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1. Introduct ion 
Л renewal of interest in chiral Lagrangian theory was excited by recent progress in the con­
struction of realistic effective ehir?l meson Lagrangians including higher order derivative 
terms as well as the gauge VVess-Zumino term from low-energy approximations of QCD. l'lii* 
program of bnsonization of QOD, which was started about '20 yeais ago, in the strong sense 
is of course also beyond our present possibilities. Neverllieless there is some success telaied 
to the applxatiori of functional methods to QCD-motivaled effective (mark models [Ij-;**] 
which are extensions of ihe well-known Nambu Jona-Lasmio (NJL) model [8]. These fuin 
tinual mel hods can be applied also to the bosun izat ion of the effective four-quark nonleptuv.c 
weak and electromagnetic weak interactions with strangeness change \Л$\ -- 1 by tiding 'In-
generating functional for (ireen functions uf quark currents iiitiodm ed in [9], [10]. 

The N.II. model, which we consider in this paper, incorporates not onlv all relev. ;4 
symmetries of the quark flavour dynamics of low energy Q(-l), but also offers a simple st heme 
of the spontaneous breakdown of chiral symmetry arising from I he explicit symmetry bre.ik'ii". 
terms due to the quark masses. In this scheme the euirent quarks transit into constituent .mes 
due to the appearance of a nonvanishing quark condensate, and light composite pseudoM tb.r 
N;.mbu-(loldstoiie bosons emerge accompanied also by heavier dynamical vector and a.\:;-l 
vector mesons with correct relative weights arising from reiiormali/,alioi). 

Independently from the method of including the vector and axial-sector lields in t?,.* 
effective chiral lagrangian. integrating out the vector and axial vector meson resoii-nr. --л 
essentially modifies the coupling constants of the pseuduscalar low-:*m r«y iiileractionv ML 
particular, in refs.fll], [12] it was shown that the structure constants [,, uf the «'.%-:.••) 
Leui wyler general expression for the (>{p4 ) pseudo.scalar Lagraiigiau (П] are largeh м\\ iir«vd 
by the resonance exchange contributions giving a product of terms of (){pl). But in tins c,i.-.e. 
if tin' ()[рл I Lagrangian contains meson resonances, tjieir elimination i an lead to I!u* do- '•• 
conntiup mentioned in ief.[l I J. The resonance contribut \niu- ю the purely pseudoscaiai hit i 
weak Lagrangian and the modification of its structure, induced by integrating out lh< !••.-;.> » 
meson exchanges, wen' discussed in ref.[M]. 

In this work we consider the effective nonlinear Lagiai gian for p^cudo-.calar шгмл^ >• l.i< !. 
aris< s after int.» giating uut the explicit vector and jxia I-vector r< sonarices in t lie gen- .•,*':• _• 
functional of the boson i bed NJL model. To perform smh inlegiaiion we use a method l,;i.-<. 
on the in variance of the modulus of the quark determinant under a chiral 'ransformat u>i": .n • I 
on the application of the static equations of motion to a speci.d configuration uf the 4.iir,d 
rotated fields. The elimination of vector and axial -vector degrees of freedom from the пик!-:'-.. 
o r tic- quark determinant lead* to a modification of the general struct urc of the effective s4\ • • 
Lauraiigian for the pseudoscaiai sector at ()(fi*) arH to a redciirn'ion of the гогге*р<чм!и> j 
Cla^ser- Lent wyler strur lure coefficients /.,. This method of reduction of meson resonance, . n -
be extended to the procedure [10] of chiral bosoni::ation of weak and electromagnetii-we-,!-
currents and can be used for obtaining the corresponding reduced meson currents entering u> 
the bosonized nouleptonic weak Lagrangians. In such approximation the problem of double 
counting does not arise. The effect of jM|-mixing, being most important for tin* desrripl л-:-, 
of radiative weak decays, is taken into account by the corresponding IT A i-diagonal i/alio . 
factor. 

In Section 2 we discuss the basic formalism and display all definitions and constants 
related to the bosonization of quarks in NJL model. In Section 3 we consider the sialic 
equations of motion for chiral rotated collective meson fields in unitary gauge. Applying 
these equations of motion we eliminate the heavy meson resonances from the modulus of the 
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Ф'дгк determinant and obtain in such a way the effective pseudoscalar strong I agrangiau 
wi'.h reduced vector and axial-vc< lor degr'-es of freedom. The reduced pseudosralar i'l' — A) 
.nid (S* — / J) rurrents corresponding to the respective quark current:- and quark densities art-
obtained in Section 4. In Section 5 we discuss the results of some numerical estimations and 
phenonieuological analysis of the structure constants for the reduced strung Lagraitjnaii and 
i urrenls. 

