


1. Introduction

A renewal of interest in chiral Lagrangian theory was excited by recent progress in the con-
struction of realistic effective chiral meson Lagrangians including higher order derivative
terms as well as the gauge Wess-Zumino term from low-energy approximations of QCD. Tl
program of bosunization of QCD, which was started about 20 years ago, in the streng seuse
is of course also heyoud our present possibilities. Nevertheless there is some success tefaicd
to the apphcation of functional methods (o QCD-motivated effertive quark models 17}
which are extensions of the well-known Nambu Jona-Lasmio (NJL) model [8]. These fun
tiogal methods can be applied also ta the hasunization of the effective four-quatk notleptore
weak and electromagnetic weak interactions with strangeness change [AS] <= 1 by using e
generating functional for Green functions of guark currents introduced in [9), [10).

The NJL model, which we consider i this paper, incorporates not onlv all relev, ot
symmetries of the quark flavour dynamics of low energy QUD, but also offers a simiple schemie
of the spontancous breakdown of chiral symmetry arisiog from the explicit symmetry breaking,
terms due to the quark masszes. In this scheme the current quarks transit into constituent ones
due to the appearance of a nonvanishing quark condensate. and fight composte pseodone dar
Nambu-Goldstone bosons emerge accompanied also by heavier dynamival veetor and asiel
vector twesons with correct relative weights arising from retormalization.

Independently from the method of including the vector and axial-veetor lields i the
effeetive chiral | agrangian, integrating ont the veclor and axial veclor ineson resopan: -
essentially modifies the coupling coustants of the pseudoscalar low-cnergy initeractions.
particular, in refs.fl1). [12] it was shown that the structure constanis [, of the Ty
Lewwyler general expression for the ()(p') pseudoscalar Lagrangian {13) are largely saturac.ol
Ly the resonance exchange contributions giving a product of terms of ({p?). But in tus case,
il the Q') Lagrangian contains meson resonances, their elimination can lead to the do !
comnting mentioned in rel {11, The resonance contributions to the purely pseudoscaiay - it

weak Lagrangian and the modification of its structure, induced by integrating out the vy

meson exchinges. were discussed in ref.[14]

In this wark we consider the effective nenlinear Lagrargian for prenduncalar inescos e bl
atises after integrating vut the explicit vector aml axial-vector resonances 1 the gev sty
functional of the bosonized NJL model. To perforin such integration we use anethod Laec
on the invariance of the modulus of the quack deterninant under a chiral ransformatiors - 4
un the application of the static equaiions o motion to a special configuration of the airal
rotated fields. The elinination of vector and axial-veeter degrees of freeden from the mindr'. .
of the quark determinant leads te a modification of tie general strueture of the effective
Lagrangian for the psendoscalar sector at O(p*) and to a redetmition of the corresponding
Gasser: Leutseyler strur ture coefficients £,. This method of reduction of mesun resonance, va
be extended to the procedure [10] of chiral bosonization of weak and electromagnetic-wew
carrents and can be used for obtaining the correspornding reduced meson currents entering o
the bosonized nonleptonic weak Lagrangians. In such approximation the problem of double
counting does not anise. The effect of 7A4;-mixing, being most important for the descriplion
of radiative weak decays, is taken into account by the corresponding 7 A,-diagonalizatio

factor.

In Section 2 we discuss the basic formalism and display all definitions and constauts
related to the bosonization of quarks in NJL wmodel. In Section 3 we consider the siatic
equations of motion for chiral rotated collective meson fields in unitary gauge. Applyvine
these equations ufl motion we climinate the heavy meson resonances from the modulus of the
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yrark determinant and obtain in such a way the effective pseudoscalar strong 1 agrangian
with reduced vector and axial-vector degrees of freedom. The reduced psendoscalar (117 — (1)
and (S = P) currents corresponding to the respective quark currents and quark densities are
obtained in Section 4. In Section 5 we discnss the results of some nnmerical eatimations and
phenomenological analysis of the structure constants for the reduced strong Lagrangian and
currents,

2. Bosonization of the NJI. model

The starting potnt of our consideration is the NJL Lagrangian of the effectise four-quarl,
mteraction which has the form [8]:

Lt = 4ed = 10} + Cot )

