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1 Introduction 
'Го obtain meaningful results in quantum field theory, one has to re

move ultraviolet and infrared divergencies. This goal can be achieved by 
a renorniali/atiou procedure, that is, a proper subtraction of singularities. 
In a general case, ultraviolet rcnormalization involves three steps: 

1. Uegularizatiou of Feynmaii amplitudes by introducing some param
eter which converts divergencies into singularities as this parameter 
tends to a particular limit value (say, zero or infinity). There should 
exist a smooth limit of taking the regularization off: any amplitudes 
that were finite without it should not be distorted. 

'1. Hciiorinali/atioii of the parameters of the theory (coupling constants, 
niasses.elc) in order to absorb the singularities into a redefinition 
of !he-.e parameters, which is achieved by introducing some local 
counter! erins. 

•\. I he choice of a leiiormali/.ation scheme which fixes the finite arbi
trariness left after I lie regularization is taken off. 

In gauge theories, one has to be very careful because the renormai-
ization procedure may violate the gauge invariance on the quantum level, 
thus destroying the renorsnalizability of the theory. Therefore, when deal
ing with gauge theories, one is bound to apply an invariant renormalization. 
Ну this we mean a renormalization that preserves all the relevant symme
tries of the model on the quantum level, that is, preserves all the Ward 
identities [1] for the renormalized Green functions. 

On the one hand, this can be achieved by applying an invariant regular-
i/.ation first (respecting the symmetries in the regularized theory) and then 
using, for instance, the minimal subtraction scheme [2, 3] to fix the finite ar-
bitrarincss. On the other hand, when the regularization is noninvariant or 
no explicit regularization is introduced at all, there is no automatic preser
vation of the symmetries. Then one has to take care of that directly. For 
example, one can use some noninvariant regularization and consecutively 
choose certain finite counterterms to restore the invariance (the symme
try of the retiornializcd Green functions) order by order in perturbation 
theory [1]. 
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When treating theories with nonlinear realization of a symmetry, like 
two-dimensional a models or quantum gravity, one faces extraordinary 
cumplexity of perturbative calculations. To simplify them, one usually ap
plies the so-called background-field method [5] which allows one to handle 
all the calculations in a strictly covariant way. This method was success
fully applied to multiloop calculations in various gauge and scalar models, 
being combined with the minimal subtraction scheme based on some in
variant regularization. 

The most popular .and handy rcgularization used in these calculations 
was the dimensional rcgularization [6]. It has been proved to be an in
variant regularization, preserving all the symmetries of the classical action 
that do not depend explicitly on the space-time dimension [3, 7]. Moreover, 
any formal manipulations with the dimensionally regularized integrals are 
allowed. However, an obvious drawback of this regularization is the vio
lation of the axial iiivariance and of supersymmetry. That is why there 
are numerous attempts to find some other regularization equally conve
nient and efficient. Among such schemes the recently proposed differential 
renormalization [8j is discussed. 

In the present paper we investigate the compatibility of the background-
field formalism with various regularizations and renormalization prescrip
tions. Our conclusion is that the background-field method necessarily re
quires one to use an invariant renormalization procedure. As the invari-
ance does not hold, the method gives incorrect results. We demonstrate 
this by an example of the two-dimensional 0(n) <r-model, comparing the 
dimensional regularization, the cut-off regularization within the minimal 
subtraction scheme, and the differential renormalization method. 

2 Invariant Renormalization in the 
Background-Field Formalism 

To preserve all the symmetries on the quantum level, one has to apply 
an invariant renormalization procedure. The simplest way to construct 
such a procedure is to use an invariant regularization and the minimal 
subtraction scheme. An invariant regularization should permit any formal 
manipulations with the functional integral that are needed to ensure the 
Ward identities. Let us list the properties of an invariant regularization [9]: 
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1. trauslalional invariance j i\".r / ( . r + y) = J <\Dx / ( . r ) ; 

2. uuambiguitv of the order of integrations 
/ . | " . , - / « l ' i i / / ( . , - . / / ) = / . l » i / / i l » J - / ( j - . i V ) : 

:{. l inearity . / ' « I ' ^ S / ' J /< <•'') = E , « Л Л " ' ' /Л-»"): 

I. I.orenl / covariance: 

о. integration l i \ parts, neglecting the surface terms: 

(i. possibility of canceling the numerator with the denominator: 

7. conimiitat i n l y of the space t ime or moment inn integration and dif
ferentiation wit 11 respect to an external parameter. 