2. Bosonization of the NJL model 
The darl ing point of our consideration is the NJL Lagrangian •>{ (he rfleciiw four-quark 
interaction which has the form [8]: 

CNJI - tyid - "'u)<{ + C,„t (1) 

with 

Here 6*i and G'2 are some universal coupling constants; in*» -- diagfruQ. tnf, ,ni|)) is the 
curienl quark mass matrix (summation over repeated indices is assumed), and A° are the 
generators of the SU[n) flavour group normalized according to tr^°A6 = Уе,*. I'sing a 
standard quark bosonization approach based on path integral techniques one can derive au 
effective meson action from the NJL Lagrangian (1). First one has lo introduce collective 
fields for the scalar {S), pseudoscalar | / J ) , vector (V) and axial-vector (/1) colorless tin-sons 
associated to the following quark biliuears: 

Sa = -4(nq'--q< Pa = -4G'i^i7*— q, V* = i4G2§% ~q . A'l = i\Gjq*i„t* — </. 

After substituting these expressions into CSJL the interaction part of (he Lagrangian is of 
Yukawa form. The part of CNJL which is bilinear in the quark fields can be reA'ritteri as 

С - qtDq 

with D being the Dirac operator: 

(D = i(d + V + .47s) - PR* - I'L& = | i (5 + AH) - *\Ря + [i(5 + ~\L) - Ф']Л.- ('-') 

НегеФ = .S' + i P , V = V»Y- A = A„-i"; PR/I - 1(1 ±75) are chiral projectors; .4B/i. = V±A 
are right and left combinations of fields, and 

5 = s-£, P-P^, v^-iv;^ л. = - ^ 
are the matrix-valued collective fields. 

After integration over quark fields the generating functional, corresponding to the effective 
action of the NJL model for collective meson fields, can be presented in the following form: 

Z= IvbV&VWA ехр[«5(Ф,Ф»,КЛ)], (3) 
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where 

• Я Ф . Ф ' Л ' . Л ) = / r f v f - _ ~ l r ^ - » H „ ) 1 ( * - r . . o ) ] - ^ l r ( V ; 2 + K)\ - i T r ' [ l o g ( i D ) ] (4) 

is the effective action for scalar, pseudoscalar. vector and axial-vector mesons. The first te rm 
in (4), quadrat ic in meson fields, arises from the l inearization of the four-quark interact ion. 
Vlie second term i^ the quark determinant describing the interact ion of mesons. The trace 
Гг' is to he understood as a space-lime integration and a "no rma l " trace over Oirac, color 

and flavor indices: 

'IV = / f / V l ' r . Tr = tr., • t r r • r/-
The quark determinant can he evaluated either by expansion in quark loops or by the heat-
кепи I technique w i th proper 1 l ine rcgularizatioir [15], [16]. Then , the real part of log ( det J D ) 
contr ibutes to the non-anomalous part of the effective Lagrangian while the imaginary part 
of it gives the anomalous effective Lagrangian of Wess and Zuinino which is related to chiral 
aii 'unalies [ IT] . 

The modulus of the quark d< terminant is presented in the heat-kernel method as the 
expansion over the so-< ailed Seeley-deWitl coefficients h^: 

where 

V{n,x) • I (it 
/ , ' 

is the incomplete gamma funct ion; /t plays the role of some empirical mass scale parame­
ter which wi l l fix the rcgularization in the region of low momenta, and Л is the intr insic 
regular izat ion cutoff parameter. It can be shown, that (i arises as a uouvanishiug vacuum 
expectation value of the scalar field S. I t corresponds to the consti tuent quark mass. The 
formulae for the Seeley-deWitt coefficients hk up to к ~ 6 are presented in [16]. 

