

объединенны" ИНетитут адөриых исөледовании
 дубия

E2-94-371
A.A.Bel'kov, A.V.Lanyov, A.Schaale*

ON THE REDUCTION OF VECTOR AND AXIAL-VECTOR FIELDS
IN A MESON EFFECTIVE ACTION AT O $\left(p^{4}\right)$

Talk at the Workshop on Chiral Perturbation Theory, Bratislava, September 5-10, 1994

[^0]
1. Introduction

A rentwal of interest in chiral Lagrangian theory was excited by recent progress in the remsiruction of realistic effertive chiral meson Lagrangians including higher order derivatiselurms ats well as the gauge Wess-Zumino term from low-energy approximations of Q('D). H:, pregram of bosonization of Q(DD, which was started ahout 20 yeans ago, in the strong se:mse is of conrse also beyond our presem possibilities. Nevertheless there is some success retaid tw the appleation of functional methods to $Q(1)$-motivated effertive guark models (if: i) which are extensiots of the nell-known Nambu Jomatasmio (N.JL) model [K]. These futhe

 geterating functional for (ireren functions of quark currents introdered in [9], [10].

The Xill model, which we consider m this paper, incorporaten mot onlv all relec: it symmetrios of the quark flavour dynamios of low comergy Q(O), but als, offers a simple se lemie

 Nambe Godstone hosons emerge accompanied atso by heavier lynanical vertom and astal wetor mesons with coreert relatise weights arisitg from remermalization.
medepententy from the method of induding the vector and axial vertor lieds m the

 parlicular. it refs.[11], [12] it was shown that the strusture constants l, of the (:ars: Leumythe general expression for the ($\left(p^{4}\right)$ psendoscalar lagrampian [13] are largels satura' at by the resumare exchange contributions giving a product of terms of ($)\left(p^{2}\right.$). But in this inane. if tha $O\left(p^{4}\right)$ hagrangian rontains meson resonances, their elimina' mon an kad to the der '..

 mesom exchanges. were discussel in ref.[14].

 functional of the bossonized NJL model. To perform such integtation we use a inethot bise. .'
 on the application of the static equations of motion to a sprectal configuration of the , aitat
 or the quark determinant leads te a modification of the gemeral strurt ure of the effectiones. ${ }^{\text {a }}$:

 be exterided to the procedure [10] of chiral bosumization of weak aid flectromagnetid-aret currents and can be used for obtaining the corresponding reduced meson curents entering io the bromized nonleptonic weak Lagrangians. In such appruximation the problem of douthaconnting doe's not arise. The effect of πA_{1}-mixing, being most important for the descripliai of radiative weak derays, is taken into arcount by the corresponding πA_{1}-diagonalizatin, factor.

In Swtion 2 we discuss the basic formalisn and display all definitions and constatis related to the bosonization of quarks in N.JL model. In Section 3 we consider the sintir equations of motion for chiral rotated cullective meson fields in unitary gauge. Appiyn!", these equations of motion we eliminate the heavy meson resonances from the modulus of the
yrark determinant and obtain in such a way the effective peeudoscalar strong 1 agrangian with reduced vector and axial-ved tor degrees of freedorn. The redaced psendustalar il' - Ai and ($S-P$) urrents corresponding th, the respertive quark current: and quark densities are ohetained in Sertion 4. In Section 5 we disemss the resules of some momerical estimations and ; hemomenological analysis of the structure comstants for the reduced strong Lagrathian and currems.

2. Bosonization of the $\mathbf{N J L}$ model

The tarting point of our consideration is the NJI Lagrangian of the effectise four-quarl, interaction which has the form [y]:

$$
\begin{equation*}
\mathcal{C}_{N J t}=\bar{\pi}\left(r \hat{d}-m_{0}\right) \|+\mathcal{C}_{m t} \tag{1}
\end{equation*}
$$

with

$$
\mathcal{C}_{i, k}=2 G_{i}\left\{\left(\bar{q} \frac{\lambda^{a} q}{2}\right)^{2}+\left(\bar{q} i \gamma^{5} \frac{\lambda^{1}}{2} q\right)^{2}\right\}-2 C_{2}\left\{\left(\bar{q} \gamma^{\mu} \frac{\lambda^{4} q}{2}\right)^{2}+\left(\bar{q} \gamma^{\mu} \gamma^{3} \frac{\lambda^{4}}{2} q\right)^{2}\right\} .
$$

Ilere G_{1} and G_{2} are some universal conpling constants: $m_{n}=$ diag $\left(m_{0}^{1}, m_{0}^{2}, \ldots\right.$, mij) is ther curtent quark mass matrix (summation over repeated indices is assumed), and λ^{a} are (hor generators of the $S U(n)$ flavour gronp normalized according to $\operatorname{tr} \lambda^{a} \lambda^{b}=2 \delta_{2 b}$. Using a standard quark bosonization approach based on path integral terhuiques one can derive an effective meson action from the NJL Lagrangian (I). First one has to introcluce colloctive fields for the scalar (S), pesendosralar (${ }^{\prime}$), vertur (V^{\prime}) and axial-vector (A) relorless mesons assoriated to the following quark bilinears:

$$
S^{a}=-4\left(i_{1} \bar{q} \frac{\lambda^{a}}{2} q, \quad P^{a}=-4\left(i_{1} \bar{q} i \gamma^{s} \frac{\lambda^{a}}{2} q, V_{\mu}^{\prime a}=i 4 G_{2} \bar{q} \gamma_{\mu} \frac{\lambda^{a}}{2} q . \quad A_{\mu}^{\prime}=i 4 i_{2} \ddot{q}_{1} \gamma_{\mu} \gamma^{5} \frac{\lambda^{4}}{2} q .\right.\right.
$$

After substituting these expressions into $\mathcal{L}_{N J L}$ the interaction part of the I.agrangian is of Yukawa form. The part of $\mathcal{L}_{N J L}$ which is bilinear in the quark fields call be rewritten as

$$
\mathcal{L}=\bar{q} i \hat{\mathrm{D}}_{\boldsymbol{q}}
$$

with $\hat{\mathbf{D}}$ being the Dirac operator:

$$
i \hat{\mathbf{D}}=i\left(\hat{\partial}+\hat{\mathrm{V}}+\hat{A} \gamma^{\mathrm{s}}\right)-P_{R} \Phi-P_{L} \Phi^{\dagger}=\left[i\left(\hat{\partial}+\hat{A}_{R}\right)-\Phi\right] r_{R}+\left[i\left(\hat{\partial}+\hat{\boldsymbol{I}}_{L}\right)-\Phi^{\dagger}\right] \Gamma_{L}
$$