I he onh known regitlarization obeying all these requirements is the di
mensional regi ihir i /al ion. ('omhined with the minimal subtraction scheme. 
il makes an invariant renornialization for which t he action principle is valid 
[7]. I sing the dimensional renormalization in conjunction wi th the back
ground-field method leads to cova.iant results ol mult i loop calculations in 
any theory unless its symmetry properties depend on the particular num
ber ol dimensions. 

On t lie ol her hand, if one applies some noninvariant regularization. the 
ini t ial symmetry may be violated, and one has to explore the possibility 
of using such a regularization in the framework of the background-field 
met hod. 

In multi loop calculations by this method an invariant regularization 
automatically provides some implicit correlations between different dia
grams, which may be essential a.s the formal background-field expansion 
of the action is performed. Any violation of these fine correlations by a 
noninvariant regulai izat ion or by an improper choice of finite counterterms 
may result in wrong answers, although covariant in form. 

3 Two-dimensional nonlinear 0(n) a model 
Let us consider the two-dimensional a model of the 0(n) principal 

chiral field (n field) and calculate the two-loop В function, using various 
approaches. The model is described by the lagrangian 
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C= — (0„n)2. и2 = 1. (1) 

In 

It can l>e treated as a special rase of the generic bosonic a model 

С = \{<W) <Jjk(0) д„фк. (j,fc = 1,2,.. . ,п.- 1), (2) 

where llie metric is of the form 

<Jjk{<?) = " jA-T "J T-^l (3) 
\ — It Ф 

The background-field expansion of the action can be done in a strictly 
covariant fashion [10]. 

To separate the ultraviolet and infrared divergencies, we add an auxil
iary mass term to the initial lagrangian (2) 

£,„ = i , , , ' oJ gjk(4) Фк- (4) 

This additional term serves only for eliminating infrared divergencies, naively 
present in any two-dimensional theory with massless scalars. After the cal
culation of the ultraviolet logarithms, one should set m 2 =0. 

The a model (2) with the particular choice of the metric (3) becomes 
rermrmalizable. All the covariant. structures that may appear as counter-
terms are reducible to the metric, so that the only thing that happens is 
a renormalization of the kinetic term. By reselling the fields the renor-
inalization can be absorbed into the charge. The invariant charge h=Z~lh 
is defined through the field renormalization constant Z. To calculate Z 
within the background-field method, one has to consider the one-particle-
irreducible diagrams with two external lines of the background field, and 
quantum fields inside the loops. Up to two loops the relevant diagrams [11] 
are shown in fig. 1. Their contributions to Z are obtained by normalizing 
to the tree term - \ (0^) gjk д„фк\. 

The Riemann and Ricci tensors are the functional of the background 
field. In our model with the metric given by eq. (3) they are evaluated to 

Ruhjk = li (<J.,} Su- - 9ak 9bj), Rjk = (n - 2) Л gjk . 
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~Н.]к{д,ф')(д.фк) К) (а) 

- 1 (2 R°} Rak + 3 Я"*; Rabck) (д„ф>) (д^фк) - Q - (Ь) 

+ 1«A^(W(8^) О (0 
6 

(d) - i д/«ь'с я,„б, ( а » (а„ )̂ - £ ^ -

- ^ Я/"4»' Я к И ) а (0,,*») (0„«fc) - £ ^ - (e) 

Figure 1: The one- and two-loop corrections to the effective action of the 
two-dimensional bosonic a model without torsion. Lines of the diagrams 
refer to propagators l / ( ; i 2+m 2) , and arrows to p„ in numerators. 

Besides, we should take into account the renormalization of the mass 
Zm2. In the first loop it is determined by the diagram of fig. 2 (normalized 

to — i m2 ф1 <jjk фк\). Although this operator gives no direct contribution 
to the wave-function renormalization, in all the diagrams that contribute 
to Z the mass ought to be shifted by such corrections. In the two-loop 
approximatioi., only the fig. 2 correction to fig. 1 is essential. 

l-m2 ^кф>фк 

о 

Figure 2: The one-loop mass correction to the effective action. 

