A. Magiara. W. Oelort and E. Gross (World Scientific 1991), p. 100.
[6] S. M. Bilcukij et al. Yiat. Fiz. 10. 812 (1906) .
[7] A. A. Belkov. V'. N. Pervushin, F. G. Tkebuchava Yad. Fiz. 4t. 4fG (1986)
G. V. Efimov. M1. A. Ivamor, N. A. Liuhorickij Yad. Fiz. 4t. 460 (1986).
M. K. Volkw, A. N. Ivanow JWR proprint P2-85-818, Dubma, 1985.
[8] H. Pilkilu. S. Wyeech Phys. Lett. 76B, 29 (1978).
[9] L. G. Afanasyerv it al. Phys. Le'tt. B23G. 110 (1990) .
[10] R. Coombers it al. Phys. Reev. Latt. 37, 249 (1976).
S. H. Arousen et al. Phys. Rev. D33. 3180 (1986) .
[11] M1. K. Prasad Acta Phys. Polomea B10. 63.) (1979) .
[12] R. Stattin, Phys. R(ve D1G, 720 (1977).
[13] M. I. 'Visockij Yad. Fiz. 29. $8+5$ (1979) .
[14] C. Ching, N. Ho, C. Chang Phys. Lett. 98B, 456 (1981) .
[15] L. L. Nemeno: Yad. Fiz. $\pm 1.980$ (1985) .
[16] S. Wycech, A. M. Green Nucl. Phys. A562, 446 (1993) .
[17] A. Karimkhodzhaev, R. N. Faustov Sov. J. Nucl. Phys. 29, 232 (1979). A. Karimkhodzhaev, R. N. Faustov JINR preprint P2-86-142, Dubna, 1986.
[18j S. Weinberg Phys. Rev. Lett. 4. 87. ER.585 (1960) .
[19] J. G. Layter et al. Phys. Rev. Dī. 2565 (1973) .
[20] S. Fajfer. J.-MI. Gerard Z. Plyys. C42, 431 (1989) .
[21] B. Devaux et al. Nucd. Plyss. B126. 11 (1977).
[22] R. Massner et al. Phys. Rev, I.ett. 33, 1458 (1974).
[23] G. J. Kalbitcish Phys. Rev. D10. 916 (1974) .
[24] Review of Particlo Properties Plys. Rev. Dis (1992).
[25] L. S. Brown, R. N. Cahn Phys. Rev. Lett. 3iv. 1 (197.5).
[26] T. M. Yan Phys, Rev. De2. 1652 (1980) .
[27] H. Abrecht et al. Z. Phys. C35. 283 (1987) .
[28] S. Mandelstan Proc. Row. Soc. 233. 248 (1955) .
[29] S. Weinberg Plys. Rev. Lett. 1I. 616 (1966) .
[30] G. C. Wick Phys. Rev. 9G, 1124 (1954) .
R. E. Cutkosky Phys. Rev. 96, 1135 (1954)
[31] N. Nakanishi Prog. Theor. Phys. Suppl. 43, (1969).
Prog. Theor. Phys. Suppl. 95, (1988).
Z. K. Silagadze, The Wick-Cutkosky model: an introduction, preprint INP-92-33. Novosibirsk, 1992 .
[32] N. Nakanishi Phys. Rcv. 138. B1182 (1965) .

## Received by Publishing Department on October 5, 1994.


[^0]:    * JINR, Laboratory of Nuclear Problems, 141980, Dubna; Budker Institute of Nuclear Physics, 630090, Novosibirsk