AN AN A A U

L., = 2"0{(9‘2‘41) + (tm Ti) } -'—’('1{('77“-2—11) + (q7“7 —._,—v) }
Here Gy and (7 are somie universal conpling constants: 1a = diag(mg. ud. ... 1) s the
curtent yuark mass matrix (summation over repeated indices is assumed), and A7 are (he
gencrators of the SU(r) flavour gronp normalized according tu trded® = 26, Using a
<tandard quark hosonization approach based on path integral techuiques one can derive au
ctfective meson action from the NJL Lagrangian (). First one has 1o introduce coflective
fields for the scalar (S), psendoscalar (), vector (V') and axial-vector (A) colorless mesons
associated to the following quark Lilinears:

with

wa , A s Co s X g A 4 L s
5= —4(t|q72~q‘ P’ = 4G\ Giv' 5y, V) = rleq%?q. Ay = 09,y e

M

After substituting these expressions into Lnyp the interaction part of the Lagrangian is of
Yukawa form. The part of Ly which is bilinear in the quark fields can be rewritten as

£ = giDy
with D being the Dirac operator:
D =i+ V +A) = Pr® - P = [{(5+ Ag) - Q) Pr + D+ ) -0 ()
Here ® = 5 +1P, V= Vv, A= Ay Prye = §(1 %) are chiral projectors; .ZR,',, =V+A
are right and left combinations of fields, and

dAd dAd . 'GAB . ia
-, P=P"—, V,:—'zbu?, A,:—lA“?

§=5"—,
2 2

are the matrix-valued collective fields.

After integration over quark fields the generating functional, corresponding to the effective
action of the NJL maodel for collective nieson fields, can be presented in the following form:

Z= /D@D@"DV DA expliS(¢,9', Vv, 4)], (3)



where

SV 1) = /d'.r{— —l-—lr[(¢—mg)’(¢‘mo)]

. (V2 +A%)| - Tflog(:DY] (4)
40, ‘ -

4(;7“
is the effective action for scalar, pseudoscalar, vector and axial-vector mesons. The first term
in (4). quadratic in mmeson felds, arises from the linearization of the four-quark interaction.
The second term is the quark detorminant describing the interaction of mesons. The trace
I't’ is to be understood as a space-time integration and a “normal” trace over Dirac, color
and flavor indices;

T = /ll‘.r'("r. Tr=tr, - tro - try.

The quark determinant can be evaluated either by expansion in guark loops or by the heat-
kertiel techiique with proper- time regularization {15), {16). ‘Fhen, the real part of log { det 1D}
contributes to the non-anomalons part of the effective Lagrangian while the imaginary part
of it gives the anomalous offective Lagrangian of Wess and Zuimino which is related to chiral
anormalies {17].

The modnlus of the quark determinant is presented in the heat-kernel method as the
expansion over the so-called Seeley-deWitl coeficients hy:

A [ [k —2.4%/7%)
log [detiD) = — - A T GBI Dy 3
D A v

where

[, x): / dte~'to?

is the incomplete gamma function; g plays the role of some cinpirical mass scale parame-
ter which will fix the regularization in the region of low momenta, and A is the intrinsic
regularization cutoff parameter. It can be shown, that g arises as a nonvanishing vacuum
expectation value of the scalar field 8. 11 corresponds to the constituent quark mass. The
formulac for the Seeley-deWitt coefficients e up Lo k = 6 are presented in {16].

The offective meson Lagrangians in terms of collective fields can be obtained from the
quark determinant after calculating in tr'A, (1) the trace over Dirac indices. The “divergent”
part of the effective meson Lagrangian is defined by the coeflicients hg, by and h; of the

expansion (3):

N. ‘12 — { . .
P « N . 4 Y ¢t — 2 e AT ARV Ry2
L4 mzu{l (o .v)[D *D 0 - M4 2 (u“u) +(FR) )]

2
+ 2A%w (o ) mh, (6)
A?
where M = ¢@t — 4% D# and D, are covariant derivalives defined by
Dyx =8, +{AY s — v AX). Doux =0, » +(AT 4 — v AL), (7)
and

FRIL _ g ARIL _ avAf/l. + [A‘I;I/L‘Af/l‘]