The effective meson Lagrangians in terms of collective fields can be obtained f rom the 
quark determinant after calculat ing in tr ' / i ,{ j ) the trace over Dirac indices. The "divergent" 
part of the effective meson Lagrangian is defined by the coefficients Л u . / J , and ht of the 
expansion (5): 

Ci" - T^ t r { r ( ° -S )И 7 5 - * ' -M' + i{<W+ «F"),)l 
+ 2[Л'«-''/Л"_ /1>Г(О,^)]А1}. (6) 

where ,M = ФФ* — fi2; 0 " and D^ are covariant derivatives defined by 

Du* = dfl* + ( Л £ * - • -4?). * V = ди* +{А** - * / t £ ) , (7} 

and 

F?JL = d„A*'L - dvA
RJ1' + \K'L- A"'L\ 

are field-strength tensors. 
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The p4-U'nns of the finite part of the effective l.agraugian arise ftom the cuefiieients л ( 

and hi. Assuming the approximation {'(к.р*/ \г) =s I'(A-) (valid for к > 1. and fi'/\* "C 1 i 
one can present this part of the effective meson bagrangiai; in the form 

/ / (ЛК^Ф О"Ф' + .м »„Ф'М„Ф) 

- J/[('£>'-нО1]}- <«> 
where ,V? = ФТФ - / Л 

We will consider a nonlinear paMinelerizaiion of с hind symmetry * orrespondiiig to the 
following representation of Ф: 

Ф-- n^u. 
where ^ J ( J ) is the matrix of scalar Melds belonging to the diagonal iiavi.i group while nutlrix 
П(х) гергеы nts the pbeudoscalar degrees of freedom ? liviriR in the coset spa#e / (?/)л -"' 
/ 'ITI}H/1 V(") , which can be parameterized by the unitary maltix 

illi) •=•• exp ( т ^ Г ^ ( ' ) ) . y>(x) = r V ) T , 

with FQ being the bare тг decay constant. I'nder chiral lotations 

the fields Ф and Лй are transformed as 

Ф - » Ф = ^ я 

and 

•4" - * ? = Ч С Й ( ^ + К + - ^ К * . '»£ - ^ - W<>,. t l'„ - .<*„!{!.. CD 

Ко г the unitary gAUge £L = £.k = П tin* rotated Uirac operator fUj Retssthe form 

I'D - *D = (PJl + / 'дП*)1'6(^П + P w n f ; - ;(t) + f + Л7.О - X. f 10) 

It is worth noting that under local t'/,(n) x {-''«(n J transformations tiie modulus of t.lie quark 
determinant is invariant, while the quadratic terms of V ,̂ Au and the chiral anomaly do not 
respect this invariance. 

Taking into account the equations of motion for nonrotated scalar and pseudoscalar meson 
fields in nonlinear parameterization one can reproduce from (4) and eqs.(6,8) the following 
general expression of the effective meson Lagrangian including p2- and /^-interactions: 

c[y;-"d> =-. -Ilir^L-) + tlir(MU + и'м) 

+ (ц - ~L,\ (lrL„L"f + L2U(UL„ Lrf + 3(L„i")2) + ^tr(fL^Y) 
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- Lt\.t(L„L") Ц Л Ш ' + UM') - LbiT[L„L»{MU' + UMx)\ 

+ U (tr(Mc/< + UM^Y + L-, (tr(Mi/1 - UM^y 

+ Ulv(MU*MV< + ИМЧ'М*) - L 9 t r (F„t«"f l" + F^L"L") 

- UU^F^UF1"") - « , t r ( ( f £ ) a + (l-tf) + Hj t rMM f . (II) 

where the dimensionless structure constants /,,(1 -- 1 10) and /7 ! | 2 were introduced by 
(iasscr and Leutwyler in ref. [1.4]. Here we use the notations 

Г = S!2 ; /.„ = » „ ( ' i/ ' , /f„ = ( / '«„ '• ' ; /•;? - » ~ - . 
4 т ' 

willi 

! / - Г ( 0 . / 1 2 / Л 2 ) ; A/ = cliag(x;,x3 Л?,) . X? = Kl'/Cn tf) - - ^ m ^ v ^ / ^ ' : 

and < Tjq > being the quark condensate. Moreover, the coefficients Л, and H\it are g!ven by 
A, - i / . j = LA = Ц = 0and 

In 

U 

Ц 

ih 

лу i 
1 6 * 4 2 
V 

lo i r 
Л' 

L3 = -
Nc 1 

16ir2fi' 

16тг2 

l e i r ' f i V * \2j' 

- ^ ' // 
1 6 » ' 6 ' ' 16тг20 V 2 / 

Убл-2 ( I + 2 I J ) ! / - — (12) 

where J- = —/<f'02/(2 <q<j>). 
The effective (nonreduced) Lagrangiau for the pseudoscalar sector, taking also into ac­

count the emission of the "structural" photons A„, can be obtained from (11) when V„ =--
Ли = 0 in the covariant derivatives and when the tensor F,,]! is replaced by ie(d„A^ — 3„.4„|. 
In the following section we will discuss the reduced nonlinear Lagrangian for pseudoscalar 
fields, which arises from generating functional (3) after integrating out the vector and axisl-
vector degrees of freedom in the modulus of quark determinant. 

