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1 Introduction 

Noncommutative geometry (1) has started to play a significant role in mathematical 
physics for the last few years. One of the nontrivial examples of noncommutative 
geometry is given by q~antum groups (2, 3). After the paper (4), the differential 
geometric aspects of the theory of quantum groups have been intensively investigated 
recently (see e.g. (5)-(8)). Using these investigations, various approaches to formulate 
quantum group gauge theories have been developed [9],[10]-[13). 

In this paper, we continue researches of quantum group covariant noncommu­
tative geometry proposed in [9, 14]. In Sect.2, we describe how to revise the usual 
commutative geometry (e.g., the geometry of the principal fibre bundle) and in­
troduce differentials covariant under the special quantum group co-transformation 
interpreted as a local (structure) transformation. Here, a quantum group is an ex­
terior extension of GL.(N). Then, we define the corresponding geometrical objects 
such as noncommutative 1-form connections and curvature 2-forms. We show that 
these noncommutative geometrical o·bjects generate GL.(N)-covariant quantum al­
gebras. In Sect.3, we discuss noncommutative geometry related to the cciset space 
GL.(N + 1 )/(GL9 (N) 0 GL(l )). This geometry yields a nontrivial explicit example 
of algebraic constructions considered in Sect.2. Then, in Sect.4, we compose from the 
generators of the GL.(N)-covariant quantum algebras a set of GL.(N)-local invari­
ants which could be considered as noncommutative images of the well-known gauge 
invariant Lagrangians (e.g., discrete gauge theories and Einstein gravity). Some 
of these invariants are nothing but noncommutative analogs of the Chern charac­
ters. \Ve would like to stress, however, that this analogy with the conventional La­
grangians is rather formal and, strictly speaking, it may not lead to q-deformations 
of the corresponding field theories. 

We use the notation and methods of the paper [2) in which the R-matrix formu­
lation of quantum groups has been elaborated. Some further development (15] of 
the R-matrix notation, considerably simplifying the calculations, is also employed. 
According to the results obtained in (13) one can reformulate our algebraic con­
struction of the noncommutative geometry for the case of unitary structure groups 
u.(N). Moreover, we believe that using Brzezinski's theorem [16) (and its gener­
alization to the braided case [17)) about exterior Hopf algebras, one can apply our 
construction in the case of any quasitriangular Hopf algebra with bicovariant first 
order differential calculus. In the Conclusion we briefly discuss this possibility and 
make some other remarks. 

2 GLq(N)-covariant derivatives, noncommutative 
connections and curvature 

Let us consider a Z2-graded finite dimensional Zamolodchikov algebra (denoted by 
Oz) generated by the operators {ei, (de)i}, (i,j = 1,2, ... ,N) with the following 
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commutation relations: 

Ree'= cee', (±)cR(de)e' = e(de)', R(de)(de)' = _!(de)(de)', (2.1) 
• C 

where e = e1 is a q-vector in the first space, e' = e2 is a q-vector in the second space, 
R = P12R12 is a matrix which acts in the first and second spaces simultaneously, 
P12 = 6J~ 6J! is the permutation matrix and 

R = R~1,i_2 = 6~'6i2(1 + (q -1)(5i1i2) + (q- q-l)f1f,29 .. 
12 Jl,J2 Jl J2 J2 Jl 1112, 

0;; = {1 if i > j, 0 if i :5 j} 
(2.2) 

is the GLq(N) R-matrix satisfying the Hecke relation (A= q -·q.,-1 ). 

R 2 = XR+i. (2.3) 

Here 1 is a (N 2 x N 2
) unit matrix. We imply the wedge product in the multiplication 

of the differential forms in the formulas (2.1) (we also omit I\ in all formulas below). 
One can recognize in the relations (2.1) (for(±)~ +1) the Wess-Zumino formulas of 
the covariant differential calculus on the bosonic (c = q) and fermionic (c = -1/q) 
quantum hyperplanes (18] where e; are the coordinates of the quantum hyperplane 
while (de); are the 'associated differential~. The choice (±) = -1 corresponds to 
the case when ei are bosonic (c = -1/q) and fermionic (c = q) veilbein l-forms. 
Note that there is the second version of the algebra (2.1).obtained by means of the 
replacement R - R-1

, c - c 1
• Below, we concentrate only on the consideration 

of the algebra (2:1) (the other type can be treated analogously). 
It has been proposed in [20, 19, 9] to consider the algebra flz (2.1) as a comodule 

with respect to the co_action of the Zrgraded quantum group flaL.(N) with the 
GL9 (N)-generators {TJ} and additional generators {(dT)f} (i,j;k,l = 1,2, .... ,N) 
which are the basis of the differential I-forms on the quantum group GL

9
(N). This 

coaction flz ~ flaL.(N) ® flz conserves the grading and can be written down as a 
homomorphism: 

e; ~ i = T! ,o. ei 
J 'Cl . , 

(de);~ (de);= (dT)} ® ei + Tj ® (de)i. 

(2.4) 

(2.5) 

Here ® denotes the graded tensor product: a ® b = ( -1 )iib(l ® b )( a ® 1) , where 

J = deg(!) and a E fl~£.(N) , b E n~>. We recall that the algebra flz with the 

generators (2.1) has the following expansion flz = EB n~l, where n~l denotes the 
n=O 

subspace of the differential n-forms and there exists a similar expansion for the Zr 
graded 'quantum group flaL.(N) = ,! ntl.cNJ· Substituting the transformed algebra 

{?, (de);} into the commutation relations (2:1), we obtain the following equations 
for the generators {Tj, (dT)D: 

(R- c)TT'(R + c-1
) = 0, (R(dT)T' -T(dT)'R-1 )(R + c-1 ) = O, (2.6) 

(~:.~~:·. -:_---~---.:, . ._"9'-.,..t -~ '"t !l L!B 11, ,,.,.,._ -cu'""'§ t-.h,,1,..;.lt[i t 
'I c,.,,..,_.-•.: t' i't l. ~~"~·"'"ll'Jj' f I '-'i-1 .• ,.!i, .• n -i .. ··" •.,, «,t••·- · 
,' .--·-01 ------·, i, ~ ot')o11Y!l.; i t:f~:rt •• ··--=-=--. -.::-.""'.'·.~ ...,_ .. 



(R+ c-1)(dT)(dT)'(R+ c-1
) = 0, (R+ c-1)((dT)T'R- R-1T(dT)') = 0, (2.i) 

where T = T1 = T 0 I while T' = T2 = I 0 T and I is a (N x N) unit matrix. 
The relations (2.6), (2. i) have to be fulfilled both for c = q and c = -q-1

, therefore 
we deduce from them the following q-commutation relations for the bicovariant 
differential complex on GLq(N) (see [19, i, 8]): 

RTT' 

R(dT)T' 

R( dT) ( dT)' = 

TT'R, 
T(dT)'R-1 , 

-(dT)(dT)'R-1 . 