#

are field-strength tensors,



The p*-terins of the finite part of the effective Lagrangian arise from the coefficients iy
and hy. Assuming the approximation ['(k. g®/A%) = (k) (valid for & > 1o and gf/0 < 1y
wne can present this part of the cffective meson Lagrangiar in the form

‘ A 17, . . \ 1 "
) v 2 LY NI L “ 97+_ N
cy 3——,_)"}#‘u{3 [,, PTG (170 D8] + (1,91, 9)
- BMD,OT"d + M D0 D, 0)
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where M = ¢10 — 4
We will consider a nonlinear parameterization of chiral symmetry corresponding to the
following representation of @:

¢ = QXA
where L(r) is the matrix of scalar fields belonging to the diagonal Havir group while matrix

Q{r) represents the pseudoscalar degries of freedoin 2 living i the coset space 1 (1) ~
{/(n)u/l'v(n), which can be parameterized by the nnitary mwatiix

0x) ( S )) (1) = 2 ri
x) = exp | —=—=ple) ], )= 2.
¥ »@F.,"D ¥ ¥ 12

with Fy being the bare 1 decay constant. Under chiral 1otations
g4 =1+ Prbr)g
the fields @ and Af”‘ are transformed as
$ -4 &= 0ch

and

AR o AR = (B, + Vu + AR AL = Al =0, 1 V- AL 0
For the unitary gauge (;_ = £y = {2 the rotated Dirac operator (2) gets<the form

iD =D = (PO + PRONIDFLQ 4 Br®) = i(G+ 1 + Are) - B (10)

It is worth noting that under local Ug(n) x Ug(n) transforinations the modulus of the quark
determinant is invariant, while the quadratic terms of V,, A, and the chiral anoaly do nut
respect Lhis invariance.

Taking into account the equations of motion for nonrotated scalar and pscudoscalar meson
fields in nonlinear parameterization one can reproduce from (4) and eqs.(6,3) the following
general expression of the effective meson Lagrangian incinding p?- and p*-interactions:

(non—red) _ 7 M + t
Lt!/ = --'4—11'(/1“1/ )+ Ttr(M(/ +U A!)

1 1
+ (L, - §L7) (lrL‘,L“)z + Lglr(Q[L,, L)+ 3(L,,L")z) + Latr((L,L*)?)



— Latr(L,L*) (MUt + UM?) = Lo [LL* (MUY + UMY)]

+ Lo (te(MUT+ UMN) 4+ Lo (u(mrt - U,

+ Letr(MU'MU' + UMTUM') — Lgtr(F“ff,R“R" + F;L"u)

= Ligte(UTFRUPE) - H.u((F,f‘,)’ + (f;ﬁ)’) + HateMM? (1
where the dimensionless structure constants L(i = 1,...,10) and ;3 were introduced hy
Gasser and Lentwyler in ref. [13]. Here we use the notations

2
V=P L= DU, Ry= 0D BN
4
with
y = (0. 2%/A%) o M =diagOZ A% x2) A = wmp/(G R = =2mi<Ge> 7t

and < §q > being the quark condensate. Moreover, the cocflicients L, and H, ; are given by
Ly - %I.z =Ly=L;=0and

e B 2] e
H, = —;g;z[(:r+2r’)y—l]—2]| (12)

where r = —pF}/(2 <gg>).

The eflective (nonreduced) Lagrangian for the pseudoscalar sector, taking also into ac-
count the emission of the “structural” photons A, can be obtained from (11) when V, =
A, = 0in the covariant derivatives and when the tensor FRIY s teplaced by 1e(d, A, - 8.A4,).
In the following section we will discuss the reduced nonlinear Lagrangian for psendescalar
fields, which arises from generating functional (3) after integrating out the vector and axial-
vector degrees of freedom in the modulus of quark deterininant.