Here $\Phi=S+i P, \hat{V}=V_{\mu} \gamma^{\mu} \cdot \hat{A}=A_{\mu} \gamma^{\mu} ; P_{R / L}=\frac{1}{2}\left(1 \pm \gamma_{s}\right)$ are chiral projectors; $\hat{A}_{R ; L}=\hat{V} \pm \hat{A}$ are right and left combinations of hields, and

$$
S=S^{a} \frac{\lambda^{a}}{2}, \quad P=P^{\mathrm{a}} \frac{\lambda^{a}}{2}, \quad V_{\mu}=-i V_{\mu}^{\mathrm{a}} \frac{\lambda^{a}}{2}, \quad A_{\mu}=-i A_{\mu}^{a} \frac{\lambda^{a}}{2}
$$

are the matrix-valued collective fields.
After integration over quark fields the generating functional, corresponding to the effective action of the NJL model for collective meson fields, can be presented in the following form:

$$
\begin{equation*}
\mathcal{Z}=\int \mathcal{D} \Phi \mathcal{D} \Phi^{\dagger} \mathcal{D} V \mathcal{D} A \exp \left[i S\left(\Phi, \Phi^{\dagger}, V, A\right)\right] \tag{3}
\end{equation*}
$$

wher

$$
\begin{equation*}
s\left(\Phi, \Phi^{\dagger} . V^{\prime} . A\right)=\int d^{4} r\left[-\frac{1}{4 G_{1}}-\left\{\operatorname{rr}\left[\left(\Phi-m_{0}\right)^{\prime}\left(\phi-m_{0}\right)\right\}-\frac{1}{4 G_{2}} \operatorname{tr}\left(V_{\mu}^{2}+A_{\mu}^{2}\right)\right]-i \operatorname{Tr}^{\prime}[\log (d \hat{\mathbf{D}})]\right. \tag{4}
\end{equation*}
$$

is the effertive actinn for scalar, pseudestalar. vedor and axial-vector mesons. The first term in (4), quadratic in meson fieds, arises from the linearization of the fonr-quark interaction. The serond term in the quark detirminant describing the interaction of mesons. The trace l'r' is to be moderstemed as a space-time integration and a "nurmal" trace over Dirac, color and thasor imbliers:

$$
T_{r^{\prime}}=\int d^{4} r \mathrm{Tr}_{\mathrm{r}}, \quad \operatorname{Tr}=\mathbf{t r}_{r} \cdot \mathbf{t r}_{\mathrm{r}} \cdot \mathrm{tr}_{\mathrm{r}}
$$

The quark determithath can he evaluated either by expansion in quark loops or by the heat-
 contributes to the mon-anmalons part of the effective lagrangian while the imaginary part of it gives the amomatens etfective Lagrangian of Wess and Zumino whirh is related to chiral atsimatios [17].

The modnlus of the quark determinant is presented in the heat-kernel method as the expansion wer the so-ralled hereferdeWitt coefficients h_{k} :

$$
\begin{equation*}
\log |\operatorname{det} i \hat{\mathbf{D}}|=-\frac{1}{2} \frac{\mu^{4}}{(4 \pi)^{2}} \sum_{k} \frac{\Gamma\left(k-2 \cdot \mu^{2} / \Lambda^{2}\right)}{\mu^{2 k}} \mathrm{~T}^{\prime} h h_{k} \tag{5}
\end{equation*}
$$

where

$$
\Gamma(n, s): \int_{x}^{\infty} d t t^{-t} t^{n-1}
$$

is the incomplete gamma function; μ plays ther role of some cmpirical mass scale parimeler which will fix the regularization in the region of low momenta, and I is the intrinsir regularization cutoff parameter. It can be shown, that μ arises as a nomvanishing vacumm expectation value of the scalar field s. It corresponds to the constituent quark mass. The formular for the Secelcy-deWitt coefficients h_{k} up to $k=6$ are presented in [16].

The effective meson Lagrangians in terms of collective fields san be obtained from the quark determinant after calculating in $\mathrm{tr}^{\prime} h_{1}(x)$ the trace over Dirac indices. The "divergent" part of the effective meson Lagrangian is defined by the coefficients h_{0}, h_{1} and h_{2} of the expansion (5):

$$
\begin{align*}
\mathcal{L}_{\text {tu }} & =\frac{N_{c}}{16 \pi^{2}} \operatorname{tr}\left\{\Gamma\left(0, \frac{\mu^{2}}{\Lambda^{2}}\right)\left[D^{\mu} \Phi \bar{D}_{\mu} \Phi^{1}-\mathcal{M}^{2}+\frac{1}{6}\left(\left(F_{\mu, u}^{L}\right)^{2}+\left(F_{\mu \nu}^{H}\right)^{2}\right)\right]\right. \\
& \left.+2\left[\Lambda^{2} \epsilon^{-\mu^{2} / \Lambda^{2}}-\mu^{2} \Gamma\left(0, \frac{\mu^{2}}{\Lambda^{2}}\right)\right] M\right\} . \tag{6}
\end{align*}
$$

where $\mathcal{M}=\Phi \Phi^{1}-\mu^{2} ; D^{\mu}$ and \bar{D}_{μ} are covariant derivatives defined by

$$
\begin{equation*}
D_{\mu} *=\partial_{\mu} *+\left(A_{\mu}^{L} *-* A_{u}^{R}\right), \quad \bar{D}_{\mu} *=\partial_{\mu} *+\left(A_{\mu}^{R} *-A_{u}^{L}\right), \tag{7}
\end{equation*}
$$

and

$$
F_{\mu \nu}^{R / L}=\partial_{\mu} A_{\nu}^{R / L}-\partial_{\nu} A_{\mu}^{R / L}+\left[A_{\mu}^{R / L}, A_{\nu}^{R / L}\right]
$$

are field-strength teusors.

The p^{4}-terms of the fitite part of the effertive Lagrangian arise fom the curficients i, and h_{4}. Assuming the approximation $\left[\left(k, \mu^{2} / i^{2}\right) \approx \Gamma(k)\right.$ (valid for $k \geq 1$. and $\mu^{2} / \Lambda^{2} \ll 1$, one can present this part of the effective moson Jagrangian in the form

$$
\begin{aligned}
& -\mu^{2}\left(\mathcal{M} D_{\mu} \Phi \bar{D}^{\mu} \phi^{\dagger}+\bar{M} \bar{D} \bar{D}_{\mu} \phi^{\prime} \|_{\mu} \Phi\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{1}{6}, r^{\prime}\left[\left(F_{\mu \nu}^{L}\right)^{2}+\left(F_{\mu}^{\mu}\right)^{2}\right]\right\} \text {. } \tag{x}
\end{align*}
$$

where $\bar{M}=\Phi^{\dagger} \Phi-\mu^{2}$.
We will consider a monlinear varameterization of hiral symumery werespmating to the following representation of $\boldsymbol{\Phi}$:

$$
\Phi=\Omega こ \Omega .
$$

where $\mathcal{D}(x)$ is the matrix of sabar fields belonging to the diagonal thava gromp while matrix $\Omega(s)$ represents the pseudoscalar degress of freedon \boldsymbol{p} living in the coset space $f(n)_{L}$, $f\left(n_{H} / f v(n)\right.$, which can be paramerized by the mitary matio

$$
\Omega(x)=\exp \left(\frac{1}{\sqrt{2} F_{u}}-\nu^{\prime}\left(x^{\prime}\right)\right), \quad \gamma(v)=\hat{\gamma}^{2}(\cdot i) \frac{\lambda^{4}}{2} .
$$

with F_{0} tering the bare π decay cunstant. Finder chiral otations

$$
\left.\varphi \rightarrow \bar{\varphi}=\left(f^{\prime}\right)_{1} \xi_{L}+f_{K}^{\prime} \xi_{K}\right) \varphi
$$

the fieids Φ and $A_{\mu}^{R / L}$ are transformed as

$$
\phi \rightarrow \bar{\Phi}=\xi_{l} \Phi \xi_{R}^{\dagger}
$$

and

$$
\begin{equation*}
A_{\mu}^{R} \rightarrow \tilde{A}_{\mu}^{R}=\xi_{H}\left(\partial_{\mu}+V_{\mu}+A_{\mu}\right) \xi_{\mu}^{\dot{*}} \quad A_{\mu}^{L} \rightarrow \ddot{A}_{\mu}^{L}=\xi_{1}\left(\partial_{\mu}+V_{\mu}-A_{\mu} \mid \xi_{1}^{\dagger} .\right. \tag{9}
\end{equation*}
$$

For the unitary gauge $\xi_{L}^{\dagger}=\xi_{n}=\Omega$ the rotaled Dirar oferator (2) gets, the form

$$
\begin{equation*}
i \hat{\mathbf{D}} \rightarrow 2 \hat{\tilde{\mathbf{D}}}=\left(P_{L} \Omega l+P_{R} \Omega \Omega^{\dagger}\right) i \overline{\mathbf{D}}\left(\rho_{L} \Omega l+P_{R} \Omega^{\dagger}\right)=i\left(\hat{\dot{j}}+\hat{\bar{V}}+\hat{\vec{A}} \gamma_{s}\right)-\Sigma \tag{10}
\end{equation*}
$$

It is worth noting that under loral $\ell_{L}(n) \times \ell_{K}^{\prime}(n)$ transformations the nodulus of the quark determinant is invariant, while the quadratie terms of V_{μ}, A_{μ} and the chiral anomaly do not respect this invariance.

Taking into account the equations of motion for nonrotated scalar and pseudoscalar meson fields in nonlinear parameterization one can reproduce from (4) and eq. $(6,8)$ the following general expression of the effective meson Lagrangian including p^{2} - and p^{4}-interactions:

$$
\begin{aligned}
\mathcal{C}_{\text {ej }}^{\text {(non-red) }} & =-\frac{F_{0}^{2}}{4} \operatorname{tr}\left(L_{\mu} L^{\mu}\right)+\frac{F_{0}^{2}}{4} \operatorname{tr}\left(M U+U^{\dagger} M\right) \\
& +\left(L_{1}-\frac{1}{2} L_{2}\right)\left(\operatorname{tr} L_{\mu} L^{\mu}\right)^{2}+L_{2} \operatorname{tr}\left(\frac{1}{2}\left[L_{\mu}, L_{\nu}\right]^{2}+3\left(L_{\mu} L^{\mu}\right)^{2}\right)+L_{3} \operatorname{tr}\left(\left(L_{\mu} L^{\mu}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& -L_{4} \operatorname{tr}\left(L_{\mu} L^{\mu}\right) \operatorname{tr}\left(M U^{\dagger}+U M^{\dagger}\right)-L_{5} \operatorname{tr}\left[L_{\mu} L^{\mu}\left(M U^{\dagger}+U M^{\dagger}\right)\right] \\
& +L_{6}\left(\operatorname{tr}\left(M U^{\dagger}+U M^{\dagger}\right)\right)^{2}+L_{7}\left(\operatorname{tr}\left(M U^{\dagger}-U M^{\dagger}\right)\right)^{2} \\
& +L_{8} \operatorname{tr}\left(M U^{\dagger} M U^{\dagger}+U M^{\dagger} U M^{\dagger}\right)-L_{9} \operatorname{tr}\left(F_{\mu \nu}^{\mu} R^{\mu} R^{\nu}+F_{\mu \nu}^{\perp} L^{\mu} L^{\nu}\right) \\
& -L_{10} \operatorname{tr}\left(U^{\dagger} H_{\mu \nu}^{R} U F^{L \mu}\right)-H_{1} \operatorname{tr}\left(\left(F_{\mu \nu}^{R}\right)^{2}+\left(F_{\mu \nu}^{L}\right)^{2}\right)+H_{2} \operatorname{tr} M M^{\dagger}, \tag{11}
\end{align*}
$$

where the dimensionless structure constants $L_{1}(i=1, \ldots, 10)$ and $I_{t, 2}$ were introduced by Gasser and Lentwyler in ref. [13]. Here we use the notations

$$
U=\Omega^{2} ; \quad I_{\mu}=D_{\mu} U U^{\prime}, \quad R_{\mu}=U^{1} D_{\mu} U ; \quad r_{1}^{2}=y \frac{N_{i} \mu^{2}}{4 \pi^{2}},
$$

with

$$
y=\Gamma\left(0, \mu^{2} / \Lambda^{2}\right) ; \quad M=\operatorname{diag}\left(\chi_{u}^{2}, \lambda_{d}^{2}, \ldots, \lambda_{n}^{2}\right), \quad \lambda_{1}^{2}=m_{0}^{1} \mu /\left(C_{1} F_{0}^{2}\right)=-2 m_{0}^{1}<\bar{q} q>F_{0}^{-2} ;
$$

and $<\bar{q} q>$ being the quark condensate. Moremver, the coeffirients L_{1} and $H_{1,2}$ are g.ven by $L_{1}-\frac{1}{2} L_{-2}=L_{4}=L_{6}=0$ and

$$
\begin{align*}
& L_{2}=\frac{N_{c}}{16 \pi^{2}} \frac{1}{12}, \quad L_{3}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{6}, \\
& L_{\mathrm{s}}=\frac{N_{c}}{16 \pi^{2}} x(y-1), \quad L_{7}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{6}\left(x y-\frac{1}{12}\right), \\
& L_{8}=\frac{N_{c}}{16 \pi^{2}}\left[\left(\frac{1}{2} x-x^{2}\right) y-\frac{1}{24}\right], \quad L_{y}=\frac{N_{c}}{16 \pi^{2}} \frac{1}{3}, \\
& L_{10}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{6}, \quad H_{1}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{6}\left(y-\frac{1}{2}\right), \\
& H_{2}=-\frac{N_{c}}{16 \pi^{2}}\left[\left(x+2 x^{2}\right) y-\frac{1}{12}\right], \tag{12}
\end{align*}
$$