(2.8) 

(2.9) 

(2.10) 

We stress that (2.10) follows from (2.9) if the differential d is nilpotent d2 = 0 

and obeys the graded Leibnitz rule p,(Jg) = d(J)g + (-I)f Jd(g). It is interesting 
to note (see [9]) that the algebra !1aL.(N) (2.8)-(2.10) is the Hopf algebra. · The 
comultiplication .D.., the counit f and the antipode S are defined by 

.D..(T) = T @T', f.(T) =1, S(T) = r-1 , 

.D..(dT) := dT 0 T + T 0 dT, f.(dT) = 0, S(dT) = -T-1dTT-1, 
(2.11) 

and satisfy all the axioms of the Hopf algebra. Thus, the algebra naL.(N) yields a 
special example of the general exterior Hopf algebras discussed. in [16]. We stress 
that the example of the GLq(N)-exterior Hopf algebra proposed in [16] has slightly 
different comultiplication comparing with the Hopf algebra !1aL.(N) (2.8)-(2.11) inde­
pendently introduced in [8, 9]. One can show that it is possible to extend the action 
of the differential d over the tensoririg and apply d to th~ algebra naL.(N) 0 nz in 

su~h a ,way that: d(g 0 flz) = d(g) 0 nz + (-I)kg 0 d(!1z), where g E n~l.{N) and 
d2 = 0. . . ' 

Now we would liketo interpret formulas (2.4) and (2.5) as a local (structure) 
quantum group transformation of the comodule e;. ~ere the matrix Tj is understood 
as a noncommutative analog of a local (structure) group element. In view of this, 
it is natural to consider the appearing of the additional term (dT)~ 0 ei in (2.5) 
as a noncovariance of the comodule (de); under the "gauge" rotation (2.4) (or as 
an indication that the differentials (de); describe "nonparallel transporting" of the 
vector ei). To restore the covariance let us introduce a covariant differential V in 
such a way that the transformations (2.4), (2.5) are rewritten in the form 

ei ...!!!..+ ~ = T! 0 ei, 
1 

. gz -i . . 
(Ve)'--> (Ve) = TJ 0 (Ve)' . 

(2.12) 

(2.13) 

In general (Ve); E_tf!z and, hence, the action of the operator V enlarges the algebra 
f!z up to some new algebra flz. The operator d can be induced (as a differential) onto 
the whole algebra nz and this algebra is naturally decomposed as nz = EBn=D n~> 
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where nt> is the subspace of n-forms. Then, we postulate that the elements (Ve); E 
n~l are expanded over the generators {ei, (de)i} of flz in the following way: 

(Ve);= (de); -A~ei, (2.14) 

It is clear that the coefficients Ai belong to the subspace n~> and it is natural to 
consider them as noncommutative analogs. of the connection I-forms. Under the 
transformations (2.12) and (2.13) the I-forms A} are transformed as: 

Ai...!!!..+ Ai= Tj(T-1)i 0 A{+ dTj(T-1){ 01 = (TAT-1)i + (dTT- 1)i, (2.15) 

Here A~ E flaL.(N) 0 Z. In the last part of (2.15) a short notation is introduced to 
- be used below. The second action of the covariant derivative V on the expression 

(2.14) leads to the definition of the curvature 2-forms Fj En~>: 

V(Ve) = - (d(A) :--A2
) e = -Fe. (2.16) 

The quantum co-transformation (2.15) for the curvature 2-forms Fj is represented 
as an adjoint coaction 

Fi~ J[,i = T;(r-1)1. 0 F,k = TiF.k(r-1)1. 
1 J k 1 /- kl J' (2.17) 

The curvature tensor Fj is a reducible adjoint representation of GLq(N) and it is 
possible to decompose it into the scalar FD= Trq(F) and the q-traceless tensor: 

. -

Fj = Fj - 8}Trq(F)/Trq(I) .. 

Here, we have introduced the q-deformed trace [2, 7, 9, 21] for the GLg(N)-gr~up 

N 

FD= Trq(F) = Tr(DF) = L q-N-H2iF;' .. 
i=D 

Below we need the feature of invariance of the q-trace: 

Trq(TET-1) = Trq(E) 

where [T,j, Ekt] = 0 and Tj E GLq(N). In particular, we have 

Trg2(RER-1 ) = Trg2(R-1 ER)= Trq(E) 

(2.18) 

(2.19) 

(2.20) 

Here Trq2(.) denotes the quantum trace over the second space. We also use the 
relations 

N -N 
Trg(R±1) = q±N, Trq(I) = q - q_1 = [N]q . 

q-q 
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The next action of the covariant derivative on formula (2.16) yields the Bianchi 
identities that are represented in th~ classical form 

d(F) = [A, F]. 

To complete the definition of the algebra nz we have to deduce the commutation 
relations of the new generators { A~, Fj, .. . } and their cross-commutation relations 
with the generators {ei, (de)i}. First of all, let us note that the choice of the 
connection in the pure gauge form (see (2.15)) · 

A} = dT~(T-1 )7 ® 1 , (2.22) 

leads to the conclusion that the generators A} could satisfy the following q-deformed 
anticommutation. relations: 

RARA + ARAR-1 = 0, (2.23) 

where A= A1 = A®l. These relations for the noncommutative I-form connections 
(gauge fields) have been postulated in [9, 12] .. Note, however, that in the right hand 
side of Eq.(2.23) one may add an arbitrary linear combination of the curvature 
2-forms F = dA - A2 which vanishes on the solution (2.22). Thus, the general 
covariant commutation relations for A} are 

RARA + ARAR-1 = a(R)(FR + R-1F) + K(R)F° = ~(F) , (2.24) 

where F = F1 = F ® I, a(R) = a1 + a2R and for convenience we choose the 
parameter K(R) in the form: K(R) = (K1 + K2R)(R+ R-1

). 

Special form of the right hand side of Eq.(2.24) is dictated by the symmetry 
properties of the q~anticommutator appeared in the left-hand side of this equation 
(c = ±q±l): 

(R- c)(RARA + ARAR-1)(R+ c-1
) = 0. 