The two-loop renormalizations can be carried out either directly — via 
a certain 11 operation, diagram by diagram, — or by means of re-expanding 
the one-loop counterterms in the background field and the quantum field 
(provided we have an intermediate regularization, and the counterterms 
can be written down explicitly). The additional diagrams that emerge in 
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this way are shown in fig. 3. 

l- RaJ R\ ( c U J ) (д„фк) (-fCW fig. la) Q 

- \ R3abk Rab (д»Ф]) Шк) (-XW fig. la) О 

;»<2 RjM R"b (д„ф>) (д„фк) (-Ю1' fig. 2) 

(a) 

(b) 

(c) 

Figure 3: The diagrams emerging from the background-field expansion of 
the one-loop counterternib. 

One can find the ft function by requiring independence of the invariant 
charge on the normalization point. This leads to the following expres
sion for the /J function through the finite wave-function renonnalization 
constant: 

li(h) 
c)Z 

( - » * ) * (5) 

Using the dimensional regularization and the minimal subtraction scheme 
to calculate the diagrams presented above, one obtains the following well-
known expression for the two-loop j3 function of the n-field model (1) 
[12, И]: 

A2 / h \ 
fam = - ( n - 2 ) — ( 1 + 2 — ). (6) 

As it has already been mentioned, the dimensional regularization and 
the minimal subtraction scheme provide us with an invariant renormaliza-
tion procedure within the background-field method. Hence, the obtained 
expression for the /3 function is correct, and we can use it as a refer
ence expression to compare with other approaches. Owing to the pres
ence of just one coupling constant in the model, the /3 function should be 
renormalization-scheme independent up to two loops and should coincide 
with eq. (6). 
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'Го check the validity of t he background-field m e t h o d in conjunct ion 
with other regularizalions and renormalizat ion prescript ions, let us con
sider the calculation of the .1 function within two schemes: the cut-off 
regularizalion and the differential renorinalization. 

3.1 The Cut-Off Regularization 
We start with the regularization that uses a cut-off in the m o m e n t u m 

space. All the integrals over the radial variable in the Euclidean space are 
cut at an upper limit A. Str ict ly speaking, this is not a very promising 
regular izat ion. since it explicitly breaks t he Lorentz. as well as gauge , 
invar ia iue . However, we use il here to realize what ma) ' happen when 
a noninvariant rcgularizatiou is applied. 

We are going lo use (he minimal subtract ion scheme which respects 
t he invariancc propert ies of the applied in te rmedia te regularizat ion. keeps 
t hem in tac t . as they are. 

When the regularization pa ramete r has the dimension of a mass , the 
minimal subtract ion procedure can he defined [1.4] so as just to convert 
the logar i thms of the (inlinite) cut-o(f Л into the logar i thms of a finite 
leuormalizat ion point /i which appears in the theory after renorii ializations: 

A/ ln" ( . \ - ) = lu"( .V) - l n " ( / ) . V Л" = Л". (7) 

so tha t 

П ln" ( . \ 2 ) = (l - V ) ln"(A J ) = ln" ( / , 2 ) . П\"=0. (S) 

In case of overlapping divergencies, which genera te powers of t he loga
r i thms, one ought to perform the s t andard renormalizat ion procedure prior 
to the subt rac t ions . However, il only the inal renonnal ized answers are of 
interest , one can simply drop all the со; •ihutions of t he minimally sub
t rac ted coun tc r tc rms (V), since they will oc annihi la ted by (1—A."), eq. (8) , 
i rrespective of any powers of t he logar i thms from the residual g raphs with 
contracted subgraphs . T h e same will happen to all the d i ag rams of fig. 3, 
generated by re-expanding the coun te i t e rms . 

Thus , it is sufficient to calculate the regularized d iagrams of figs. 1 
and 2, up to Л-power corrections and ultraviolet-finite two-loop contr ibu
tions, and then Iо replace .V by fi1 and m2 in the one-loop d iagram of 
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fig. la by ;;?2Z,„.>. including the correction from fig. 2. The contributions 
of individual diagrams are 

/(fig. la) = - ( n - 2 ) / i / ( - U ) Ыц'/т1). 
Z(fig. lb) = l ( n - 2 ) (i. + 1) h7/(4*)7 l n V / » > 2 ) . 
/(fig. ic) = - i (ri - 2)2 h2/{-\*)2 [lii2(/i2/in2) - M/i2 /»!2)] . 
/(fig. Id) = - 2 ( i , - 2 ) A'V(-lir)3 I n ' ^ 2 / ' " 2 ) , 
/(fig. le) = - l ( „ - 2 ) AVH*)2 ln'V/»»2). 

/H1»(fig. 2) = - I ( M - 2 ) / i / ( . J i r ) 1II( / I 2 / IH 2 ) . 