where $s=-\mu F_{0}^{\prime 2} /(2\langle\bar{q} \varphi\rangle)$.
The eitertive (nonreduced) Lagrangian for the pseudoscalar sector, taking also into account the enission of the "structural" photons \mathcal{A}_{μ}, can lie obtained from (11) when $V_{\mu}=$ $A_{\mu}=0$ in the covariant derivatives and when the tensor $F_{\mu, 1}^{F / L}$ is replaced by ie $\left(\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\mu}, A_{\mu}\right)$. In the following section we will discuss the reduced nonlinear Lagrangian for psendoscalar fields, which arises from generating functional (3) after integrating out the vector and axinl. vectur degrees of freedom in the modulus of quark deteminant.

3. Strong Lagrangians with reduced vector and axialvector fields

To pe form the integration over vector and axial-vector fields we will use the fact that the modulus of quark determinant is invariant under chiral rotations. Then, the pseudoscalat fields can be eliminated from the modulus of quark determinant in the effective action (4) by using the rotated Dirac operator (10) for unitary gauge. After such transformation the pseudoscalar degrees of freedom still remain in the mass term of eq.(4), quadratic in meson fields, which are not invariant under chiral rotations. Since the masses of the vector and
axial vector mesons are large compared to the pion mass it is possihle to int egrate wat the rotated fields $\widetilde{V}_{\mu}^{\prime \prime}$ and $\widetilde{A}_{\mu}(9)$ in the effective meson action using the equations of motion which arise from the mass terms of the effertive action (4) in the static limit [18]. In surh au approximation the kinetic terms $\left\{\tilde{F}_{\mu}^{i t /}\right\}^{2}$ for the rotated fields \bar{V}_{μ} and \bar{A}_{μ} as well as highen order derivative nonanomadous and Wess Zumino terms are treated as a perturtiotion.

In terms of the rotated fiolds $\widetilde{V}_{\mu}, \tilde{S}_{n}(9)$ the quadratic part of the eflective action (1) imads to the Laq,rangian

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{V_{0}^{2}}{4} \operatorname{tr}(M \|+h . c)-\left(\frac{m_{1}^{4}}{g_{0}^{4}}\right)^{2} \operatorname{tr}\left[\left(\dot{V}_{\mu}-v_{\mu}\right)^{2}+\left(\dot{A}_{1}-u_{1}\right)^{2}\right] . \tag{1:3}
\end{equation*}
$$

where $\left(m_{V}^{\prime \prime} / g_{V}^{0}\right)^{2}=1 /\left(4 C_{2}\right)$, with $m_{v}^{\prime \prime}$ and g_{1}^{0}. being the bare mass and conpling constant of the vector gauge field, and

$$
v_{\mu}=\frac{1}{2}\left(\Omega \partial_{\mu} \Omega^{\dagger}+\Omega^{\dagger} \partial_{\mu} \Omega\right), \quad a_{\mu}=\frac{1}{2}\left(\Omega \partial_{\mu} \Omega^{\dagger}-\Omega^{\dagger} \partial_{\mu} \Omega\right)
$$

The modulus of quark determinant coni ributes to divergent and finite parts of the effective mirion Lagrangian. In terms of the rotated fields, taking into account that for unitary gauge $\Phi \rightarrow \Sigma$, the divergent part of the quark determinant (6) gives.

$$
\begin{equation*}
\mathcal{L}_{d t v}=\frac{F_{0}^{2}}{4 \mu^{2}} \mathrm{tr}\left\{-4 \mu^{2} \widetilde{A}_{\mu}^{2}+\frac{1}{6}\left[\left(\widetilde{F}_{\mu \nu}^{R}\right)^{2}+\left(\tilde{F}_{\mu \nu}^{L}\right)^{2}\right]\right\} \tag{14}
\end{equation*}
$$

where the approximation $\Sigma=\mu$ was used. The p^{4}-terms of the finite part of the effertive nesson Lagrangians (8) are of the form

$$
\begin{align*}
\mathcal{L}_{f i n}^{\left(p^{+}\right)} & =\frac{N_{\mathrm{c}}}{32 \pi^{2}} \operatorname{tr}\left\{\left[\widetilde{V}_{\mu}, \widetilde{A}^{\mu}\right]^{2}+\frac{8}{3}\left(\tilde{A}_{\mu} \widetilde{A}_{\nu}\right)^{2}-\frac{8}{3} \tilde{A}^{\mu} \widetilde{A}^{\nu}\left(\tilde{F}_{\mu \nu}^{L}+\widetilde{F}_{\mu \nu}^{R}\right)\right. \\
& \left.+\frac{1}{3} \widetilde{F}_{\mu \nu}^{A} \widetilde{F}^{L \cdot \mu \nu}-\frac{1}{6}\left[\left(\widetilde{F}_{\mu \nu}^{L}\right)^{2}+\left(\tilde{F}_{\mu \nu}^{R}\right)^{2}\right]\right\} \tag{1.5}
\end{align*}
$$

The kinetic terms $\left(\tilde{F}_{\mu \nu}^{R / L}\right)$, arising from the sum of Lagrangians (14) and (15), lead to the standard form after rescaling the rotated nonphysical vector and axial-vector fields $\widetilde{V}_{\mu}, \widetilde{A}_{\mu}$:

$$
\begin{equation*}
\tilde{V}_{u}=\frac{g_{V}^{0}}{(1+\tilde{\gamma})^{1 / 2}} \tilde{V}_{\mu}^{(p h)}, \quad \tilde{A}_{\mu}=\frac{g_{V}^{0}}{(1-\tilde{\gamma})^{1 / 2}} \tilde{A}_{u}^{(p h)} \tag{16}
\end{equation*}
$$