3. Strong Lagrangians with reduced vector and axial-
vector fields 
To pe form the integration over vector and axial-vector fields we will use the fact that I he 
modulus of quark determinant is invariant under chiral rotations. Then, the pseudoscalai 
fields can be eliminated from the modulus of quark determinant in the effective action (i) 
by using the rotated Dirac operator (10) for unitary gauge. After such transformation the 
pseudoscalar degrees of freedom still remain in the mass term of eq.(4), quadratic in meson 
fields, which are not invariant under chiral rotations. Since the masses of the vector and 
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nxial vector mesons are large compared to the pion mass it is possible to integrate out the 
rotated fields Vfl and Au (9) in the effe< tive meson action using the equations of mot tun whicli 
arise from the mass terms of the eflertive action (4) in the static limit [18]. In suHi an 
approximation the kinetic terms (f^,' '}'* for the rotated fields V^AtulA» ал well as higln-i 
order derivative nonanoma!ous and IVess-Zumino terms are treated ,ts a perturbation. 

In terms of the rotated fi"lds Vtl, Atl (9) the quadratic pari of the effective action (I) leads 
to the Lagrangian 

Ca= -±1т(М1Ч h.c)- №•) tr[(l^ - iv)- M ' l . - « , . ) * ] . (i:*) 

where ("i-v'/St/)2 ~ l / H ^ ) , with in"- and ijy being the hare mass and coupling constant of 
the vector gauge field, and 

v„ = ищм1 + «4n)i «* = Und^ - пЧн) • 
The modulus of quark determinant contributes to divergent and finite parts of the effective 

mc.ion Lagrangiaii. In terms of the rotated fields, taking into account that for unitary gauge 
Ф —* S, the divergent par!, of the quark determinant (b) gives 

^. = ^ t r { - v ^ + g[(^)' + (^n}. ( i i ) 

where the approximation E = fi was used. The p4-terms of the finite part uf tin- effective 
meson Lagrangians (8) are of the form 

+ 5^^"*-J[(^) I + (^)a]}- us) 
The kinetic terms (F„J '), arising from the sum of Lagrangians (14) and (15), lead to the 

standard form after rescaling the rotated nonphysical vector and axial-vector fields Ц.,.4,,: 

V„ = — V["h) Au = — Л<"»> (161 
" ( l + 7 ) , / 2 " ' ( I - 7 ) " 2 " ' ( ' 

Here 

, - " 2 - Nc(g°j> 
(17) 

and V£* \A' are the physical fields of vector and axial-vector mesons with masses 

„2_(m°v)2
 m2 _K)= 

' 1 + 7 

where Z\ = 1 — ( f o j ' / m ^ ) 2 is the ir,4i-mixing factor. 
Since in the following we also want to investigate the radiative processes with "structural" 

photon emission in addition to inner bremsstrahlung ones, it is necessary to include electro­
magnetic interactions in the bosonization procedure. Obviously, one then simply has to use 
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the replacements \'}г>,) — V^',] + it^A^Q . or V„ - V„ + ie0A„Q. where Q is the matrix 
of electric rpiark charges and 

are the physical electromagnetic field and charge respectively. 
The static equations of motion arise from variation the mass terms of eq.(l.'J) in chiral 

limit over rotated fields V'(1. Au and lead to the relations 

К = ' '!Л Дм = ^ « I T 1 ("•») 
and 

Here 

± .^(ЛЙ(«^]-Л[(?.а^). (20) 

ajr1* = f)M * +iru-4^[Q,*] = d(i * + *c ( ' 'MXpM[Q,*) is the prolonged derivative describing 
the emission of the inner bremsstrahlung photon while the electromagnetic field strength 
tensor T]Z] = oVA - д„А„ corresponds to the structural photon ( с 0 ^ = clph)F}Z'rh)); and 
/.[7' = (fJ,, t ' ) / ' f . Further, we will omit for simplicity the upper indices [•)) corresponding 
to the inner bremsstrahlung photon and only tensors T,Z will be kept explicitly. We will 
also omit everywhere the upper indices (ph) assuming that all pholons and electromagnet it-
charges in further formulae are physical. 

