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1. Recently, an additive version of coproduct (or rather coaddition) has
been observed in_various quantum (g-deformed) algebras [1, 2, 3]. While
m the ordinary Lie algebras this additional algebraic structure is quite
natural and almost trivial, in a g-deformed situation it requires nontrivial
braiding rules [4], thus making the corresponding quantum algebras the
braided coadditive bialgebras (actually, Hopf algebras).

A related and very interesting question is a possible bialgebra structure
of differential complexes, ie., a concept of differential bidlgebms [5, 6].
Brzezinski [7] has shown that the existence of a bialgebra of this type
means the bicovariance of the corresponding differential calculus [8, 9, 10].

Therefore, ones interest in the braided coaddltlon n differential com-
plexes could be at least thrcefold

- it is interesting by itself, as an additional algebraic structure

~ it can provide us with a purely Hopf- algebralc criterion for selectmg
g-deformed differential calculi;

-1t might play a role of a “shift” in the physwal mterpretatlon of the
corresponding quantum space. :

In {11], among other examples, several coadditive differential bialge-
bras have been obtained. The aim of the present paper is to give a sys-
tematic approach to this problem for quantum algebras generated by the
R-matrices of the Hecke type (for instance, the GL,(N) ones [12]). Pro-
ceeding in this way, we recover the results of [11], describe a regular (and

“very simple) method to prove consistency (associativity) of the relevant
braiding relations, and find a braided coadditive dlfferenhal Hopf-algebra
structure on the corresponding quantum group.

This paper has developed from my attempts to interpret eqs.(47),(48)
(see below) found by A.lsaev [11]. I appreciate this contribution of his to
the present work.

2. Prmcxpal ideas of this paper can be best explamed by usmg the we]l }
accustomed quantum hyperplane

Rizizy=qzam; S ¢
as an example. We 'ad;op‘t the following notation [13; 11}: | 1
PaR,=Ro.=R, Rs=R, R'=R, ¢'=gq, (2)
and also, for any a,
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For instance, the Yang—Baxter equatlon and the’ Hecke condltlon for the
R-matrix look now, respectively,

aﬁd

R-R=q—-g=X or R=1+XR. ())

Our ain is to suppress exphcit numerical indices (nmnbers of thc (‘On‘(‘-'

sponding auxiliary spaces) in formnlae Jike (1) in order not to nnx them
with others that we shall need very soon.
‘Really, the whole differential complex [14] on the quantum llyperplane
(1) 1s deﬁned by
"Rzz' =gz’ ) .
Rdez' = Geds’, (6)
Rdzdz -—qdrdz ‘ o

Addmg formally to this sct of equatlonb an extra one,

dzx’=§ﬁz‘dz'—/\(1dmm',~ , ()

which trivially follows from the bCCOlld ]me in (6), one cé‘li‘recév,_é@ (6),(7) |

into the matnx form

where -

z R -y o

-R

dots are zeros, and the meaning of numerical indices in (8) is, of course,

not the same as in (1). It should be noted that the explicit form (9 choz’en B

here for Y75 is by no means unique.
Now we are to employ the matrix representation (8) for demonstrating
that the differential complex (6) admits coaddition of the form

A(z)=$v®l‘+l®m5$+:§, A(dz) =dz +dE; - (10)"

or, in short notation,

AG) =x+% o

"XZXX’):“YHX;X;,_‘ ) - (8) ’

From earlier papers on the subject [1, 11], we learn that this can be only
possible when a nontnv1al braiding map ¥ : Q 72 -Q6 Q is used fo -
commute elements with and without a tilde from iwo mdependent copies
of our differential complex Q. Explicitly,

(1Q<)a)(b® )=d (a@b) (12)
In the case (8), a natural Ansatz for the braldmg is |
X2xi=Zuxi X, - (13)

where Z 18 a 4 X 4-matrix whose elements may thehlselfleb devpend on. R,
The first restriction on Z is caused by the graded rature of the differ-
ential complex (6). T his leads to

, . d - )
Zu=| Zﬁ N (14)
Y
Further, the result,of external differentiation of (13) must be consmtent
with (13) itsel. Ta.kmg into account d? = 0 and the graded Lelbmtz rule,

we come to

cv—,B+5 —5—1/ w= ,3+L/.U (15)

The next step is to ensure the key property of A i.e.