3. Strong Lagrangians with reduced vector and axial-
vector fields

To pe.form the integration over vector and axial-vector fields we will use the fact that the
modulus of quark determinant is invariant under chiral rotations. Then, the pseudoscalut
fields can be eliminated from the modulus of quark determinant in the effective action (4)
by using the rotated Dirac operator (10} for unitary gauge. After such transformation the
pseudoscalar degrees of freedom still remnain in the mass term of eq.(4), quadratic in meson
fields, which are not invariant under chiral rotations. Since the masses of the vector and



axial vector mesons are large compared to the pion mass it is possihle to integrate vut the
rotated fields V), and /Iy (9) in the effective meson action using the equations of motion which
arise from the mass terms of the effective action {4) in the static limit [18]. In such au
approximation the kinetic terms {0 eyl ¥ for the rotated fields \',, ant 1 as well as highe
nrder derivative nonanoma’ous and Wess-Zumino terms are treated as a perturhation.

In terms of the rotated fields V,,, \ (9) the quadratic part of the effective action (1) leads
to the Lagrangian

g mi N\ . 5
Ly = —flr(Ml’ 1 h.e.) - (_‘I—G) (v, - ) (A, - u“)‘] . (13)
Yv
where (m{,/g¥ )2 = 1/(46)3), with m{. and ¢ being the bare mass and coupling constant of

the veclor gauge held. and .
1y | 1 .
= 5(no.0"+ n*d,,n), € = E(naun' - 01,0).

The modulus of quark determinant contributes to divergent and finite parts of the effective
meson Lagrangian. hu termns of the rotated fields, taking into account that for unitary gauge
¢ — X, the divergent part of the quark deterininant (b) gives

IS - F(;z 272 ! I-L V2
d = gty Tm A;ﬁg[( )+ (L) (11)
where the approximation £ = u was used. The p*-terms of the finite part of the effective
meson Lagrangians (8) are of the form

N, Bk -
c(;:"> = Erzu{[v,“A] +—(A A,)? -3 AA (FL 4+ FR)
+ ;*L "““—g[(ﬁ,h)’+(ﬁ’i)’]}- (15)

The kinetic terms (F‘,ﬁ,ﬂ‘], arising from the sum of Lagrangians {14) and (15), lead to the
standard form after rescaling the rotated nonphysical vector and axial-vector fields V,, A,:

D
Do S G- Fem
V= e )mv‘f . Al a _7)1/2/1“" . 16)
Here ‘
N, (877F} e Nogd)?
0 _ c o _ - Helgy -
I = [48#7( Nep? l)] v 48r2 ' a7

and VJ"A], /’ﬁ.’h) are the physical fields of vector and axial-vector mesons with masses

(ny ) (m$)? '
mgzﬁ, my, = T L4 ZA , (18)

where Z% = 1 — (Fogy/m})? is the 7 A;-mixing factor.

Since in the following we also want Lo investigate the radiative processes with “structural™
photon emission in addition to inner bremsstrahlung ones, it is necessary to include electro-
magnetic interactions in the bosonization procedure. Obviously, one then simply has to use



the replacements VR, PR e 480 or U, =V, 4 i€0.4,Q. where @ is the matrix
of vlectric quark charges and

O /2
AR o Ik “_+'7_]_/
VI A o

are the physical electromagnetic field and charge respectively.
The static equations ol' motion arise from variation the mass terms of eq.(13) in chiral
It over rotated fields 1, .1,‘ and lead to the relations

V=l A, = Z4a (19
and
FRIL = (28 = el a4 1 0QF) 4 deg(AQ ) - AQ i)
1 eoZ3(AQ. e - A1Q.a!M)). (20)
lere

N ! Il 3kl ! Sl gl ! t i~
ol o _E(nr); 04 QtIN), ) = E(Qgﬁ 0t - 0'9ln) = - SEhLn

A = a, o +icgA[Q, * =9, * +ic(’""A'PH[Q *] is the prolonged derivative describing
the emission of the inner bremsstrahlung photon while the elortroma%nell( field strength
tensor Fao! = 8,4, — 8, A, corresponds to the structural photon (('o}',,., e x iy M)) and
LY = (@MY Further, we will omit for simplicity the upper indices (7) corresponding
to the inner bremsstrahlung photon and anly tensors F5! will he kept explicitly. We will
also omit cverywhere the upper indices (ph) assuming that all photons and electromagnetic

charges in further formulae are physical.
Applying the equations of motion (19) to the terms of the effective actions (13.14),
quadratic in vector and axial-vector fields, one reproduces the standard kinetic term for

the pseudoscalar sector:
2 .
L = — T”tr(LuL“)~ (21)