We stress that the anticommutation relations (2.24) are covariant under the trans­
formations (2.15) and (2.17). Moreover, one can extract from the relations (2.24) 
subsets of covariant relations using the methods proposed in [15]. Namely, ~pplying 
Trg(2)(, •• ) and Trg(2)( ••• R) to {2.24) and using {2.21) we obtain two sets of relations 
transformed as adjoint comodules · · 

>,.qN A2 + {A0, A}= [a1(qN + q-N) + a2([N]g + >,.qN)]F + a2F°+ 

+[K1(qN + q-N) + ll':~(2[N]q + >,.qN)]F°' 

qN A2 +(A* A)= [a1([N]q + ,\qN) + a2qN(q2 + q-2)]F + (a1 + ,\a2)F0+ 

+ [K1{2[N]g + >,.qN) + K2(qN(q2 + q-2
) + >,.[N]q)] F0 , 

6 

(2.25) 

(2.26) 
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> 

Y' 
I 

where (A* A) = Trq(2i(RARAR), F 0 = Trq(F), A0 = Tr<i(A). Then, applying 
Trq(t)( ... ) to (2.25) and (2.26) we obtain two scalar relations (q2 -/- -1) 

Trq(A2
) = [(a1 + Ki)q-N[N]q + (a2 + K2)] F°,. 

(A0)2 = [(a1 + K1)q-N + (a2 + K2)[N]q]F° • 

(2.27) 

(2.28) 

vVe see that in the noncommutative case Eqs.(2.27)-(2.28) give additional relations 
of the I-form connections A and 2-form curvatures F = dA - A2 • 

Arbitrary parameters a;, K;' introduced in Eq.(2.24) depend on the choice of 
the noncommutative geometry and have to be fixed partially by the consistency 
conditions (with respect to the two ways of ordering of any cubic monomial) for the 
algebra nz. It is amusing to note that the additional nonzero term included into 
the right-hand side of (2.24) looks similar to the quantum anomaly terms arising in 
the ( anti )commutators of fields ( or currents) in certain conventional quantum field 
theories. · · 

In order to find commutation relations A~ with the generators { ei, ( de )i} we 
postulate that the coordinates of the comodule (2.14) commute in the same way as 
the components of the I-forms (de)i (see (2.1)) 

1 
R(Ve)(Ve)' = --(Ve)(Ve)' 

C 

(±)(c - b)R(Ve)e' = e(Ve)'. 

(2.29) 

(2.30) 

where b is a constant to be fixed below. Let us stress that Eqs.(2.29),(2.30) are 
not general covariant relations of that kind. For example, one can add to (2.29) 
terms of the type (Fe)e'. We, however, prefer to consider here the simplest case of 
the relations (2.29),(2.30). From (2-1) and (2.30) we deduce covariant commutation 
relations of A and e: 

(±)eA' = RARe + bR(Ve) (2.31) 

Considering the consistency condition for the reordering {in two different ways) of 
the monomial ee'A" = e1e2A3 , we obtain only two solutions for the parameter b: 

A.) b = 0 B.) b =)... (2.32) 

Thus, we have two variants for Eq.(2.31) 

A.) (±)cA' = RARe, B.) (±)eA' = RAR- 1e + )..R(de). (2.33) 

Note that in the paper [9] we have considered only the first case A.): b = 0. Taking 
into account (2.29), one can obtain the corresponding commutation relations for 
(de) and A 

(±)(dc)A' = -R-1 AR(dc) + (b- )..)AR(Ve) + ii(R)~(F)e, (2.34) 
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where 
ii(R} = l + ,(R - c) · 

1 + c2 
(2.35} 

and I is a new arbitrary constant to be fixed below. Type A.) and type B.} com­
mutation relations (2.31}, (2.34} are covariant under the gauge coactions (2.4}, (2.5} 
and (2.15} and both cases lead to the same covariant commutation relation for (Ve} 
and A: 

(±}(Ve}A' = -RAR(Ve} + (ii(R} - l}~(F)e, 

Differentiating (2.31} and, then, u5.ing (2.34) one can derive 

eF' = RF(R- b)e + a(R)~(F)e = 

= (R + a(R)a(R))FRe + (a(R)a(R)R-1 
- bR.)Fe + a(R)K(R)F0e 

• r • 

where we define 
a(R) = -(1 + bR)ii(R) + (b - ,\)R . 

(2.36). 

(2.37) 

(2.38) 
' 

Considering th'r re~rd~ring of the mono~ials ee'F" in two possible ways and com­
. paring the results, we obtain for both types A.) b == 0 and B.) b = ,\ the restrictions 

1.) a(R)a(R) = 0, a(R)K(R) = 0, (2.39) 

which lead to the commutation relation: 

eF' = R;F(R - b)e. (2.40) 

Note, that for ~he type A.) (b = O} we have an additional solution 

2.)a(R)a(R) = -,\ , a(R)K(R) = 0 

equivalent to the relation: eF' = R-1FR-1e. This relation, however, is consistent 
with the algebra (2.24), (2.31) and (2.36) only if some additional relations on the 
generators of !lz are fixed. One.can prove this by considering two different ways of 
reordering of the monomials eR' A'R' A' where R' = P23R23 • 

Taking into account the conditions (2.39) we obtain from the definitio,ns (2.38) 
and (2.35) the following solutions for the parameters a(R) and 1 

1.) a(R) = 0, K(R) = 0 ⇒ ~(F) = 0, 

2.) a(R) = ao(R - c), K(R) = Ko(R - c), 'Y = c+!-1 + (b - ,\) =? 

(R- c)ii(R) = (,\~b)(R - c), (R- c)a(R) = b(:;-b)(R - c) = 0. 

Here a0 =/- 0, Ko =/- 0 are constants. 
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Now, we deduce the covariant commutation relations for the generators Fj pos­
tulating the following natural quantum hyperplane condition 

(R- c)(Fe)(F'e') = 0. 

Using (2.40) one can obtain from (2.42) the following relations 

(R - c)FRF(R.+ c-1
) = 0. 

(2.42) 

(2.43) 

The commutation relations for the c:urvature 2-form Fj have to be independent of the 
class of the comodule { ei} and, therefore, of the clioice of the parameter c = ±q±l. 
So, .we deduce from Eqs.(2.43) the commutation relations · 

RFRF=FRFR. (2.44) 

These relations are known, first, as reflection equations (22), second, as the com­
mutation relations for invariant vector fields on GLq(N) (7, 8) and, third, as the 
defining relations for the braided algebras (23). 

To complete the definition of the algebra !12 one can deduce the following cross­
commutation relation for F and A: 

FRAR=RARF. (2.45) 

This is the simplest relation covariant under the coactions presented in (2.15) &nd 
(2.17) and allowing one to push the operators F through the operators A. 