A(xe) AGG) = Yia Aa) AGG) (16)
This boils down to verification of

22)&’1+X25Z’1=Y12>?1X§+Y12X1)2;,-‘ e (17)

. which, with the help of (13), transforms to

Y12 Zo1 + (Y12 — le)Pm - 1} X2 )2; =0. (18)

We have to put the expressxon in square brackets to zero. This results in
the following new constraints:

B=({+1)gR, (@E+1(R+7=0. (19)
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At last, we IHU31 _guarantec that our braldmg (H obeyq so-called
hexagon 1dent1t1es [15] or, /eqmvalent]y, that our commutation rules for
‘elements with and without a tilde are assonatlve '10 do llns we porform

a reordering » :
~ r ~ ¢
e ek (20)
in two different ways, using (8) (13) and
Xéxl’hlexu X2X1—'71>X,1 f(::’a (21)

where Y’ and Z’' mean that a aubstltutlon R — R in the corresponding

elements of Y and Z ha:, (o be mrned out. Fol]owulg this stra(egy, we .

finally obtain""’ o
11.2 ZlS Z;J} = Zg;} Z;:_{YIZ . L i (21)

(A similar relation for Y, 4
‘112- Y13 Yo = Yos Y{s Yi2, (23)

which expresses the associativity of the original algebra (6), is of course

~readily verified). T,
.. Rewriting the ma.trlx relatlonf, ( 2) in the component f_()’l'll‘l, we imime-
dmtely encounter

1uﬂ+wy~5www)ﬂ_o (24)

The only way out is to nulhf) 8 or ,3 +v. Let us first (‘()llSlder the latlvr
possibility. Then, due to (19), . :

g+6=gR, . . (25

v==f, (B-1R+g)=0,
. and the matrix Z;, becomes
gR N
Zu=| qR qhﬂ b o (26)
. -8/
The rexﬁaining relations hidden in (22) yield-
BRBR=TRRp, BFR=REF. . (27

The first of these is identically true whereas the qe(‘ond together with (25),
‘produces two hOlUthllS for A,

B=qR or f= GR, _ ‘ (28)
and, consequenily, two possibilities for 7, ' h
| R /g - o

1 _ R -\ O B e .
7= PR P e I I C

In the explicit form this reads:
iz’ =gRz#,
diz' = jRzdi — Agdr 7',
fde' =gRdz 2,
dZ de' = —q Rdz dZ’

Fr'=qRz#,
diz' = jRzdi’ — A Rdc 3,
fde' =¢Rdz ',

(31)
di dz' =g Rdz d3'. k

t

" The other solution of (24), § = 0, produces matrices /21 and /2]) in-
stead of (29). This evidently corresponds to changing the position of a
tilde (¥ — x,& < z) in (13), (30) and (31), i.c., to the inverse braiding
transformation ¥~!. We thus recover the results of [11] and, moreover,
prove that they exhaust all the allowed braiding relations within the ho-
mogeneous Ansatz (13). It should be also stressed that the representations
like (8) and (13) are extremely convenient for proving associativity (resp.
consistency) of appropriate multiplication or braiding relations.

3. Now we proceed to the case of the braided matrix algebra BM (N)
(16, 17] with generators {1, u:}, forming the N x N-matrix u, and relations

I{gl g ng U = Uy va Uo 1£17 . : (32)

The corresponding differential | .complex is de‘;cnbed in [18, 19]. In our
conventions (note u; = u) it reads’

CRuRu=uwRiRy : ;
RuRdu=duRuR, : (33)
RduRdu=—duRdul}



(unhke (6), therc are no primes in these equatmnb) The appropriate coad-

dition is also known (see [2] for the BM,(N) itsell-and [11] for (33). as &

whole). Here we wish to reproduce the results of [11] through the matrix
formalism developed in the previous section.
Let us rewrite(33) in the form

w2 Ry = Voot R R, oo (H)

where

| 7
' u - R ‘ RO
‘Pz(du)’ Vo=t . v F .| (35)
and try to introduce the braiding relations