In the same way the p*-terms of the actions (14,15) lead to the reduced Lagrangians for
pseudoscalar mesons of the types

£t = (e, L) + (L + Lae((L,L7)7)
- 2Z5u(L,L“5RMg},) - zmﬂ;)Lgu(Qg},L“l,"g,;)
~ 2ie) Liatr [A(QthLotr Q€hL*er — @€k Litn)
- AA(QEHL R QEL Er — Q€hL LR )| . @)

corresponding to the effective p*-Lagrangian in the Gasser-Leutwyler representation with the
structure coefficients L; defined by the relations,

i, = N[ Z5+ (z* 1)((2} 1)- :j)z_z;)].

1672
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4. Reduced currents

The path-integral bosonization method can he applied to the weak and clectromagnetic-weak
currents by using a generating functional for Green funetions of quark currents introdueal
in (9] and [10]. After transition to collertive fields in such a penerating funetional the latter
is determined by the analog of formula (3) where now iD is replaced by

Din) =[O+ An — ifig) = (€ + mo — mi)| Pre + (10 + Ap = i) — (87 4 g = 9 )| P {24)

Here L = ’ILR 7"£ and n.q = Ui a \;— are th external sources coupling to the quark
currents g py* ——q and quark deasities gFy, R Zg respectively, ‘The quark densities define
the cuntributions of the penguin-type four- quark operators of the effective nonleptonic weak
Lagrangian [19] to the matrix elements of relevant kaon decays. The btmmi/( d (VT A)and
{5 F P) meson currents, corresponding to the quark currents g7 ,,'),‘ ) 7 and gnark densitics
ﬁP[,,,q%‘—'q, can he obtained by varying the quark deterininant with re: i( fined Diric uperator
{24) vver the external sources coupling with these quark bilinears {10].

For further discussions it 1s convenient to present the bosonized weak anid electromagnetic-
weak (V' — A)-current for pseudoscalar sector, generated by the nonreduced Lagrangian (11)
and including the electromagnetic-weak structural photon emission. in the forin:

gpemerre =il
- m{,\"{ln;w{mn" UMY L A Bl L
4+ M (L LLY )+ R, ([L,,,L])J}
FO{ X (R(1Q. 1414 QU 1)) + R WU} . (25)

+

Hete, the first term is the kinetic current and all other terms originate from the p*-part of
Lagrangian (11); £, are the stricture cocfficients:
1 1
Ry=-Ls, Ry=2L,. R3=20415, Ry= —,—Ias. R = z Ly, Re=1Lyo. (26)
The bosonized (S — P) current for pseudoscalar sector, gencrated by the Lagrangian (ll)
and including the structural photons, has the form:

’°thr(A U) + pRG (A" L2U) , (27)

(non—red)a
a



where R = ~1/{2r) and 3y = ~Ls. Here, the first term is generated at p*-level by mass
terms of Lagraugian (11).

Combining the method of the chiral bosonization of quark currents with the static eqia-
tions of motions it is possible to obtain the bosonized nieson currents for pseudoscalar secior
with the reduced vector and axial-vector degrees of freedom. Tu this way one can reproduce
the standard kinetic (V = A) current for pseudoscalar mesons

4

s = B,

which arises from the terims of effedtive aciions (13,141), gnadratic in vector and axial-vertor
rotated fields. after redefinition of the rutated fields
Vi~ B = i(E0minb] 4 Cammabh) . Au = Ay (Ema€l ~ Ernmuh)

and variation vver 3z, with applying the statie equations of motion.