Thus, leaving aside the commutation relations with the generators { e, de}, we 
come to the following algebra with the generators A (I-form connection) and F = 
dA - A2 (2-fom~ curvature): 

FRAR = RARF , RFRF = FRFR, 
RARA + ARAR-1 = a(R)(FR+ R-1F) + K(R)F°, (2.46) 

where a(R) = (R- c)a0 and K(R) = (R- c)Ko (see Eqs.(2.41)): Note, that for the 
case a0 =A O and Ko =/- 0 the consistence conditions for the whole covariant algebra 
nz give some additional constraints on the generators of this algebra. In particular, 
one can deduce 

(R - c)FRe = 0, (2.47) 

where F = F - ( +-IJF°. ao c c 

3 GLq(N + l)/(GLq(N) ® GL(l)) noncommutative 
geometry 

In this section we present an explicit realization of sucli a covariant algebra nz where 
parameters a0 , Ko and additional relations (of the type (2.47)) on the generators will 
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be fixed. We consider differential geometry on the group GLq(N + 1) [19, 20, 7, 8] 
and interpret it as noncommutative geometry on the total space of the principal 
fibre bundle with the base space GLq(N + 1)/(GLq(N) 0 GL(l)) and the structure 
group being GLq(N) 0 GL(l). 

Let us introduce Zrgraded extension of the G Lq ( N +I) quantum group ( exterior 
Hopf algebra) with the generators {TJ, dTJ} (I, J = 0, 1, ... N) satisfying the 
commutation relations (2.8H2.10) where the GLq(N + 1) R-matrix acts in the space 
Mat(N + 1) x Mat(N + 1). T~en, we consider the following left coaction of the 
group GLiN) 0 GL(l) on the group GLq(N + 1): . 

T] -t . _ 0 ° . (3.1) (f,;-0) · ( r,o Tf)) 
0 T' . T,k T~ 

k . 0 J 

where as usual i,j, k = I, 2, ... N and t ([t, Tj] = 0) is a dilaton generator of 
GL(l). It is evident (from the commutation relations for the GLq(N + 1)-generators) 
that the elements Tj generate the quantum group GLq(N). The noncommutative 
coordinates for the "base spa<:e" GLq(N + 1)/(GLq(N) 0 GL(l)) could be related 
with the generators T? and Tg. For the Cartan I-forms on the GLq(N+ 1)-group: 

( 

w n° =< eli) 
n5 = arkcr-1 ff = . . . (3.2) 

· !lh =le>' Ai 
the coaction (3.1) is represented in the' form: 

(

~) _ (··· w + au-
1 

le > I · A . r 1Tle >. 

< e1r-1
t ) 

T AT-1 + dTT- 1 
(3.3) 

I 

I .. , 
'. 
' 

'I' 
~ 
l 

), 

where the short notation has been used (see e.g. (2.15)). By comparing these 1 { 

transformations with the transformations (2.12) and (2.15), it becomes clear that the · 
Cartan I-forms le> and A, w can be interpreted as v~ilbein I-forms and connection 1' 
I-forms, resp~ctively. Then, the generators <·el are' nothing but contragradient 
veilbein I-forms. The Maurer-Cartan equation an5 = nknf leads to the following 
constraints on the noncommutative differential 1-forms n5: 

( dw-w'- < ,i, > d < el- < elA - w < el 

die> -Ale> -le> w dA - A2 
- le >< el )-· (3.4) 

The q-deformed commutators for the nonco~mutative Cartan I-forms (3.2) are de­
duced from the N + !~dimensional analog of the relations presented in (2.23). Tak­
ing into account the Maurer-Cartan equations (3.4) and using the notation (3.2) we 
rewrite these relations in the form: 

RARA + ARAR-1 ==_;>.(RF+ FR-1
) 

10 . 

(3.5) 

- cA' = RARc + >.R(dc - Ac), ·-A'e = eRAR + >.(de - eA)R (3.6) 
-R ,_, R I -l , _,_R -l-/- (3 7) c c = -qc e , ee = -q ee , e e = -q e e, . 

w
2 = 0, [w, eJ+ = [w, eJ+ = 0, [A,wJ+ = q>.le >< el = q>.F. (3.8) 

Here we have also introduced the notation for the curvature 2-form 

F = dA - A2 = le>< el•= -q-1 < ehRle >1 . (3.9) 

The last two equalities follow from Eqs.(3.4) and (3.7) and reveal the dependence of 
the curvature 2-forms and the veilbein I-forms. Note that for this form (3.9) of the 
curvature one can directly prove the identity (2.47) (for Ko = 0) using the relations 
(3.7). Now, we find (applying the commutation relations (3.5)-(3.8) and Eq.(3.9)) 
that the following relations for F and A hold: 

RFRF = FRFR-, RARF = FRAR+ >.(RFw - FwR) (3.10) 

We would like to compare these relations with the relations (2.46) but at this stage 
we cannot do this in view of appearing in (3.10) of an additional scalar generator w 
which is nothing but the GL(l)-connection I-form (see (3.3)). To exclude from the 
consideration these scalar connection I-form, we introduce a new total GLq(N) 18) 

GL(l) connection: · 

A1 = A-wl, 

for which we have 

Vic= V1e = 0, 

(see (3.4)) and the corresponding curvature 2-forms 

Ft= q2 F- < ele > .J = q2 F + q1-N F°. I 

satisfy the conditions 

File >=< elF1 = 0 . 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The scalar 2-form F° = Trq(F) in (3.13) is defined by Eq.(2.18) and is invariant 
under the adjoint coaction (2.17). Finally, we find from Eqs.(3.6)-(3.8) and (3.10) 
that the elements { c, At, F} generate the following closed algebra: 

RFRF = FRFR, RA1RF = FRA1R, 
RAtRAt + A1RA1R- 1 = a0 (FR-1 + RF)(R - c), 

-cA; = RA1Re, eF' = RFRe 

where a0 = 1 - q2 and c = -q-1 . 

(3.15) 

Comparing the commutation relations (3.7) and (3.15) with the relation_s (2.1), 
(2.31) and (2.46), one can infer that we have explicitly realized the defining relations 
for the covariant quantu!ll algebra !lz of the type A.) (2.32), (2.33) in terms of the 
algebraic objects related to the GLq(N + l)/GLq(N) 0 GL(l)-geometry. To be 
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precise, we have to consider an algebra of the type (3.15) with the substitution 
F +-+ Fi. The correspcmding defining relaHons are 

RFtRFt = FiRFtR, RAiRFt = FtRAtR, 
RAtRAi + AiRAiR-1 = ao(FiR-1 + RFi)(R- c) + ao(c+;~~(~-clpi0 , (3.16) 

-eA; = RAtRe, eF: = q-2R-1FtRe 

One can note that this type of algebras, in view of the last relation in (3.16), have 
not been presented in the general consideration of Sect.2. The explanation of this 
fact is that in Sect.2 we essentially use the conditions Vte # 0, File ># 0 which are 
not fulfilled here (see {3.12) and (3.14)). That is why we have not received in Sect.2 
the cross-commutation relations for F and e presented in (3.16). 