The chargc-renormalization constant proves then to be 

/, ,„ = 1 _ ( „ _ 2 ) - i - In —2 + 0 - / Л (») 

so that e<|. (о) gives tin1 i function 

/,2 

•*•...('') = - ( » i - 2 ) — (1 + 0 - Л ) . (10) 
1л-

The difference between this result and that obtained in dimensional 
renornialization ((>) is a direct manifestation of the noninvariance of the 
cut-off regularization, which violates the tianslational invariance. How
ever, one needs to explain the reason for the failure to reproduce the correct 
j function in the present case. Although the cut-off regularization is nonin-

variant. still it has been successfully used to perforin multiloop calculations 
in scalar field theories and in the quantum electrodynamics both within 
the background-field method and by the conventional diagram technique. 

The point is that those theories were renormalizable in the ordinary 
sense, that is. they had a finite number of types of divergent diagrams. In 
contrast, the n-field model is rcnornializable only in the generalized sense. 
The total number of divergent structures here (with various external lines) 
is infinite, but they are related to each other by general covariance of the 
renormalized theory (in case of an invariant renormalization). So the num
ber of independent st ructures remains finite. Expanding the lagrangian, we 
get an infinite number of terms; however, the renormalization constants are 
not arbitral v but mutually related. Although the background-field method 
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formally preserves the covariance of the model, the use of a noninvari-
ant renormalization would break the intrinsic connection between various 
diagrams (and between their renormalization constants), thus leading to 
wrong results. 

Therefore, we conclude that in generalized renormalizable (as well as 
nonrenormalizable) theories it is not allowed to use the cut-off regulariza-
tion with the minimal subtractions in the framework of the background-
held method. 

We now want in the same way to check the invariance properties of the 
differential renormalization method. 

3.2 Differential Renormalization 

The idea of the differential renormalization traces back to the founda
tions of the l("normalization procedure [14] as a redefinition of the product 
of distributions at a singular point. The method suggests to work in the co
ordinate space, where the free Green functions are well defined, although 
their product at coinciding points suffers from ultraviolet divergencies. The 
divergencies manifest themselves as singular functions which have no well-
defined Fourier transform. The recipe of the differential renormalization 
[8] consists in rewriting a singular product in the form of a differential 
operator applied to a nonsingular expression: 

U*j rfc) = 0 ( D ; ; , . . . , O 2 ) g{Xj i t ) , ( i i ) 

Eq. (11) should be understood in the sense of distributions, that is, in the 
sense of integration with a test function. Then one ignores any surface 
terms on rearranging the derivatives via integration by parts. The nonsin
gular function g(.Tj, ...,Xk) is obtained by solving a differential equation, 
and hence, involves an obvious arbitrariness. The latter can be identified 
with the choice of a renormalization point and a renormalization scheme. 
In this respect the differential renormalization does not differ from any 
other renormalization prescription. 

In the absence of a primary reguiarization this prescription might pre
serve all the needed invariances and, what is important for applications, 
seems to renormalize ultraviolet singularities in the integer dimension. On 
the other hand, the absence of any intermediate reguiarization prevents one 
from using the standard scheme: invariant reguiarization + minimal sub-
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tractions. Therefore, to verify the invariance properties of the differential 
renormalization, one has to deal with renormalized amplitudes directly. 

Two-loop calculations of the renormalization constant in the two-di
mensional a model in the framework of the differential renormalization 
have been performed in ref. [15]. The authors have used the concept of the 
infrared 7?. operation to handle the infrared divergencies. In the present 
case the infrared-renormalized free propagator in the co-ordinate represen
tation has the form 

n±r[>-) = -±-\n(x2N2), (12) 
'17Г 

where iV2 is an infrared renormalization scale. 
An important role in the calculations plays the tadpole diagram (fig. la). 

In four dimensions, diagrams of this type diverge quadratic-ally and can be 
consistently renormalized to zero, as it was oiiginally done in the method of 
'.he differential renormalization [8]. However, in two dimensions the lead
ing one-loop contribution to the fl function comes from this very diagram. 
Hence, the tadpole should be different from zero in any renormalization. 
This means that we have to define the two-dimensional tadpole diagram in 
a self-consistent way in addition to the recipe of the differential renorrnal-
ization. Such an extension has been discussed in detail in ref. [15], where 
the following expression for the massless tadpole has been suggested: 

1 M2 

7ГДо(0)= - j - l n - т л - . (13) 
4тг N 

The parameter M 2 is an ultraviolet scale, and IV denotes the complete 
infrared and ultraviolet renormalization. 