Applying the same proredure to the p2-terms (15) of the elfective action we also obtaln
the bosonized weak and eledtromagnetic-weak (V — A) currents for psendoscalar sector with
the reduced vector and axial-vector degrees of frcedom. It is convenient to present these
reduced currents in the form:

'Il(":‘c.r.»!-llﬂ o fi"Ir(A“ {fﬁMﬂn L,,})
- e [ié,L,L,L" + Ryl Lo L} + Rird, (€L, L"Ifn)EL]}
+ 21f§yi}5u(r1¢ﬂq¢},. ). {28

with A, being the structure coeflicients, associated with the corresponding parameters B of
the representation (25):

~ N
R = T 2/A.lr(y~l)
= Neo b o f o 5 12721 +5
Ry = EPEZA(ZA+|"(ZA - 1)—"_ 2)
= [ N, [ 121r 1+5
By, = tRie-Ne bl g0y
3 7 1672 24 T4\ AR . (2
~ N, 1222 25
= e 72 - 2 Nt
s 1672 127"( N, () o). {#9)

Thus, the reduction of the vector and axiai vector fields does not change the kinetic ierm
of the hosonized (V - A4) current while the structure of the pt-part of (V -- A) current is
strougly moditied (compare (25) aad (28)).

Using the bosonization procedure of ref.[10] and the equations of motion (19) we obtain
also the reduced (S —~ P) meson currents. After redefinition of scalar fields

L E-2nath, I It 2tané] (30)

and variation over 5, with applying the static equations of motion the divergent part of the
effective action (14) and the finite part of the effective action (15) lead to the scalar current

F2 ~
Jirede = T",‘Rz;’tr(vuﬂ BRZAG e (W LAU) (31)



with : N :
Gi=——Szl(y--22).
T T e \Y T o

It can be easily shown that the reduction of the vector and axial-vector fields does not
change the physical results for matrix elements of the bosonized gluonic penguin operator,
arising from the product of scalar currents generated by the divergent part of the effective
action. In fact, both for the reduced and for nonreduced currents the corresponding con-
tributions to the penguin operator matriz element can be presented effectively in ihe same
furm:

ALl
S AT ,’—’;—R <A PN >

On the other hand the structure of the pseudoscalar meson (5 — P) current generated by
fimite part of the effective action proves to be strongly modified by the reduction of the vector
aun axial-vector fields.

5. Numerical estimates

To discuss some physical consequences for pseudoscalar nonet of mesons we have to fix ini-
tially the numerical values of the various parameters entesing in the reduced Lagrangian and
currents. The parameters x? ran be fixed by the spectrum of pseudoscalar mesons. Here we
nse the values x2 = 0.0114GeV?, x3 = 0.025GeV?, and x? = 0.47GeV?. To fix other empir-
ical constants of our model we will use the experiinental parameters, listed in Table 1: the
1nasses of p- and A;-mesons, the coupling constant of the p — 77 decay , the w7-scattering
lengths af, the pion electromagnetic squared radii <r?, >,+ and pion polarizability a,s. We
also include in our analysis the data on the ¥4 — #¥7~ cross section near to the threshold
(sce Fig.1). We will use the relations (17), (18), gv = g% (1 +3)~%/? and

r m? N 2
— ’ < g 0 p-d 2.2
9pm—gvll+ﬁ(487r2£,‘—24#22,‘ (l-—ZA) )]

The wr-scattering lengths are defined by the structure coefficients Ly and Ly. For nr-
scattering lengths a/ (indices I and [ refer here to the isotopic spin and orbital momentum,
respectively) in one-loop approximation we obtained {20)

o = gao(9—56)+%o§[5A+SB+2D+3C.'—6(6"+4b+3)],

@ = —%ao2ﬁ+gu§2[/1+D—3(62+b+3)],
T T Ll [
a} = -‘2—00-}'503'3—[3-}'65-}'11-3-}'5(6:—{7—3)],

T t, ., 2
a = 503[1—5—(6 +4D)—g(5+

36~2a+6_6’+4b+3)
9 15 ’

N T O ET TS S
a} = 2()1(,{]5(C+D) 5(44 9 45(45 +b6+3))F.
Here ap = %(m,/(27rF'o))2; 8 = 3(1 — B), with J being the parameter of chiral symmetry

breaking which takes here the value § = 1/2; a = 21(1 — §) and b = (116 — 156 + 3). The
parameters

A=AB 4 Al?  B=BPypgor  C=CPyCPP, = DB 4 Dl

10



Table 1: Physical input parameters nsed for the fixing of the empirical constants of the model