4 G Lq(N)-local co-invariants and Chern charac­
ters 

Our final aim is to define composite elements £ for the extended algebra f!z which 
are co-invariant £ --+ 1 0 £ under the GLq(N) local transformations {2.4), {2.5), 
(2:15) and (2.17). We would like to interpret these elements £ as noncommutative 
Lagrangians. However, we stress that this interpretation is rather formal because 
the elements £ are not the usual Lagrangians for certain field theories. To write 
down such noncommutative Lagrangians we further extend the algebra f!z described 
in Sect.2 by introducing the Zrgraded contragradient comodule {e;, dei) with the 
following commutation relations: 

e' • eR = ce'e, (de)'e = (±)ce'(de)R, 
{4.1) 

(de)'(de)R = -~(de)'(de). 

Note that contragradient q-vectors have naturally appeared in the context of the 
explicit example of the GLg{N)-covariant noncommutative geometry considered in 
Sect.3. The quantum group local (structure) transformation of the vector (e;, dej) 
is expressed~ the following homomorphism' of the algebra (4.1): 

(e, de)..!!:...+ ((r-1t@ e,., d(T- 1 )j@ e,. + (T- 1 )j@ de,.)= 

(
r-1 -r-1drr-1

) = (e, de)• o, ' · y-1 , 
(4.2) 

where in the last equality of (4.2) we have used the short notation (see (2.15), 
(2.17)) _and the operators Tj and dn are the same as in Eqs.(2.8)-(2.10). The 
commutation relations for the coordinates of the contragradient q-vectors {e;, dei} 
with the former generators of f!z can be found by using covariance of these relations 
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under the gauge coactions (2.4), (2.5), (2.15), (2.17) and (4.2). For example, one 
can assume relations of the type appeared in the explicit construction of Sect.3: 

e'e' = ceRe, (±)(de)'e' = c(eR(de) + -\eRARe), 

A'e = (±)eRAR, F'e = eRFR. 

(4.3) 

(4.4) 

These relations are not unique covariant relations for the generators { e, e, A, F, ... }. 
There are other choices corresponding to another noncommutative geometry. For 
example, in our paper [9] we have proposed noncommutative geometry with different 
relations ( 4.3). · 

· Now one'can define the co-invariant 'el~ments of f!z transformed under the lo­
cal co-transformations as £ --+ 1 0 £. For example, using the noncommutati~e 
generators ei, e; an<l° A{ we construct the co-invariant 

£ = e; (de; -A}ei). · (4.5) 

We call these composite elements of the algebra f!.z the noncommutative (alge­
br~ical) Lagrangian's bearing -in mind the formal ·similarity of ( 4.5) to the La­
grangians for the one dimensional discrete gauge models (see e.g. [24]). 

In order to write down other local quantum· group co-invariants, it is convenient 
to use the curvature 2-form F transformed .as the adjoint comodule (2.17). As an 
example we present noncommutative analogs of the Chern characters. For this, let 
us consider a special case of the closed algebra {2:46) with the generators A and F 
where the parameters a(R) = 0 and 11:(R) = 0. Here, as we have explained above, 
A} are noncommutative analogs of the connection !-forms while Fj are interpreted 
as curvature 2-forms. By analogy with the classical case (see e.g. [25]), we consider 
as invariant characters the following:expressions: 

C T (F") Di pi Fi•-1 
k = r q = i ii . . . i ' (4.6) 

where we have used the q-deformed trace defined in {2.18). Using (2.19) we im­
mediately obtain that 2k-forms Ck ( 4.6) are invariant under the adjoint coaction 
(2.17). Moreover, C,. are the closed 2k-forms. Indeed, from the Bianchi identities 
dF = [A, F] we deduce 

dC,. = Trq(AFk - pk A) = 0, 

where we have taken into account (see Eqs.(2.46), (2.20) and (2.21)) 

Trq(AFk) = q-NTrq1(Trq2(R-1RARFk)) = 

N . . k . . k 
q- Trq1 (Trq2(F RA))= Trq(F A). 

(4.7) 

We believe that Ck have to be presented as.the exact form Ck= dL~1, where the 

Chern-Simons (2k - 1 )-forms £~1 are represented as 

L~1 = Trq{A(dA)"- 1 + -fuA3 (dA}"-2 + ... + h~k)A2k-1
} 

h1 . . .. 
{4.8) 
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and the constants h!k) depend on the deformation parameter q. We do not have 
explicit formulas for all parameters h~-~) {in the classical case q = I these formulas 
are known [26]), but for the case k = 2 one can obtain a noncommutative analog of 
the three-dimensional Ch~rn-Simons term in the form: 

(2) - 1 3 (2) - 1 L08 - Trq{AdA - (2)A } , h1 - 1 + -
2

-
2 

• 
. h1 q + q-

{4.9) 

We would like to note that it is extremely interesting to write the Chern characters 
for the general case of the algebra {2.46) when the parameters a(R) /; O and 11:(R) ¥ 
0. 

At the end of this section we propose a way how to find an algebraical Lagrangian 
corresponding to the field theoretical Lagrangian for the Einstein gravity. First, we 
take the four generators of the underlying Zamolodchikov algebra {2.1), {4.1) in 
the form of the 2 x 2 matrix eii (i,j = 1, 2; et = e) interpreted as the spinorial 
representation for the 4-dimensional veilbein I-forms. The differential complex Oz 
for this algebra is the anticommuting version{{±)= +l) of the differential complex 
for the q-Minkowski space [28, 29] 

ReRe + eReR-1 = 0, 

RdeRe - {±)eRdeR = 0, 

R de R de - d~-R de R = 0. 

{4.10) 

{4.11) 

{4.12) 

Note that. there is another consistent differential complex with the choice of eq.( 4.11) 
in the form ReRde = {±)deReR. Here we do not consider this possibility which 
is absolutely parallel. The factor{±)= -1 corresponds to the fermionic version of 
the q-Minkowski space. The algebra {4.10)-(4.12) is covariant under the q-Lorentz 
global transformations 

e-Tef-1 

' 
- 1 de - TdeT- ·. 