Q02 R Y1 = W12 ©1 R QD)R 136)

which make

a consistent coproduct. From (34) and (36) we dcducc

Wuor Rgs R+ 0 Ry = Vis Wt @3 RG RP+ Voo Rz R (38)
With the help of the Hecke condition (5) we get |
' (vu Wi — 1) = R + [\WVaa War + (Via = Wia) Pra 02 RG, R =10 (39)

A bOlUthll is

o R ,
- R A o

W=Vn=| B & (10)

~-R

" Another possible braiding is

¢2R<P1=V12<P1R<P~.2—R-, R (41)

inspired by the following equivalent version of (34):
oxlt01 =V 01 Rps R. (42)

Alp) = 80+‘F‘ o ‘(37)‘

s e e o e

Of course, this. corresponds to. the inverse: braiding ma,p with respect to
(36),(40).

Another palr of mutually inverse solutlons can be obtmned if one rep-
resents (33) as

. — =T
mRm =R BmVi=Rm BRmV,, (13)

where 7 is now a row instéad of a column:

. R -
=, d, VE=| (44)
, R
In this case, both ‘
o Rm=Rm RV - o (#9)
and
i Rm = R m R Vm , (46)

are consistent braldmg relations. Associativity of (36) (41) (45) and (46)
(i.e. theidentities like Wiy WJ; Vo3 = V,), Wiy W},) and their compatibility
with the Leibnitz rule are easily confirmed.

In ‘the component form, (36) and (45) look respectlvely,

uRu—RuRuR _ _
'du,Ru—-RuRduR-{- )\duRuR
\ iRdu=RduRa4R, (47)
| diRdu= —~RduRdiR;
( iRu=RulRiR,
ditRu=RuRdiR+ NRduR1,
\ @Rdu=RduRuR, (48)
A | dii Rdu = ~RduRdi R;

eqs. (41) and (46) being obtained from these via u & fi. We recover the
corresponding results given in [11]. :

4. Consider at last the familiar matrix quantum group
RN =T:Ti Ry (49)
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which also has a braided coaddition [3].  Its differential complex is knownr

too [20]. In the notation (2),(3) it looks like

RTT =TT R,

RATT =TdT"R, (50)
‘RdTd1" = —dT dT'R. ' ’

Let us show that the algebra (50) as a whole admits a coaddition
A@)=6+d, o= L r
(). +46, 0-(([,],).. - (51)
Really, eq.(50) is easily rewril{ten’as
7. .
R -A "
_ (52)

020;=N12016;R, VVVNIFZ‘: P
) L

. . -R
‘[“ C(’mPlCi-C' analogy with the preceding section, one finds that the mutually
inverse braiding relations ' R

0,0, = N6, O, R N )
saﬁsfy all the requirements. . If, otllé;wiSe, ieq.‘(50) is r(;.c_ast nio the«vfoﬁj]';.’
L& =R&LE qu; | (55)

'with € being a row, € = (T, Ad'T), then the following pair of mutually
inverse braidings is produced: ’
&&= RaET,,, (56)
&6 =Ra6 N, =¢ (57)
In the component form: | o
TT =RTTR,
dI'T'=RTdI'R, : ,
Tdr = Rar T R+ ATaP R, OF)
AT d1" = —RdT dT" Ity

.8

Irman

TT =RTT'R,

"('{i"l" = R’['d’i:’ﬁ, AR (59)
Y TdT" = RdT TR+ ANRT AT, o ‘

AT 4T = —RdTdT'R; ‘

two other sels are obtained. from these by T T.

All the above examples lead us to the conclusion that the braided coad-
dition appears to be a quite natiural algebraic structure for the differential
complexes ‘on the quadratic quantum algebras generated by the ilHecke-
type R-matrices. The corresponding {braided) counit obeys e(1) =1 and
equals zero on other gencrators. Moreover, a braided antipode is easiy

introduced:’
Sy=1, S(a)=-a, S(da)=-da (G=z,u,T).  (60)

Cthe"qt‘l)eni.ly, all the braided _cvoaﬁdditivc di{l'efential bia]gebfaé considered

in“this paper are, in fact, braided lopf algebras.
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