Input parameters Experiment Thecry
"y T0MeV TT2Mel
g, 12600V’ 1160MV
2L B 6.3 6.8 !
al - m, 0.23 £ 0.05 [23] 0.20
ab-m, —0.05 + 0.63 [23] -0 04
al-m® G.U36 £ 0.010 [23] 0.03%
ot (17 £3) 1071 [24] 17- 104
alom’ (13 + 3} 1071 (24 :
TR S T T T0A39 £ 0.030) fnt 2R T‘
gt (6.8 5145107 fm? [26) | .0 104 fon! |

include in themselves the Born contributions
A" s L pMn (L, - Ly). BY = —aT6ni Ly, CF = 5767 Ly + Ly).  DP = 576x%0,
aud the pion-loup contributions caleulated. u<ing the superpropagator e hod {28, in ref (22].

o oy
A= 15, BT =3, (P55 D=l

The electromagnetic squared radius of the pion is defined as the coefficient of the ¢
expansion of the electromagnetic form factor fe(g*):

< w2V () >= f7™(8) P — p2)us
. |

Ty =l o<l s g+
6

Being restricted only by pion loops, one gets in the SP-regularization the corresponding
contribution to the electromagnetic squared radius [27):
M

; ; 1 2.
<7':m>(,[‘+m”= _(‘_17'?)2 ["C +in (ZTI%) - l} =0.0625m?*,

where € = 0.577 is the Euler constant. Because the niain contribution to this value arises
from the logarithmic term, the kaon loop contribution. which contains the small logarithm

2
In (m;\-/(‘br I"u)) . can he neglected. At the Born level, the contribution to the pion electro-

magnetic squared radius originates from the Lg-term of the reduced Lagrangian (22):

2 _(Born)_ 12 ~

Tem>nt FiLQ
[}

The pica polarizability can be determined through the Compton-scattering amplitude:

< mp)ma(plSl (@) (g2} >= Tilppa [ 142) + Talpipalgags)

11



| P . M v (0}
T2 = 2¢% ¢ (o ————-——). " =0

! M \g Py et !

Ty = €5, 7%, (@192)900 = qrg2:) 3 (qra2).
where 3{g1q1) is the so-called dynamical polarizability function. Defining the polarizability
of 4 meson as the coefficient of the effective interaction with the external electranagnetic
field
Vi = —a (£ = I1?)/2

one obitains
_ Belgi9:)

a
" 8,

{g102)=0

The pion-loops give the finite contributions without {7V -divergences:

0o e? 46 -3 . o ¢? &
= g (- e = (1 ) e,

T 8n2F} 3s,

where $, = (qig2)/(2m2) , f(J) = ("I}~ 1, and

arctan(¢™' = 1)"Y2,  0< (<l
1 1+){1-(" . .
2(ln 1-/14¢~ rw), €>h
I a1t ¢ <0

—14/1-¢-

J(() =

The meson-loop contributions to the pion polarizabilities are

2

(toop) _ (eop) _ ¢ — 1075 Frn?
a =0, o, = 3BAmiFimT © 5431077 fin”.

At the Born level, the Zg- and Z.u—tcrms of the reduced Lagrangian (22) give:

2
Born) _ 86 = B
glEerm - F_oz(l,g + L), AFm=o
In our analysis the constants Fo. pu and mY. are treated as the independent empiri-al
parameters and their values are fixed as

Fo=92MeV, p=186MeV, m} =540MeV . (32)

The corresponding calculated values of the input parameters are also presented in Table |,
The results for the yy — 7+ 7~ cross sections are shown in Fig.1. All other constants can he
calculated using the values (32):

gy =54, 7=0185, Z;=0653.

The value for the constituent quark mass u seems to be by a factor of 2 1oo small as compared
with the corresponding value from the usual phenomenological analysis, based on nonreduced
Lagrangian and currents. A similar shift of the constituent quark mass has been observed, for
example, in ref. {28] after taking into account the vector-scalar and axial-vector-pseudoscalar
mixing in the analysis of the collective mesons mass spectrum within the extended NJL

model.
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Using the values of the parameters 23,5 and (y))* which were fixed ahove. one can
compare nunerically the structural parameters L, (23) of the reduced effective Lagrangian
(22} with the curresponding parameters L, of the nonreduced Lagrangian {11):

3= 17104y = =541 107 L, =1.99-10"3,
o= 36010 = - 1.33 - 1077, 33)