Here

$$
\begin{equation*}
g_{v}^{0}=\left[\frac{N_{c}}{48 \pi^{2}}\left(\frac{8 \pi^{2} F_{0}^{2}}{N_{c} \mu^{2}}-1\right)\right]^{-1 / 2}, \quad \tilde{\gamma}=\frac{N_{c}\left(g_{v}^{0}\right)^{2}}{48 \pi^{2}}, \tag{I7}
\end{equation*}
$$

and $\widetilde{V}_{\mu}^{(p h)}, \widetilde{A}_{\mu}^{(p h)}$ are the physical fields of vector and axial-vector mesons with masses

$$
\begin{equation*}
m_{\rho}^{2}=\frac{\left(m_{V}^{0}\right)^{2}}{1+\tilde{\gamma}}, \quad m_{A_{1}}^{2}=\frac{\left(m_{V}^{0}\right)^{2}}{1-\tilde{\gamma}} Z_{A}^{-2} \tag{18}
\end{equation*}
$$

where $Z_{A}^{2}=1-\left(F_{0} g_{V}^{0} / m_{V}^{0}\right)^{2}$ is the πA_{1}-mixing factor.
Since in the following we also want to investigate the radiative processes with "structural" photon emission in addition to inner bremsstrahlung ones, it is necessary to include electroinagnetic interactions in the bosonization procedure. Obviously, one then simply has to use
thereplacennents $\tilde{i}_{\mu}^{(p h)} \rightarrow \bar{V}_{\mu}^{(p h)}+i \epsilon^{(p h)} \mathcal{A}_{\mu}^{(p h)} Q$. or $\tilde{V}_{\mu}^{\prime} \rightarrow \tilde{V}_{\mu}+i \varepsilon_{0} \mathcal{A}_{\mu} Q$, where Q is the matrix of revertric quark charges and

$$
\mathcal{A}_{\mu}^{(\mu h)}=-\frac{g_{1}^{0}}{(1+\tilde{\gamma})^{1 / 2}} \mathcal{A}_{\mu}, \quad \epsilon^{(p h)}=\epsilon_{0} \frac{(1+\tilde{y})^{1 / 2}}{g_{V}^{0}}
$$

are the physiral chectromaguelic field and charge respectively.
The static equations of motion arise from variation the mass terms of eq.(I:3) in chiral

$$
\begin{equation*}
\tilde{V}_{i u}=r_{\mu}^{(n)}, \quad \tilde{A}_{\mu}=Z_{A}^{1} a_{\mu}^{(n)} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{F}_{\mu \nu}^{H / L} & \left.=\left(Z_{A}^{4}-1\right) \mid a_{\mu}^{(1)}, a_{\nu}^{(\gamma)}\right]+\mu_{0} Q \mathcal{F}_{\mu \nu}^{(\gamma)}+i c_{0}\left(\mathcal{A}_{\mu}\left[Q \cdot \mu_{\nu}^{(\gamma)}\right]-\mathcal{A}_{\nu}\left|Q \cdot \mu_{\mu}^{(\gamma)}\right|\right) \\
& \pm r_{0} Z_{A}^{2}\left(\mathcal{A}_{\mu}\left[Q, u_{\nu}^{(\gamma)}\right]-\mathcal{A}_{\nu}\left[Q \cdot a_{\nu}^{(\gamma)} \mid\right) .\right. \tag{20}
\end{align*}
$$

Herr

$$
v_{\mu}^{(-1)}=\frac{1}{2}\left(\Omega \partial_{\mu}^{(\gamma)} \Omega^{1}+\Omega^{t} \dot{\partial}_{\mu}^{(\gamma)} \Omega \Omega\right), \quad a_{\mu}^{(\gamma)}=\frac{1}{2}\left(\Omega \partial_{\mu}^{(\gamma)} \Omega^{t}-\Omega^{t} \partial_{\mu}^{(\gamma)} \Omega\right)=-\frac{1}{2} \xi_{R}^{\dagger} L_{\mu}^{(\imath)} \xi_{R}
$$

$\partial_{1 ،}^{(h)} *=\dot{a}_{14} *+i \gamma_{u} \mathcal{A}_{\mu}[Q, *]=\partial_{\mu} *+i f^{\left.()^{\prime \prime}\right)} \mathcal{A}_{\mu}^{(p h)}[Q, *]$ is the prolonged derivative describing the emission of the inner bremsstrahlung photon while the electromagnetir fiedd strength tensor $\mathcal{F}_{\mu \nu}^{(\gamma)}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}$ corresponds to the structural photon $\left(c_{0} \mathcal{F}_{\mu \nu}^{(\gamma)}=e^{(p h)} \mathcal{F}_{\mu \nu}^{\left(\gamma, p^{p h}\right)}\right.$): and $I_{1 /}^{(\gamma)}=\left(\alpha_{i}^{(\gamma)}(1)\right)^{(i t}$. Further, we will omit for simplicity the upper indices (γ) corresponding to the inuer bremstrathlung photon and only tensors $\mathcal{F}_{\mu \nu}^{(\gamma)}$ will be kept explicitly. We will also omit cverywhere the upper indices ($p h$) assuming that all photons and electromagnetic charges in further formulae are plysical.

Applying the equations of motion (19) to the terms of the effective actions (13.14). quadratic in vector and axial-vector fields, one reproduces the standard kinetir term for the pseudoscalar sector:

$$
\begin{equation*}
L_{k+1}=-\frac{F_{0}^{2}}{4} \operatorname{tr}\left(L_{\mu} L^{\mu}\right) \tag{21}
\end{equation*}
$$

In the same way the p^{4}-temas of the actions $(14,15)$ lead to the reduced Lagrangians for pseudoscalar mesons of the types

$$
\begin{align*}
\mathcal{L}^{\left(r^{4}, \cdot r e f\right)} & =\frac{1}{2} \tilde{L}_{2} \operatorname{tr}\left(\left[L_{\mu}, L_{\mu}\right]^{2}\right)+\left(3 \tilde{L}_{2}+\tilde{L}_{3}\right) \operatorname{tr}\left(\left(L_{\mu} L^{\mu}\right)^{2}\right) \\
& -2 \tilde{L}_{5} \operatorname{tr}\left(L_{\mu} L^{\mu} \xi_{R} M \xi_{R}^{\dagger}\right)-2 i c \mathcal{F}_{\mu \mu}^{(\mu)} \tilde{L}_{9} \operatorname{tr}\left(Q \xi_{R}^{\dagger} L^{\mu} L_{L^{\nu} \xi_{H}}\right) \\
& -2(i e)^{2} \tilde{L}_{t 0} \operatorname{tr}\left[\mathcal{A}_{\mu}^{2}\left(Q \xi_{R}^{\dagger} L_{\nu} \xi_{R} Q \xi_{R}^{\dagger} L^{\nu} \xi_{R}-Q^{2} \xi_{R}^{\dagger} L_{\nu}^{2} \xi_{\mu}\right)\right. \\
& \left.-\mathcal{A}_{\mu} \mathcal{A}_{\nu}\left(Q \xi_{R}^{\dagger} L^{\mu} \xi_{R} Q \xi_{R}^{\dagger} L^{\nu} \xi_{R}-Q^{2} \xi_{R}^{\dagger} L^{\mu} L^{\nu} \xi_{R}\right)\right] . \tag{22}
\end{align*}
$$