According to this modification of the differential renormalization rules, 
the expression for the (i function has been found to be 

h2 

A M = - ( " - 2 ) — + 0 - / t 3 . (14) 
47Г 

Thus, the definition of the tadpole via eq. (13) in the massless case gives 
the correct expression for the one-loop /3 function, but fails in two loops. 

Therefore, we would like to circumvent possible ambiguities of com
bining the infrared TZ operation with the differential renormalization. We 
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are going to apply the method to the massive model in which no infrared 
difficulties ever appear . 

Introducing the mass term according to eq. (4). we obta in t he free 
propagator of the form 

A , „ ( . r ) = — / \ u ( n i | . r | ) . (15) 
27Г 

where /\'u is the MacDonald function, obeying 1 Sic equat ion 

(*/•* - »i a) K0[m\x\)= - 2 * 6 ( 2 )(.r). (16) 

Hearing in mind the known expansion of the MacDonald function 

* • = ( ! * ' * = < ) * ' 

we come I D t he following nal nra I generalization of eq. (\'.\) to the massive 
case: 

7 ф ( . г ) Д,„( . ' ) ] = * U ) — lii — . (17) 
I J 4л- m 

In due course of the calculation we shall also need to define the product 
of two tadpoles . In the spirit of the consistent 7? opera t ion , t he squared 
tadpole (fig. lb) should be defined as the square of the icnormal i /cd value 
(17) for fig. la, that is. 

^K»-4»H= A ( ' , ( i , n^) • (18) 

Now we are in a position to complete the calculation of the /i function. 
We present it in more delail for the d iagrams of fig. lc and fig. Id. The 
simple tadpole subgraph of fig. Ic has already been defined via eq. (17). 
Consider another siibgr,i,.h. with the numera tor . 

Integrat ing by par t s , ignoring the surface t e rm, and then using eq. (16) . 
we get. 
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l d2,/ [m2A2„(.,- - ,,) - c(.i- - ,,) X„{j- - j/)] . 

The integral of the first term is finite and known (the normalization 
integral for / \ y ) . On the other hand, the second term is just reduced to the 
basic tadpole (IT). Thus, the result for e<|. (19) is 1/(4JT) [1 - ln(.A/2/m2)]. 

Generally speaking, the systematic differential renonnalization to all 
orders [16] allows for introducing different ultraviolet renormalization scales 
in different diagrams (all the scales varying proportionally to each other 
under renormalization-group transformations). The ratio of these param
eters can then l>c specially chosen [8] to satisfy the Ward identities. Let us 
denote the sca'e that appears in the tadpole with the numerator by M\. 

Proceed now to fig. Id. lis contribution to the effective action is 

l- J d2.,- у dV* 'A-r)IU+iv) [V„o'(.r)) [<Kok(y)) Ут(.,-!,ЩЛХпи-у) 

Picking out the trace and tfaceless parts according to ref. [8], we gel 

- j Л-.г l # u 1Г1",(.,-) П.1Ьск.(:V) \0h0'(.г)] {^фк(у))л1и--у)х 

\{дЛ- \К*<?)Xi(--.7)+ 5 t "4^« , ( j -y )+ зь„и(У2-™2) A,„(.i-t/)] 
The first term, which is traceless. is finite and does not generate any ul
traviolet scale: one can easily establish this fact in the momentum repre
sentation. The second term vanishes as in2—»0. Thus, we are left with the 
last term. Via eq. (16) it is reduced to eq. (18), that is, gives only the 
sc,,iare of the logarithm. However, again the renormalization scale M2 in 
the new diagram may differ from M. 

Below we present the contributions of all the diagrams to the renor
malization constants: 

Z(fig. la) = - ( и - 2 ) h/(U) ln(Af2/m2), 

Z(fig. lb) = i ( H - 2 ) ( n + l )A a / (4ir) 2 ln2(Af2/ra2), 
Z(fig. l r ) = - i(»> - 2)2 /I7(<1TT)2 ln(A#2/m2) [ln(Af,2/m2) - l] , 
Z{i\g.L\) = - i ( „ - 2 ) f t 2 / ( 4 j r ) 2 ln 2 (M 2 /m 2 ) , 
Z(fig. le) = - i i » - 2 ) A 2 / ( 4 r ) 2 ln 2 (M 2 /m 2 ) , 