2= 1200, = 1.90- 1073,
= 1350y = 8.53- v,

[l et

I
1

-~

‘v
After substituting the values of Z4,3 and (g7 )% into eus.(29) one: can also compare numeri-
cally the structure parameters R, and K,:

By = —0285. 107, Ry = 0768, = 242107, Ry =--0992-10"* (R, =0),
Bty = 20 = 0,628y = ~1.98-107%, Ry = UB9R, = 1.23-10 3 i

The electromagnetic weak part of the nonreduced current (25) corresponding to the strue-
tural vonstan Ry g (respectively, the Rs-termn of the reduced enrrent (?28)) descrihes the axia-
vector form factor Fy of the radiative decay » — lry. The form factors of this decay wie
defined by the parameterization of the amplitude

T (Ko7 = lon) = V3 {l-‘vswo“k"q“c” + ( €. (kq) - q,(ks))],

where k is the 4-momentum of the decaying eson, ¢ and € are the 4-momentum and poian:-
ization 4-vector of the phiotun, aud the vector forin factor Fy is determined by the anomalevs
Wess-Zumino electromagnetic-weak cutrent, origiuating from the anomalous part of the ef-
fective meson action, which is related to the phase of the quark determinant. The ratio of
the axial-vertor and vector forin factors is deterniined by the relation

L 3277 (2Rs + 1) .
Fy
The theoretical value of the ratio FafFy == 32x%(Lu + Lyy) = | ansing from nonreduced
current (25) with structure constants Lao,p (12} is in disagreement with the experimentz|
results on this ratio:

Fa\*" [ 025+012 [29).
v Tl 041£023 [30]

At the same time the Rs gives the valu~

Fa 1220 1 43y

in agreement with the experimental data and also corresponds with the result of ref. {1}

Thus, after reducing the vector and axial-vector degrees of freedom it proves to be possible
to remove the inselfconsistency iu the description of the ratio F4/Ffv and pion polarizability
which arises seemingly in the pseuduscalar sector of the non re-uced effective Lagrangian (11}
with the Lgjo-terms (see the detailed discussion of this inselfconsistency, for example, in ref.
[31. 32]). The same problem was also considered in ref.[33], where the values of the structure
constants combination (Lg + £10) and pion polarizability a,+ determined from the fit of v7 -+
7tx~ cross sectian data were discussed. Fig.1 shows that within the experimental errors the
MARK-I1 data {34) are consistent with the experimental result for pion polarizability obtained
from radiative = scattering in nuclear Coulomb fields {26]. We have taken into account oge-
loop corrections, while this was not done in ref.[33]. The description of the 4y — x+x~ cross
section data abave m,, = 500MeV can be improved if one takes into account the unitary
corrections in a more complete way [35, 36).
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Fig.1. MARK-11 [34] cross section data for vy — n+x~ for CMS production angles |cost| <
0.6. The experimental points in the region m,, <0.5 GeV were only included in the analysis.
The dotted line shows the QED Born contribution; the dashed and dash-dotted lines show
the results of the successive inclusion of p*-contributions and one-loop corrections. Both lines
arc caleulated with (Lg + L1o) = 4.2 - 1073, corresponding to the fit of the total cross section
data together with the parameters of Table 1. The solid line corresponds to the direct fit of
the experimental points for m., <0.5 GeV without including the experimental parameters
of Table 1.
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Conclusion

1 this paper wee considered the modification of the bosonized Lagrangian and of the currents
for thie preudoscalar sector obtained after integrating out the vector and axial-vector collective
fields in the generating functional of the NJL model. 1t has been shown, that the reduction
uf the mecon resonances does not affect the kinetie terms of the strong Lagrangiau and the
bosonized (V- A) current as well as the (8 = ) current, generated by the divergent part
uf quark determinant. On the other hand, the reduction of the vector and axial-vector fields
leads to an essential modification of those part of the psendoscalar stiong Lagrangian and
of the currents, which originate from O(p') terins of the quark determinant. The yeduced
Lagrangians and currents allow us to take into account in a stmple way all effects arising
from resonance exchange contributions and rA;-mixing when caleulating the amplitudes of
varions processes with pseudoscalar mesons in the initial and final states.
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