corresponding to the effertive \boldsymbol{p}^{4}-Lagrangian in the Gasser-Leutwyler representation with the structure coefficients \tilde{L}_{i} defined by the relations,

$$
\tilde{L}_{2}=\frac{N_{c}}{16 \pi^{2}}\left[\frac{1}{12} Z_{A}^{8}+\frac{1}{6}\left(Z_{A}^{4}-1\right)\left(\left(Z_{A}^{4}-1\right) \frac{6 \pi^{2}}{N_{c}} \frac{1+\tilde{\gamma}}{\left(g_{V}^{0}\right)^{2}}-Z_{A}^{4}\right)\right] .
$$

$$
\begin{align*}
& \tilde{L}_{3}=-\frac{N}{16 \pi^{2}}\left[\frac{1}{6} Z_{A}^{A}+\frac{1}{2}\left(Z_{A}^{4}-1\right)\left(\left(Z_{A}^{4}-1\right) \frac{6 \pi^{2}}{N_{r}} \frac{1+\bar{Z}}{\left(g_{1}^{0}\right)^{2}}-Z_{A}^{4}\right)\right] . \\
& \ddot{I}_{;}=\frac{X_{c}}{16 \pi^{2}} Z_{A}^{4} r(1 y-1) \text {, } \\
& \tilde{l}_{3}=\frac{N_{C}}{16 \pi^{2}}\left[\frac{1}{3} Z_{A}^{4} \cdot\left(Z_{A}^{4}-1\right) \frac{1 \pi^{2}}{N_{C}} \frac{1+\tilde{j}}{\left(g_{0}^{0}\right)^{2}}\right] . \\
& \tilde{L}_{1 \prime \prime}=-Z_{A}^{4} \frac{1}{1} \frac{1+j}{\left(I_{1}^{\prime}\right)^{2}} . \tag{1231}
\end{align*}
$$

where

$$
\frac{1+\bar{i}}{\left(g_{1}^{\prime \prime}\right)^{2}}=\frac{r_{1}^{2}}{6 \mu^{2}} .
$$

4. Reduced currents

The path-integral bosonization method can he applied to the weat: and dectronagnetic-weak currents by using a gencrating functional for Green functions of guark rurrents introdnceal in ! !] and [10]. After transition to collertive fields in such a generating functinnal the lather is determined by the analog of formula (.j) where now i $\hat{\mathbf{D}}$ is replaced ty

$$
\begin{equation*}
i \hat{\mathrm{D}}(\eta)=\left\{i\left(\hat{\sigma}+\bar{A}_{H}-i \hat{\eta}_{R}\right)-\left(\phi+m_{0}-\eta_{R}\right) \mid P_{R}+\left\{i\left(\hat{i}+\tilde{A}_{L}-i \hat{m}_{L}\right)-\left(\phi^{\prime}+m_{u}-m_{l}\right) \mid I_{L} .\right.\right. \tag{2+1}
\end{equation*}
$$

Here $\hat{\eta}_{L, H}=\eta_{L, R_{\mu}}^{a} \gamma^{\mu} \frac{\lambda^{a}}{2}$ and $\eta_{L, H}=\eta_{L, R}^{a} \frac{L^{\circ}}{2}$ are the external somrces coupliug to the ghark
 the contributions of the penguin-type four-quark operators of the effertive nondeptonir wata Lagrangian [19] to the matrix flements of mevant kaon decays. The busunizell (1 ' $F A$ and
 $\bar{q} P_{l, h^{\frac{h^{*}}{2}}}^{2}$, can be ohtained by varying the quark determinant with reflefined Dirat operator (24) over the external sources coupling with these quark bilinears $\mathfrak{1} 10$.

For further disrnssions it is convenient to present the bosonized weak and electronagneticwean (V - A)-rurrent for pseudusralar sector. generated by the nonreducel Lagrangian (11) and including the electronagnetic-weak st ructural photon emission, in the forin:

$$
\begin{aligned}
& J_{L_{\mu}}^{(\text {non }-r i d) a}=i \frac{P_{0}^{2}}{4} \operatorname{rr}\left(\lambda^{0} L_{u}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+K_{3}\left\{L_{\mu}, L_{\nu} L^{\nu}\right\}+K_{4} \ddot{o}_{4}\left(\left[L_{\mu}, L^{\nu}\right]\right)\right]\right\} \tag{25}
\end{align*}
$$

Hete, the first term is the kinetir current and all other terns originate from the p^{4}-part of Lagrangian (li); $K_{\text {, }}$ are the stricture coeffirients:

$$
\begin{equation*}
R_{1}=-L_{5}, \quad R_{2}=2 L_{2}, \quad R_{3}=2 L_{2}+L_{3}, \quad R_{4}=-\frac{1}{2} L_{9}, \quad R_{5}=\frac{1}{2} L_{9}, \quad R_{6}=L_{10} . \tag{26}
\end{equation*}
$$

The bosonized ($S-P$) current for pseudascalar sector, generated by the Lagrangian (11) and including the structural photons, has the form:

$$
\begin{equation*}
I_{L}^{(n o n-r e d) a}=\frac{F_{0}^{2}}{4} \mu \operatorname{Rtr}\left(\lambda^{a} U\right)+\mu R G_{1} \operatorname{tr}\left(\lambda^{a} L_{\mu}^{2} U\right) \tag{27}
\end{equation*}
$$

Where $R=-1 /\left(2_{x}\right)$ and $C_{i}=-L_{5}$. Here, the first term is gencrated at p^{2}-level by mas: terms of Lagrangian (11).

Conbining the method of the chiral bosonization of quark rurrents with the static equittions of motions it is possible to obtain the bosonized meson currents for psendoscalar sector with tha reduced vertor and axial-vectur degrees of freedom. In this way one can reproduce the standard kinetic (V - A) current for psendoscalar mesons

$$
J_{L_{\mu}}^{(k+i) \alpha}=i \frac{F_{G}^{Z}}{i} \mathrm{tr}\left(\lambda^{a} L_{\mu}\right),
$$

which arises from the terme of effertive acions ($1: 1,1$), qualratio in vector and axial-vertor rotaled fields. after redefinition of the rutated findels

$$
\tilde{v}_{\mu}^{\prime} \rightarrow \tilde{v}_{\mu}-\imath\left(\varepsilon_{L} \eta_{L} \varepsilon_{L}^{\dagger}+\xi_{H} \eta_{H_{\mu}} \xi_{h}^{\prime}\right) . \quad \tilde{A}_{\mu} \rightarrow \tilde{i}_{\mu}+\iota\left(\xi_{L} \eta_{L_{\mu}} \xi_{L}^{!}-\xi_{R} \eta_{R_{\mu}} \xi_{R}^{\prime}\right),
$$