Applying the equations of motion (19) to the terms of the effective actions (i:i.l-l), 
(piadralic in vector and axial-vector fields, one reproduces the standard kinetic term for 
the pseudoscalar sector: 

/.*.., = - ^ t r ( t „ i " ) . (-21) 
4 

In the same way the ;J4-terms of the actions (14,15) lead to the reduced Lagrang'ians for 
pseudoscalar mesons of the types 

- 2 Z 5 t r ( i „ t ^ R M ^ ) - a ^ ' U r ^ t T f » ) 

- •2(ie)2L10u[Al{Q^Uf,Q^(.H - Q'CWAH) 

corresponding to the effective p4-Lagrangian in the Gasser-Leutwyler representation with the 
structure coefficients Li defined by the relations, 

16»-2 [^^->>((z;-<^) 
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4. Reduced currents 
'Пи* path-integral bosonization method can IK- applied to the weak and electromagnetic-weak 
currents by using a generating functional for flreen functions of <juark currents introduced 
in (!)] and [lOj. After transition to collective fields in such a generating functional the latter 
is determined by the analog of formula (•')) where now iD is replaced by 

iD(r/) = [,{8+AH - ifa) - (Ф 4 "'о - т)\Ри 4 |i'(5 + AL - i7jL) - (4>; 4 •;.„ - 41.ЦГ,. .(24) 

Mere ijLH = ill R ̂ "Y i in< ' '' ' '•" ~ Vi.n\~ а г Р 1 ' " ' «"Xteriial sources coupling to the quark 
currents <//J/..rt7MVV aM(^ cpiark densities qPL.H'fQ respectively. The quark densities define 
the contributions of the petlguin-lype four-quark operators of the effective nouleptonic weak 
Lagrangian [19] to the matrix elements of relevant kaon decays. The bosonized (Г f A) and 
[S^f H) meson currents, corresponding to tin quark currents с//'/..А"Ь. y-7 and qu^rk deiisilies 
яР^.Н'тЧ* *a r l ' ) e obtained by varying the quark determinant with redefined Dirat operator 
(24) over the external sources coupling with these quark bilinears [10]. 

for further discussions it is convenient to present the bosonized weak anil electromagnetic -
weak (V - ,4)-current for pseuduscalar sector, generated by the uonreduced Lagrangiau (II) 
and including the electromagnet ic- weak structural photon emission, in the form: 

{nun-nd)a 

- i t r {A"[5« | i / , {( .* /{" +rU').L„}f + H2l„lJ." 

4 R3{L„.LJ.") + /<У>, ([£„,£"])]} 

4 f^; , . ' ir{A"[/t5([Q, A"] 4 \VQV\ V\) 4 RbI>'(IIQi;U] } • (25) 

Here, the first term is the kinetic current and all other terms originate from the p4-part of 
Lagrangian ( l i ) ; R, are the structure coefficients: 

- / - s . ••ЧЦ R3 = 21.2 + 1,3, R< Rb / ,9 , Яб = / - ю - (26) 

The bosonized (-S'— P) current for pseudoscalar sector, generated by the Lagrangian (11) 
and including the structural photons, has the form: 

' 0 •±liRlT(\'U)+iiRGltr{\°LlU) (27) 
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where И = -]/('2т) and G\ = -Lb- Here, the iirst term is generated al p2-level by mast: 
UTIIIS of hagrangian (11). 

Combining the method of the chiral bosonization of quark currents with the static equa­
tions of motions it is possible to obtain 'lie bosonized meson currents for pseudoscalar sector 
with ill** reduced vector and axial-vector degrees of freedom. In this way one can reproduce 
tin* standard kinetic {V — Л) current for pseudoscalar mesons 

whkh arises from the terms of effri live actions (1H.M J, quadratic in vector and axial-vector 
rotated fields, afler redefinition of the rotated fields 

Vt, - К - i(UVi,A 4 iHVHulh) • •** - -'I. + 'iUVLvtl ~ ЫЧкЛя), 

and variation over т//.„ with applying the stati' equations of motion. 
Applying the same procedure to the ;Aterms (15) of the effective action we also obla'n 

the bosonized weak and eleitromagnetic-weak \V — A) currents for pseudoscalar sector with 
the P'du^ed vector and axial-v^tor degrees of freedom. It is convenient to present these 
reduced currents in the fuim: 

./£•"•"* - -1Я-1г(л°{{й;И^,Л,1}) 

- itr{A° \lhl,L,V + fh{L,.,L.r} + J U n a „ ( 4 « [ £ , . . r ] & i ) & ] } 

with Ht being the structure coefficients, associated with the rnrresponding parameters ff of 
the representation (-">): 

"2 - le^uM A ( л" *~^Шг)' 

Thus, the reduction of the vector arid axial vector fields does not change the kinetic term 
of the hosonized (V — A) current while the structure of the p4-part of (V -- A) current is 
strongly modified (compare (25) and (28)). 