( 4.13) 

{4.14) 

where { e, de} commute with {T, 'I'}, and elements of the matrices T and T = (Tt)-1 

are the generators of the two SLg{2)-groups with the following crossing-commutation 
relations: 

RTT'=TT'R, ( 4.15) 

This formulation of the q-Lorentz group has been proposed and investigated in 
(27]-[29]. Using the q-trace {2.18) one can construct from the generators eii the , 
contragradient veilbein I-forms e;;: 

e- .. - eii q-1Tr (e)'·· IJ - - q LJIJ e { 4.16) 

The co-transformation {4.13),(4.14) fore reads 

e - i'er-1 
, de - TdeT- 1 . ( 4.17) 
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Further, we need a differential calculus on SLq(2). Up to now we do not have an 
appropriate calculus on SLq(N) (see however [30]). Therefore, we will.consider the 
case of extended Lorentz symmetry generated by OaL.(2). In this case, one can 
consider the local version of the transformation ( 4.14) 

de·- 'dret-1 + Tdet-1· - (±)Tedt-1 , {4.18) 

where {T, dT} and {T, dT} are two isomorphic GLq(2)-exterior algebras (2.8)­
(2.10) with the cross-commutation relations defined by eq.(4.15) and 

RTdT' = dTT'R, 
RdTT' = TdT'R' 

RdT.div = -dTdT'R, 
(4.19) 

Note that formulas (2.8)-(2.10),(4.15) and (4.19) for the GLq(N) R-matrix define the 
differential complex on GLq(N, C). Then, one can introduce the covariant derivative 

{Ve) = ·de - Ae - eA 

where the connection I-forms A ~nd A are transformed as 

A - T AT-1 + dTT.:.. 1 
, A - T At-i + dtt-1 

• 

(4.20) 

( 4.21) 

For the consistence we demand that A= At. The corresponding· curvature 2-forms 
F and F' are defined as usual 

F = dA - A2 
, F = dA - A2 

• ( 4.22) 

We assume that 2-forms F and F' admit the expansion over the basis of the veilbein 
I-forms {cf. with (3.9)) 

F1 = Trg2(e2F12e2) - F'1 = Trg2(e2F'f2e2). ( 4.2~) 

The noncommutative scalar curvature could be obtained as a real. combination of 
the coefficients F12, F'12: 

:F = Trq1Trq2(F12 + F'12) , 

and the corresponding algebraical version of the Einstein Lagrangian reads 

.c, = µ(eii). :F 

where the invariant 4-dimensional real measure µ can be chosen in the form 

µ = i(Trq(eeee)-Trq(eeee)). 

Here e; are contragradient veilbein I-forms transformed as in (4.17). 
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• 
5 Discussion and Conclusion 

To conclude the paper we would like to make sorrie remarks and comments. 

1. We note that there is a realization of the differential complex (2.8)-(2.10) with 
the usual differential d = dzoz + dzo, over the classical 2-dimensional space 
{z, z}. Indeed, let us consider the algebra 

RTT' 
TM'=RMRT 

RMRM=MRMR 
[M, M'] 

= TT'R, 
, MT'= T'R-1MR-1 , 

, R- 1M'R-1M' = M'R-1M'R-1 , 

= 0' 

(5.1) 

where as usual M = M1 and M' =· J.12 etc. Then, one can prove that the 
operators 

T(z, z) = e:ip(zM)Texp(zM), _ 
5 2 dT(z, z) = dz(8zT) + dz(8.T) = dzMT + dzTM ( ' ) 

satisfy the commutation relations (2.8)-(2.10). The generators { ei, ( dei)} of 
the exterior algebra nz (2.1) for c = q can be realized now as columns of the 
quantum matrices Tj(z, z) and dTj(z, z). In this sense, we indeed can consider 
Eqs.(2.4),(2.5) as local co-transformations where { z, z} are coordinates of the 
space-time. We stress also that Eqs.(5.1) and (5.2) remind the formulas ap­
peared in the framework of the Hamiltonian quantizing of the WZWN models 
(see e.g. (31] and references therein) and related toy model (32]. 

2. Another attractive possibility is the choice of noncommutative space-time iso­
morphic to the space of quantum group, e.g. GLq(N). In this case, it is 
tempting to explore monopole-instanton type gauge potential I-forms 

A}= dTiM/(Z)(T-1
)~ = dTi(T-1 )}M/'(Z), (5.3) 

where Z = detqT and ([M(Z), T] = 0, M(Z) dT = dT M(q2 Z)). Substituting 
(5.3) in the anticommutation relations (2.23), we obtain that M satisfies the 
reflection equation 

M(q2 Z)R-1M(Z)R-1 -R-1M(q2Z)R-1M(Z) = 0. 

3. For arbitrary invertible Yang-Baxter R-matrix satisfying the characteristic 
equation (generalization of (2.3)) 

' 
(R - ,\1)(R - ,\2) · · · (R - ,\m) = 0, (,\; -::/ ,\i if i-::/ j) (5.4) 
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one can introduce [33] a set of quantum hyperplanes and covariant differential 
calculi_ on them. Namely, for each eigenvalue ,\r, we define the exterior algebra 
{ e, (de)} with the commutation relations [33] 

(R- ,\-) IT 1 ee' = Pr.eel= 0 
j# (,\r, - ,\j) 

R(de)e' = -;-,\r,e(de)', 
R(de)(de)' = ,\r,(de)(de)', 

(5.5) 

We choose two variants of the hyperplanes related to the eigenvalues ,\i, _and 
,\; for which the projectors Pr. ,and P; are q-analogs of a symmetrizer and an 
antisymmetrizer (fermionic and bosonic hyperplanes). Then we deduce the 
commutation relations for T and dT substituting the transformations (2.4), 
(2.5) into these two variants of relations (5.5). Surprisingly, these relations 
coincide with the relations (2.8)-(2.10) for ,\r,,\; = 1 and, as it can be easily 
shown, such a differential complex is not consistent for m > 2, e.g., for quan­
tum groups such as SOq(N) and SPq(2N) for which m = 3. Our conjecture 
is. that the consistent differential complex for quantum groups with general 
R-matrices satisfying (5.4) can be represented in the form (cf. with formulas 
presented in (6]) 

RTT'=TT'R, 
m 

T(dT)' = L Or,jPr.(dT)T'Pj - (dT)T'' 
kJ=l 

m 

L a,.,P,.(dT)(dT)'Pi = 0. 
k,j=l 

(5.6) 

. (5.7) 

(5.8) 

Here the differential d satisfies the undeformed graded Leibnitz rule, the coef­
ficients Okj = 0, 1 (k-::/ j) and ar, = akk have to be fixed from the diamond 
condition (the unique lexicographic ordering· of cubic monomials) for the al­
gebra (5.6)-(5.8). In particular, one can deduce the following condition on 
ar, 

[X(n), R] = 0 

where X(n) = (1 - I:,. ar.PDn1 + 1:,.,1 ar,a1P~P1n1P1P~. Note that the 
algebra (5.6)-(5.8) is an exterior Hopf algebra with the structure maps defined 
in (2.11). 

4. Now we make some notes about Brzezinski theorem [16] and its application to 
· the construction of quantum group covariant noncommutative geometry. 