and variation over $\eta_{L_{\mu}}$ with applying the statu equations of motion.
Applying the same proredure to the γ^{4} - terms (1.5) of the effertive action we also odtain the bosonizei weak and eleitromagnetic-weak (V-A) currents for psendoscalar sector with theredured vectur and axial-vector degrees of freedom. It is convenient to present these reduced rurrents in the fum:

$$
\begin{align*}
& I_{L, \mu}^{\left(r^{4},\right. \text { reula }}=-i \bar{R}, 1 \mathrm{r}\left(\Lambda^{2}\left\{\xi_{R} M \xi_{R}^{\dagger}, L_{, \mu}\right\}\right) \\
& -\operatorname{itr}\left\{\lambda^{a}\left[\ddot{R}_{2} L_{\nu} L_{\mu} L^{\nu}+\tilde{R}_{3}\left\{L_{, 1}, L_{\nu} L^{\nu}\right\}+\tilde{R}_{4} \xi_{R} \partial_{\nu}\left(\xi_{R}^{1}\left[L_{;}, L^{\nu}\right] \xi_{R}\right) \xi_{R}^{\dagger}\right]\right\} \\
& +2 c \mathcal{F}_{\mu \nu}^{(r)} \tilde{R}_{5} \operatorname{tr}\left(\lambda^{2}\left\lfloor\xi_{H} Q \xi_{H}^{\dagger} \cdot L^{b^{\prime} 1}\right)\right. \tag{28}
\end{align*}
$$

with R_{1} being the structure coefficients, associated with the corresponding parameters R of the representation (20):

$$
\begin{align*}
& \tilde{R}_{1}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{2} Z_{A}^{2} x(y-1) . \\
& \tilde{R}_{2}=\frac{N_{c}}{16 \pi^{2}} \frac{1}{12} Z_{A}^{2}\left(Z_{A}^{4}+1-\left(Z_{A}^{1}-1\right) \frac{12 \pi^{2}}{N_{c}} \frac{1+\tilde{\gamma}}{\left(g_{i}^{0}\right)^{2}}\right), \\
& \tilde{R}_{3}=\frac{1}{2} \tilde{R}_{4}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{24} Z_{A}^{2}\left(1-\left(Z_{A}^{4}-1\right) \frac{12 \pi^{2}}{N_{c}} \frac{1+\tilde{\gamma}}{\left(g_{V}^{0}\right)^{2}}\right), \\
& \tilde{R}_{s}=-\frac{N_{c}}{16 \pi^{2}} \frac{1}{12} Z_{A}^{2}\left(1-\frac{12 \pi^{2}}{N_{c}} \frac{1+\tilde{\gamma}}{\left(g_{V}^{0}\right)^{2}}\right) . \tag{29}
\end{align*}
$$

Thus, the reduction of the vector and axian vector fieids does not change the kinetic ierm of the hosonized (V - A) current while the structure of the p^{4}-part of (V-- A) current is strougly modilied (compare (25) and (28)).

Using the bosonization procedure of ref.[10] and the equations of motion (19) we obtain alsis the reduced $(S-P)$ meson currents. After redefinition of scalar fields

$$
\begin{equation*}
\Sigma \rightarrow \Sigma-2 \xi_{L} \eta_{R} \xi_{A}^{\dagger}, \quad \Sigma^{\dagger} \rightarrow \Sigma^{\dagger}-2 \xi_{R} \eta_{L} \xi_{L}^{\dagger} \tag{30}
\end{equation*}
$$

and variation over η_{L} with applying the static equations of motion the divergent part of the effective action (14) and the finite part of the effective action (15) lead to the scalar current

$$
\begin{equation*}
J_{L}^{(r e d) a}=\frac{F_{0}^{2}}{4} \mu R Z_{A}^{-2} \operatorname{tr}\left(\lambda^{a} U\right)+\mu R Z_{A}^{2} \widetilde{G}_{1} \operatorname{tr}\left(\lambda^{a} L_{\mu}^{2} U\right) \tag{31j}
\end{equation*}
$$

with

$$
\tilde{C}_{1}=-\frac{N_{c}}{16 \pi^{2}} x\left(y-\frac{1}{4} Z_{A}^{2}\right) .
$$

It can be easily shown that the reduction of the vector and axial-vector firlds does not. change the physiral results for matrix elements of the bosonized gluonic penguin operator. arising from the product of scalar currents generated by the divergent part of the effection artion. In fact, both for the reduced and for nomreduced currents the corresponding constributions to the penguin operator matri: clenment can be presented effectively in ilue same furm:

$$
<T^{(p r n g)}>\infty-\frac{F_{0}^{4}}{32} R<\left(\partial_{4} l^{\prime} j^{\mu} l^{\dagger}\right)_{23}>.
$$

On the other hand the structure of the psendoscalar meson (. $\mathrm{S}^{-} \mathrm{P}$) (urremt generated by fime part of the effective action proves to be strongly modified by the reduction of the vector and axial-vector fields.

5. Numerical estimates

T'o discuss some physical consequences for pseudoscalar nonrt of mesons we have to fix initially the numerical values of the various parameters enteing in the reduced Lagrangian and currents. The parameters x_{i}^{2} ran be fixed by the spertrum of pseudoscalar mesons. Here we usie the values $\chi_{4}^{2}=0.0114 \mathrm{GeV}^{2}, x_{d}^{2}=0.025 \mathrm{GeV}^{2}$, and $x^{2}=0.47 \mathrm{GeV}^{2}$. To fix other empirical constants of our model we will use the experimental parameters, listed in Table 1: the inasses of ρ - and A_{1}-mesons, the coupling constant of the $\rho \rightarrow \pi \pi$ decay, the $\pi \pi$-scattering Iengths a_{i}^{j}, the pion electromagnetic squared radii $\left\langle r_{e m}^{2}\right\rangle_{\pi^{+}}$and pion polarizability $\alpha_{r^{ \pm}}$. We also inchude in our analysis the data on the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$cross section near to the threshold (see Fig.1). We will use the relations (17), (18), $g_{v}=g_{v}^{0}(1+\tilde{f})^{-1 / 2}$ and

$$
g_{\rho \pi \Lambda}=g v\left[1+\frac{m_{\rho}^{2}}{2 F_{0}^{2}}\left(\frac{N_{c}}{48 \pi^{2}} Z_{A}^{4}-\frac{F_{0}^{2}}{24 \mu^{2}} Z_{A}^{-4}\left(1-Z_{A}^{2}\right)^{2}\right)\right] .
$$