Using the bosonization procedure of ref.[10] and the equations of motion (19) we obtain 
also the reduced (5 — P) meson currents. After redefinition of scalar fields 

T - £ - 2 6 . ^ 1 , £ » - . £ ' - 24„4tfI (30) 

and variation over тц with applying the static equations of motion the divergent part of the 
effective action (14) and the finite part of the effective action (15) lead to the scalar current 

j£cd)a = ^ . / i f t2-2 t r (A«{/ ) + / l f t ^G 1 t r (A i ' L ; t ; ' ) (31) 
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with 

It can be easily shown that the reduction of the vector and axial-vector fields does not 
change the physical results for matrix elements of the bosonized gluonic penguin operator. 
arising from the product of scalar currents generated by the divergent part of the effective 
action. In fact, both for the reduced and for nonrcduced currents the corresponding con­
tributions to the penguin operator matrix element can be presented effectively in i lie same 
form: 

<r (K'ttfJ ^ . 

:i2 rt<(fy/,№')•» 
On the other hand the structure of the pseiidoscalar meson (N - I1) uirrenl generated by 
finite part of the effective action proves to be strongly modified by the reduction of the vector 
and axial-vector fields. 

5. Numerical estimates 
To discuss some physical consequences for pseudoscalar nonet of mesons we have to fix ini­
tially the numerical values of the various parameters entering in the reduced Lagrangian and 
currents. The parameters \l r a n be fixed by the spectrum of pseudoscalar mesons. Here we 
use the values \\ = 0.01 MGeV2, \\ = 0.025GeV2, and \] = 0.47GeV2. To fix other empir­
ical constants of our model we will use the experimental parameters, listed in Table 1: the 
i lasses of p- and .^-mesons, the coupling constant of the p —* mr decay , the 7гтг-scattering 
lengths «/, the pion electromagnetic sqjared radii <r^m>»t and pion polarizability aw±. We 
also include in our analysis the data on the 77 —* тг+тг~ cross section near to the threshold 
(see Fig.l). We will use the relations (17), (18), gy = g${i + 7 ) " 1 / 2 and 

9P« ••gv\\ + 2F*\4B** A 2 V ( l - Z i •)]• 
The тпг-scattering lengths are defined by the structure coefficients Li and i 3 . For тпг-

scattering lengths aj (indices / and I refer here to the isotopic spin and orbital momentum, 
respectively) in one-loop approximation we obtained [20] 

«o = ^ а 0 ( 9 - 5 * ) + ^« 0 [5 ,4 - гЗЙ + 2£> + З С - 6 ( Л 2 + 4Ь+3)] , 

- -о02Л + -«52[Д + 0 -

2 Q ° + 2 a ° 3 B + 66 + a 

2 
(C + 4D) 

(C + D)-l(. 

5 + 

3(42 + 6 + 3)j 

-3 + i ( * 2 - 6 

36 - 2a + 6 

-3) 

S2 + 46 + 3 
15 )] 

4 + 
6* ••F-hr»*»)]. 

Here его = 5 ( " ' * / ( 2 T F O ) ) \ 6 = | ( l — /5), with 0 being the parameter of chiral symmetry 
breaking which takes here the value /? = 1/2; a = 21(1 - 6) and Ь = ( l l* 2 - Ki + 3). The 
parameters 

A = AB + A'°°", В = BB + B'°°", С = CB + C'°°", i> = DB + D'°°p 
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Table I: Physical input parameters used for the fixing nf the empirical constants of the model 

Input parameters 
m,, 

" 4 , 

& • " 

«!•»'' 
" i • " • » 
n\ • tn' 

« " • <"': 

«j • m!' 
* ' r .11 ' * ' * 

' > * ' 

Experiment 
770.1/fV 
I26IMM' 

fi..| 
0.2:3 ± o.o.r) [2:i| 

-0.0S ± 0.0.1 [2.Ч] 
(j.illlli ±0.01(1 |2.]| 
(17 -t:i)- ю-" |'.м| 
( i . : i± : i ) - Ю-" |24) 

( о . ш ± о.о:ю)/»Г' |2.r)J 
((i.K^ u ; Kj-'/r»-' [2ii] 

'Пинту 
772.1/(1' 
1160Л/Л' 

e.R 
0.20 
-0 04 
0.0.4S 

17- 10-" 
•>• ш - ' 

0 ' > : l / 7 i i J 

S.I)- ID" V » ' 

include in themselves the Horn contributions 

/ 1 " - -MAx'til* - L ) . /<H - -o7f)7rJZ, . r w = 57uV(Z2-f Z 3 ) . /->* = Г)76тггЛл 

and the pion-loop contributions calculated, tiding the super/propagator me hod [21 ], in ref.[22]. 