Let (A,. ~, S, f) be a Hopf algebra and (r, d) - first order differential calculus 
on A, where r is a space of I-forms on A, while dis a differential mapping 
which is nilpotent JJ = 0 and satisfies graded Leibnitz rule. Denote the basic 
elements of A (including unity) as {t;, t0 = 1} and define · 

t;tj = m~;ik , (5.9) 
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k" 
b.(t;) = b./tk 18) tj , 

S(t;) = sf ti . 
(5.10) 

(5.11) 

The comultiplication b. is a ,homomorphic mapping for the algebra (5.9) and, 
therefore, we have the following condition on the structure constants: 

A kn A qi p r _ k AP' 
LJ.; LJ.i mkqmnl - m;jLJ.k • (5.12) 

Let us choose in r the basis of independent I-forms {w0 } defined by the 
relations 

, ( a)i dt; = X ;Wat; . (S.13) 

where x0 are some numerical matrices. Each element in r can be uniquely 
represented in the form I; a0 wa or I; waba, ( a 0 , ba E A) and therefore we 
have to be able to commute {tm} and {w0 }: 

tnw{J = (F$)!w0 t~ , (5.14) 

where 

(Fp)! = TJ-r/3 ((x 0 )~m~j(x-r)f o~ - Tr(x-Y)(x 0 )!), 

(TJa/31/h = o/,, and TJa/3 = Tr(x 0 xf3)) 

are again some invertible numerical matrices. The corresponding commutation 
relations for the basis of"l-forms (in other words the definition of the exterior 
product w I\ w) can be easily deduced by the differentiation of Eq.(5.14) 

[x
0

wa' F:Jw-rJ+ = (F$[/,
10 

- J%(EJ'Ff) W-y•W[i. (5.15) 

One can guarantee that there are no other quadratic relations on w
0 

since we 
choose these I-forms as independent. We imply in Eq.(5.15) the exterior prod­
ucts of the differential forms and introduce structure constants J:;/3 appeared 
in the Maurer-Cartan equation 

dw0 = J!-Yw/3 I\ W-y. (5.16) 

Comparing this relation with the differential of Eq.(5.13) one can express f!'Y 
in terms of the matrices x-r. 

Relations (5.9), (5.14) and (5.15) are defining relations for the exterior algebra 
0 = EB o<n) of A. Here o<0> = A, 0<1> = r and o<n) denotes the space of 

n=O 

n-forms. Now let us consider the mapping b.': 0-+ 00!1 where 0 is a graded 
tensor product and b.'(A) = b.(A). Define the action of d on fl 0 fl as 

d(o(n) 0 o<kl) = ao(n) 0 o(k) + (-1 ro(n) 0 ao(k). 

Our proposition is that if the mapping b.' (coaction) commutes with d: 

db.'= b.'d (5. I 7) 
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and the relations (5.14) are cova~i~nt under the coaction b.', then the differ­
ential complex (-5.9), (5.14) and (5.15) defines the exterior Hopf algebra of 
A· /. . 

Proof: First, we note that from the condition (5.17) we obtain the explicit 
definition of b.': 

b.'(t;) = b.(t;) 
b.'(dt;) = db.'(t;) = b.7j(dtk 0 tj + tk 0 dtj). 

(5.18) 

The coaction on the higher differential forms fl(nl can be derived from (5.18) .. 
From· the covariance of the relations ( 5.14) it is not hard to show ( applying the 
Leibnitz rule and condition (5.17)) that the relations (5.15) are also covariant 
under the coaction (5.18). The co-associativity of b. . 

/),. kj t),.l_n = b,.~n /),. ~I 
t J 1 J 

leads to the coassociativity of b.' (5.18). Thus, b.' is a coproduct for A EDT 
and, therefore, for 0. Finally, we define the extended versions of the antipode 
S' and the counit E

1 for the exterior algebra O by means of the relations · 

S'(t;) = S(t;), S'(dt;) = dS(t;), 
f'(t;) = E(t;), E'(dt;) = dE(t;) = 0. (5.19) 

All axioms for S' and f' follow from the corresponding axioms for S and .E. 

This proposition immediately implies Brzezinski's theorem [16) since the bico­
variance for (f, d) is nothing but the covariance of the relations (5.9), (5.14) 
and (5.15) with respect to the left <I>L and right <I>R coactions on A EDT 

lf>L,R(t;) = b.(t;) 
k. k. 

<I>L(dt;) = b./tk 0 dtj, <I>R(dt;) = b.;'dtk 0 t;, 
(5.20) 

and, therefore, relations (5.14) are also covariant under the coaction (5.18). 

Now we consider the left coaction of the exterior Hopf algebra n on a l~ft· 
comodule represented by some exterior algebra flz: 

"){3 Xa-+ (C' 0 t; 0 XfJ, 
dx0 -+ (Ci)~(dt; 0 XfJ + t; 0 dx/3)- (5.21) 

Here { x 0 , dx 0 } a~f generators of flz and matrices Ci represent the dual object: 
(Ci)~(Ci)p = b.~(Ck)~. If we·extend the algebra Oz -+ Oz by adding new 

· generators A~ such that A~ E 0~) and introduce a new differential v'x 0 = 
dx 0 -A~x/3 transformed covariantly under (5.21) ·, , • ·, 

v'x 0 -+ (Ci)~t; 0 v'x{J, (5.22) 
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• 
then we interpret A~ as connection I-forms. The definition of the curvature 
2-forms is evident. One can try to construct the cross-product of the algebras 
n and flt and obtain a new exterior Hopf algebra G for which n will be a 
Hopf subalgebra. In this case A~ could be realized as right-covariant I-forms 
on G. Just this realization has been done in Sect.3 where n = !laL.(N) and 
G = !laL.(N+i)· So we see that, in principle, the algebraical constructions 
of Sections 2 and 3 could be adapted to the case of arbitrary exterior Hopf 
algebra. 

5. Finally, we would like to stress that there are many variants of quantum group 
covariant commutation relations for connections, curvatures, veilbeins etc. For 
each variant {and for the same quantum group of covariance) one can obtain 
different noncommutative geometries. Therefore, the structure co-group (the 
group of covariance) does not define noncommutative geometry uniquely. In­
deed, we can embed the structure quantum group n in various large algebras 
G and correspondingly to obtain various geometrical structures. For example, 
one can consider the embedding of the structure group n = !laL.(N) in the ar­
bitrary_ group !laL.(M) for M > N + l. Obviously this wiUbe_ the generalization 
of noncommutative geometry for M = ( N + l) presented in Sect.3. 

It seems that all these ideas are very closely related to the concept of noncom­
mutative geometry on the quantum principal fibre bundles [ll]. However, we 
stress that we have not done sequential analyses of these relations. It would 
be very interesting to interpret quantum group covariant noncommutative ge­
ometries as geometries on noncommutative principal fibre bundles. 

Acknowledgments 

The author would like to thank I.Ya.Aref'eva, G.E.Arutyunov, L.Castellani, P.P.Kulish, 
Sh.Majid, A.A.Vladimirov, A.T.Filippov and especially Z.Popowicz and P.N.Pyatov 
for helpful discussions, constructive criticism and interest in this work. 

This work was supported in part by the Russian Foundation of Fundamental 
Research (grant 93-02-3827). 

References 

[l] A.Connes, Geometrie non commut~tive, (Intereditions, Paris, 1990). 