Z,„v(fig. 2) = - i (ii - 2) /,/(4тг) ln (M 2 /m 2 ) . 
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This gives the 3 function 

h2 f h 
ddw = - ( n - 2 ) — {]+ — 

4л- 4тг 

M2 4 , Ml 2 , Ml 
In —=• + - In —nr Л In —x 3 '" M 2 3 M 2 3 M 2 

(20) 
We see that the result, explicitly depends on the ratio of the renormalization 
scale parameters in different diagrams. Such a dependence on the details of 
the renormalization prescription is beyond the usual scheme arbitrariness. 
It would never occur to two loops in the conventional perturbation theory 
for ordinary renormalizable one-charge models. There the arbitrariness 
would be completely absorbed into a finite number of counterterms which 
are of the operator types present in the tree lagrangian. Hence, we should 
try to fix the parameters of the differential renormalization by imposing 
some additional requirements. In the quantum electrodynamics the gauge 
Ward identities could be used to this end [8]._ For the a model in the 
background-field formalism the situation is not so clear. 

The parameter A/i that appears in the one-loop tadpole subgraph of 
fig. lc with the numerator can be fixed as follows. In the momentum 
representation we can easily see that the sum of this diagram and the simple 
tadpole (fig. la) is just an ultraviolet-finite integral which equals l/(47r). 
The value will be correctly reproduced by the differential renormalization 
if we choose the same scale for both tadpole graphs: Mi=M. Thus, for 
these diagrams the renormalization seems to be automatically invariant. 

Let us point out that this simple check is by no means trivial. For 
example, the straightforward Feynman regularization of the quantum-field 
propagator in the momentum space l / (^ 2 +m 2 ) —• l / (p 2 +m 2 )—l/ (p 2 +M 2 ) 
would not stand the test. As a result, the coefficient of the lower-order 
logarithm generated by fig. lc would be incorrect, and a contribution pro
portional to (n — 2)2 would be left in the two-loop в function [as for М\фМ 
in eq. (20)]. The Feynman cut-off is therefore a noninvariant regularization 
and cannot, be freely combined with the background-field method. 

Expecting that the differential renormalization is automatically invari
ant, we would set M2=M3=M as well. However, then eq. (20) would 
again give us the wrong result (14) obtained under the assumption of the 
automatic invariance in the massless theory via the infrared % operation. 
Hence, the ratio of the renormalization parameters ought to be somehow 
tuned in order to restore the invariance. 

The identical situation was encountered in a nonrenormalizable chiral 
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theory already at the one-loop level for physical observables [17]. Inside 
the differential renonnalization. one finds no u priori internal criterion 
for choosing the ratios of auxiliary masses, to get reliable results. Of 
course, comparing eq. (20) to c(|. (6) in the dimensional rcnormalization 
[i>r the results for fig. l(d,e) individually], we can infer the values that 
would ensure the invariance: 1п(Л/|/Л/2) = 1п(Л/|/Л/2) = 1. But by 
itself the differential renormalization remains ambiguous if we apply it to 
a theory that is not renormalizable in the ordinary sense, and is not directly 
compatible with the background field method. 

4 Conclusion 
Our examples show that the background-field formalism requires one to 

use an invariant renormalization procedure in order to obtain valid results 
in a genoralized-ronormalizable theory. A noninvariant regularization or 
renormalizalion may break an implicit correlation between different dia
grams, which is essential as one formally expands the action in tlie back
ground and quantum fields. 

We have demonstrated by direct two-loop calculations that the regu-
brization via a cut-off in the momentum space is noninvariant and gives 
a wrong result for the fi function of the n-field model within the back
ground-field formalism. 

We have also found that the differential renormalization is not auto
matically invariant. The result depends on the ratio of the auxiliary scale 
parameters beyond the allowed scheme arbitrariness in the second order 
of perturbation theory. We can partially fix the ambiguity by imposing a 
condition on divergent one-loop tadpole-type diagrams a combination of 
which should be finite. Rut this is not enough, and there seems to be no 
algorithm of generalizing such conditions to more complicated graphs. 

We would like to stress once more that the calculations in nonlinear 
models like the a model or supergravity are hardly possible without the 
background-field formalism. Thus, the need in the regularization that pre
serves the underline symmetries and is practically usefull at the same time 
is of vital importance. The example considered above clearly demonstrate 
the problems arising when using a non-invariant procedure. 
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