A'<-v =-- - 1 . 5 , Я'""1 = 3 , Г'°"'р = 5.5. Dln"r = 11. 

The eler|.romagnetir squared radius of the pion is dt fined as tlie coefficient of the */'-
expansion of tlie electromagnetic form factor /1т(д'*)'-

< *[P2)\v™\v{Pi) > = / : m ( 9
2 H P l - ^ ь . 

Being restricted only by pion loops, one gets in the .S'P-regularizatio.i the corresponding 
contribution to the electromagnetic squared radius [27]: 

<''™>i'r"l=-7T
J

FTil^+l: (•Wo)2 "(£кУ 1 = 0.062/ш2 . 

where С = 0.577 is the Euler constant. Because the main contribution to this value arises 
from the logarithmic term, the kaon loop contribution, which contain., the small logarithm 

In (mк/{2^Fo)) . can be neglected. At the Born level, the contribution to the pion elertro-

magnetic squared radius originates from the /,9-term of the reduced Lagrangiau (22): 

._2 (Ber„)_ 2 1 7 
Ai 

The pit ii polarizability can be determined through the Compton-scattering amplitude: 

< *1(Р:)ЫР1№ЫЛЧ>Ъ\ЛЧ2) >= T,{pip2 | q\4i) + T2{pipi\q,qi), 
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ТШ - 2eV' Е- (а- - ^ - %£\ Т[0 1, - ге £л £л \д - - I. 1, 
\ Pi</i Pi4i J 

-0: 

where d(qiqi) is the so-called dynamical polarizability function. Defining tin1 pularizaliility 
of a meson as the coefficient of the effective interaction with the external electromagnetic 
field 

Ц„, = - о , ( £ а - / / 2 ) / 2 

огк* obtains 
_ 1*Лч\Чг) I 87rw" L«>=»' 

The pion-loops give the finite contributions without t'Г-divergenres: 

where i . = ( ? l V , ) / (2mJ) , /(C) = C ' - / 2 ( 0 - 1 . and 

' a rc tan(C ' - I ) " 1 ' 2 , 0 < C < 1: 

/ I * 

Л0 = 5 In v / — - г - tir I, С > 1; 2V '-у/Ч-С-' / 

J in l + x/l-C-1 

<<o. - l + y'l-C"' 

The meson-loop contributions to the pion polarizabilities are 

(loop) = 0, (/0£>Я| 
= - 5 . 4 3 - Ю - 5 / » 384JT3F0

2mJ 

At the Born level, the L9- and Lm-terms of the reduced Lagraugian (22) give: 

e"n)-%(h+u) ir, (Horn | 

In our analysis the constants Fa, ft and m". are treated as the independent empirical 
parameters and their values are fixed as 

/•'0 = 92 MeV , /j = 186 MeV , m\, = 8-10 MeV (32) 

The corresponding calculated values of the input parameters are also presented in Table 1. 
The results for the 77 —* тг+тг~ cross sections are shown in Fig. 1. All other constants can be 
calculated using the values (32): 

g°v = 5.4 , 7 = 0.185 , Z\ = 0.653 . 

The value for the constituent quark mass fi seems to be by a factor of 2 too small as compared 
with the corresponding value from the usual phenomenological analysis, based on nonreduced 
Lagrangian and currents. A similar shift of the constituent quark mass has been observed, for 
example, in ref. [28] after taking into account the vector-scalar and axiat-vector-pseudoscalar 
mixing in the analysis of the collective mesons mass spectrum within the extended NJL 
model. 

12 



I'sing the values uf the parameters Z\ ,7 and (y°)2 which were fixed above, one can 
compare numerically the structural parameters i , (23) of the reduced effective Lagraugian 
|22j with the corresponding parameter? /,, of the nonredueed Lagrangian (11): 

Za = 1.20/-2 = 1.30-If!"3, Zj = 1.71/.J = - 5 41 1СГ3 Z6 = 1.99 • 10" 3 . 