[2] L.D.Fadde~v, N.Yu.Reshetikhin and L.A.Takhtadjan, Algeb.Anal. I No.I 
{1989)178. 

[3] V.G.Drinfeld, Quantum Groups, in Proc. Inter. Congress of; Mathemat­
ics vol.l(Berkley 1986)798; M.Jimbo, Leit.Math.Phys. 10 (1985) 63; ibid. 
11 (1986)247; S.L.Woronowicz, Comm.Math.Phys.111(1987)613; Yu.Manin, 

20 

Quantum Groups and Noncommutative Geometry, Montreal University Prep. 
CRM-1561 (1989); Comm.Math.Phys. 122 (1989)163. 

[4] S.L.Woronowi_cz,Comm.Math.Phys.122(1989)125. 

[.5] L.D.Faddeev, Lectures on Int. Workshop "Interplay between Mathematics and 
Physics", Vienna, 1992 (unpublished); B.Jurco, Lett.Math.Phys. 22 (1991)177; 
T.Brzezinski and Sh.Majid, Lett.Math.Phys. 26 (1992)67; P.Aschieri and 
L.Castellani, lnt.J.Mod.Phys. AB (1993)1667; F.Miiller-Hoissen, J.Phys. A: 
Math.Gen. 25 (1992)1703. · · 

[6] U.Carow-Watamura, M:Schlicker, S.Watamura and W.Weich, Comm.Math. 
Phys. 142 ( 1991 )605; L.Castellani and M.A.R.-Monteiro Phys.Lett. B314 
(1993)25. . 

[7] B.Zumino, ·Introduction to the Differential Geometry of Quantum Group, Prep. 
LBL-31432 (1991); P.Schupp, P.Watts and B.Zumino,. Lett.Math,Phys. 25 
(I 992) 139. 

[8] A.P.Isaev and P.N.Pyatov, Phys.Lett . . Al 79 (1993)81. 

[9] A.P.Isaev and Z.Popowicz, Phys.Lett. B307 (1993)353. 

[10] I.Ya.Aref'cva and I.V.Volovich, Mod.Phys.Lett. A6 (1991) 893; Phys.Lett. 
B264 (1991) 62; A.P.Isaev and Z.Popowicz, Phys.Lett. B281 (1992) 271; 
T.Brzezinski and Sh.Majid, Quant. Group Gauge Theory on Classical Spaces, 
Prep. DAMPT /92-51 (1992); D.Bernard, Suppl.Progr. Theor.Phys. 102 (1992) 
49; K.Wu and R.J.Zhang; Comm.Theor.Phys. 17 (1992)175; V.Akulov, 
V.Gershun and A.Gumenchuk, JETP Letters, 56 (1992)180. 

[11] T.Brzezinski and Sh.Majid, Comm.Math.Phys. 157 (1993)591; 

[12] L.Castellani, Phys.Lett., B292 (1992)93; S.Watamura, Quantum Deformations 
of BRST Algebra, Heidelberg Univ. Prep. HD-THEP-92c39(1992); Bicovariant 
Differential Calculus and q-Deformation oj Gauge Theory, Heidelberg Univ. 
Prep. HD-THEP-92-45(1992). 

[13] I.Ya.Arcf'eva and G.E.Arutyunov, Steklov Math.Inst. Prep., SMI-4-93(1993). 

[14] A.P.Isaev, "GLqfN)~covariant Noncommuiative Geometry", in Proceed. of the 
XXIIth Conference "Differential Geometric Methods in Theoretical Physics" 
(Mexico, 20-25 September, 1993). 

[15] A.P.Isaev and P.N.Pyatov, "Covariant Differential Complexes on Quantum 
Linear Groups", Preprint JINR, Dubna, E2-93-416 (1993). 

[16] T.Rrzezinski, Lett.Math.Phys. 27(1993)287. 

21 



[17] A.P.Isaev and A.A.Vladimirov, "GLq(N)-Covariant Braided Differential Bial­
gebras", Dubna preprint JINR E2-94-32, hep-th/9402024. 

[18] J.Wess and B.Zumino, Nucl.Phys. (Proc. Suppl.) B18 (1990)302. 

[19] A.Sudbery, Phys.Lett. B284 (1992)61; A.Sudbery, Math.Proc.Camb.Phyl.Soc. 
114 (1993)111; A.Schirrmacher, Remarks on use of R-matrices, in Proc. of the 
1st Max Born Symposium, eds. R.Gielerak et al. (Kluwer Acad. Pub!., 1992) 
p.55. 

[20] Yu.I.Manin, Theor.Math.Fiz., 92 (1992)425. 

[21] A.P.Isaev and R.P.Malik, Phys.Lett. B280 (1992)219. 

[22] P.Kulish and R.Sasaki, Progr. Theor.fhys., 89 (1993) 741. 

[23] Sh.Majid, J.Math.Phys. 32 (1991)3246; ibid., 34 (1992)1176. 

[24] A.Filippov, D.Gangopadhyay and A.P.Isaev, Int.J.Mod.Phys. A 7 (1992)2487. 

[25] J.W.Milnor and J.D.Stasheff, Characteristic Classes, Princeton Univ. Press and 
Univ. of Tokyo Press (1974). 

[26] B.Zumino, Wu Yong-Shi and A.Zee, Nucl.Phys. B239 (1984)477; B.Zumino, 
Nucl.Phys. 253B (1985)477. 

[27] U.Carow-Watamura , M.Schlieker,· M.Scholl and S.Watamura, Z.Phys.C 48 
(1990)159. 

[28] O.Ogievetsky, W.B.Schmidke, J.Wess and B.Zumino, Comm.Math.Phys. 150 
(1992)495. 

[29] J.A. de Azcarraga, P.P.Kulish and F.Rodenas, Valencia University preprint 
FTUV 93-36, 1993; P.P.Kulish, Valencia University preprint FTUV 93-54, 1993. 

[30] L.D.Faddeev and P.N.Pyatov, "The Differential Calculus on Quantum Linear 
Group", hep-th/9402070. 

[31] L.D.Faddeev, in Filds and Particles, Proceedings of the XXIX Winter School 
in Nuclear Physics, eds. I-I.Mitter and W.Schweiger, Schladmig, Austria 
(Springer, 1990); A.Alekseev, L.D.Faddeev and M.Semenov-Tian-Shansky, 
Comm.Math.Phys. 149 (1992)33,5; A.P.Isaev, Theor.Mat.Phys., 71 No.3 
(1987)616. 

[32] A.Yu.Alekseev and L.D.Faddeev, Commun.Math.Phys. 141 (l991)413. 

[33] L.Hlavaty, J.Phys. A: Math.Gen. 25 (1992)485. 

Received by Publishing Department 
on March 14, 1994. 

22 

I 
' 

l 
I 