Zi,= 1.35L» = 8.53 • ! U " \ /,„, = l.:i6L,o = - 1 . 3 3 - I 0 - 1 , (33) 

After substituting the values of Z'A ,7 and (j/J.)' into cos.(29) one can also compare numeri­
cally I he strurlure parameters Rt and Ht: 

ft, = -0.2K5 • lO"1 , R2 = 0Л6К? = 2.12 • К Г 3 , « 3 = - 0.992 • 10~3 (« :1 = 0 ) , 

k, = 2W.i = 0.62K, = -1 .98 - Ю - 3 , «5 = U.39K, = 1.23- 10 3 ,:lil 

1 he electromagnetic weak p?rt of the nonreduced current (25) corresponding to the struc­
tural constant HS.G (respectively, the Я5 term of the reduced current (2У)) describes the axiul-
vector form factor FA ОГ the radiative decay r —< Ы-j. The form factors of this decay .lie 
defined by the parameterization of the amplitude 

У;,(А'. тг -> hi) - -Fit !/ч.£„„,Д"<Л" + <I'AU,.{I"1) ~ <?,.(**)) ] . 

where к is the 4-momcntum of the decaying meson, </ and £ are the 4-momentum and poi.u-
ization '1- vector of the photon ; and the vector form factor Fv is determiued by the anomalous 
VVess-Zumino electromagnetic-weak current, origiuating from the anomalous part of the ef­
fective meson action, which is related to the phase of the quark determinant. The ratio of 
the axial-vector and vector form factors is determined by the relation 

- £ A - 12тг"(2Я5 + «б) . 
Fv 

The theoretical value of :he ratio FA/FV '-= 32:r2(/,4 + Lin) =• 1 arising from nonreduccd 
current (25) with structure constants Ло,1д (12) is in disagreement with the expcrimentfl 
results on this ratio: 

(1'А\1"Г) f 0.25 ±0.1? [29). 
\ l v ) ~ \ 0.41 ±0 .23 [30]. 

At the same time the H5 give:- the value 

Fv~ ZAV К ( Ы 
in agreement with the experimental data and also corresponds with the result of ref. [1]. 

Thus, after reducing the vector and axial-vector degrees of freedom it proves to be possible 
to remove the inselfconsistency in the description of the ratio FA/FV and pion poiarizability 
which arises seemingly in the pseudoscalar sector of the tion reduced effective Lagrangian (11) 
with the Дд^о-^етгш (see the detailed discussion of this inselfconsistency, for example, in ref. 
[31. 32]). The same problem was also considered in ref.[33], where the values of the structure 
constants combination (LQ + LIQ) and pion poiarizability ar± determined from the fit of 70 --* 
7Г+7г~ cross section data were discussed. Fig.l shows that within the experimental errors th<' 
MAKK-I1 data [34] are consistent with the experimental result for pion polarizability obtained 
from radiative тг scattering in nuclear Coulomb fields [26]. We have taken into account one-
loop corrections, while this was not done in ref.[33]. The description of the 77 —» x + * ~ cross 
section data above mw* = 500MeV can be improved if one takes into account the unitary 
corrections in a more complete way [35, 36]. 
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Fig. 1. MARK-I1 [34] cross section data for 77 -» тг+тг" for CMS production angles \cos9\ < 
0.6. The experimental points in the region m„„ <0.5 GcV were only included in the analysis. 
The dotted line shows the QED Born contribution; the dashed and dash-dotted lines show 
the results of the successive inclusion of p^-contributions and one-loop corrections. Both lines 
an- calculated with (Z9 + L w ) = 4.2 • 10"3, corresponding to the fit of the total cross section 
data together with the parameters of Table 1. The solid line corresponds to the direct fit of 
the experimental points for m „ <0.5 GeV without including the experimental parameters 
of Table 1. 
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Conclusion 
In this paper we considered the modification of the bosonized Lagrangiau and of the currents 
fur the psemloscalar sector obtained after integrating out the vector and axial-vector collective 
fields in the generating functional of the N.JL model. It has been shown, thai the reduction 
uf I he ич'чш resonances dues not alfect the kinetic terms of the strong Lagraugian and the 
l.osolli/.ed (Г - .4) current as well as the (S - I*) current, generated liv the divergent part 
of quark determinant. On the other hand, the reduction of thv ve< tor and axial-vector fields 
leads to an essential modilicMion of those part of the pscudoscalar sliong Lagraiigiau and 
of tlie currents, which originate from (ЦрА) terms of the- quark determinant. The icduced 
Lagraiigians and currents allow us to lake into actount in a simple way all effects arising 
from resonance exchange contributions ami Л-.-1 (-intxiilg when calculating the amplitudes of 
various proci sse.s witti pseudoscalar mesons in the initial and final stales. 
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