The $\pi \pi$-scattering lengths are defined by the structure coefficients \tilde{L}_{2} and \tilde{L}_{3}. For $\pi \pi$ scattering lengths a_{l}^{I} (indices I and l refer here to the isotopic spin and orbital momentum, respectively) in one-loop approximation we obtained \{20]

$$
\begin{aligned}
& a_{0}^{0}=\frac{\pi}{2} \alpha_{0}(9-5 \delta)+\frac{\pi}{2} \alpha_{0}^{2}\left[5 A+3 B+2 D+3 C-6\left(\delta^{2}+4 b+3\right)\right], \\
& a_{0}^{2}=-\frac{\pi}{2} \alpha_{0} 2 \delta+\frac{\pi}{2} \alpha_{0}^{2} 2\left[A+D-3\left(\delta^{2}+b+3\right)\right], \\
& a_{1}^{1}=\frac{\pi}{2} \alpha_{0}+\frac{\pi}{2} \alpha_{0}^{2} \frac{1}{3}\left[B+6 \delta+a-3+\frac{1}{3}\left(\delta^{2}-b-3\right)\right], \\
& a_{2}^{0}=\frac{\pi}{2} \alpha_{0}^{2}\left[\frac{1}{15}(C+4 D)-\frac{2}{5}\left(5+\frac{3 \delta-2 a+6}{9}-\frac{\delta^{2}+4 b+3}{15}\right)\right], \\
& a_{2}^{2}=\frac{\pi}{2} \alpha_{0}^{2}\left[\frac{1}{15}(C+D)-\frac{1}{5}\left(4+\frac{6 \delta-a+3}{9}-\frac{2}{45}\left(\delta^{2}+b+3\right)\right)\right] .
\end{aligned}
$$

Here $\alpha_{0}=\frac{1}{3}\left(m_{\pi} /\left(2 \pi F_{0}\right)\right)^{2} ; \delta=\frac{3}{2}(1-\beta)$, with β being the parameter of chiral symmetry breaking which takes here the value $\beta=1 / 2 ; a=21(1-\delta)$ and $b=\left(11 \delta^{2}-15 \delta+3\right)$. The parameters

$$
A=A^{B}+A^{\text {loop }}, \quad B=B^{B}+B^{\text {loop }}, \quad C=C^{B}+C^{\text {loop }}, \quad \dot{\nu}=D^{B}+D^{\text {loop }}
$$

Table 1: Physical input parameters ned for the fixing of the empirical constants of the model

Input parameters	Experiment	Therey
${ }^{\prime}$.	$770.1 / \mathrm{eV}$	772.016 ${ }^{\text {a }}$
m_{4}	$1260 . \mathrm{Ma}$	1160 MeV
$g_{C \sim}$	6.3	6.8
$a_{11}^{0} \cdot m_{r}$	0.23 ± 0.05 [23]	0.20
$a_{0}^{2} \cdot m$,	$-0.05 \pm \pm 0.033[2: 3]$	-0) 04
$n^{\prime} \cdot m^{\prime}$	0.036 $\pm 0.010[2: 3]$	0.038
$a_{2}^{11} \cdot m^{\prime \prime}$	$(17 \pm 3) \cdot 10^{-1}[2 \cdot 4]$	$17 \cdot 10^{-4}$
$a_{2}^{2} \cdot m^{\prime \prime}$	$(1.1 \pm 3] \cdot 10^{-1}[24]$	$2 \cdot 110^{-4}$
$\square^{+} r_{r, m}^{2} \gg+$	(0.439 50.030$) \mathrm{sm}^{2}[25]$	$153 /{ }^{1} \mathrm{~m}^{-1}$
$0{ }^{\text {ar }}$	$\left(6 . x \pm 1.4 j \cdot 100^{-4} \mathrm{fm}{ }^{3}[26]\right.$	$\mathrm{x} 0 \cdot 10 \cdot 10^{-4} \mathrm{fm}{ }^{1}$

include in themselves the thorn contributions

$$
A^{H}=-144 \pi^{2}\left(\tilde{L}_{2}-\tilde{L}_{3}\right) . \quad B^{H}=-576 \pi^{2} \tilde{L}_{3} . \quad C^{H}=576 \pi^{2}\left(\tilde{L}_{2}+\tilde{L}_{3}\right) . \quad D^{H}=376 \pi^{2} \tilde{I}_{2}
$$

and the pion-loup contributions calculated. wing the superpropagatur we hod [2:], in ref.[22].

$$
A^{\prime \text { oup }}=-1.5, \quad B^{\text {toup }}=3, \quad \quad^{\text {to.pp }}=5.5, \quad D^{\text {loon }}=11 .
$$

The elertromagnetir squared radius of the pion is da fined as the coeffirient of the q^{2} expansion of the elertromagnetic form factor $\int_{s}^{e m}\left(q^{2}\right)$:

$$
\begin{array}{r}
\left\langle\pi\left(p_{2}\right)\right| V_{\mu}^{e m} \mid \pi\left(p_{1}\right)>=f_{\pi}^{e m}\left(q^{2}\right)\left(p_{1}-p_{2}\right)_{\mu} \\
f_{*}^{r m} \mid 4 ;=1+\frac{1}{6}\left\langle r_{-m}^{2}>q^{2}+\ldots\right.
\end{array}
$$

Being restricted only by pion loops, one gets in the $S P$-regularization the corresponding contrithation to the electromagnetic squared radius [2i]:

$$
\left\langle r_{r+n}^{2}\right\rangle_{r^{+}}^{(\text {(uop })}=-\frac{1}{\left(4 \pi F_{0}\right)^{2}}\left[3 \mathcal{C}+\ln \left(\frac{n_{n}}{2 \pi F_{0}}\right)^{2}-1\right]=0.062 m^{2}
$$

where $\mathcal{C}=0.577$ is the Euler constant. Because the main contribution to this value arises from the logarithmic term, the kaon loop contribution, which contails the small logarithm $\ln \left(m_{\kappa} /\left(2 \pi F_{0}\right)\right)^{2}$, can be neglected. At the Born level, the contribution to the pion elertromagnetic squared radius originates from the \tilde{L}_{g}-term of the reduced Lagrangian (22):

$$
\left\langle r_{e \mathrm{~m}}^{2}\right\rangle_{\pi^{+}}^{(B \circ r n)}=\frac{12}{F_{0}^{2}} \tilde{L}_{9}
$$

The pir a polarizability can be determined through the Compton-scattering amplitude:

$$
<\pi_{1}\left(p_{1}\right) \pi_{2}\left(p_{2}\right)|S| \gamma_{\lambda_{1}}\left(q_{1}\right) \gamma_{\lambda_{2}}\left(q_{2}\right)>=T_{1}\left(p_{1} p_{2} \mid q_{1} q_{2}\right)+T_{2}\left(p_{1} p_{2} \mid q_{1} q_{2}\right),
$$

$$
\begin{gathered}
T_{1}^{(\pm)}=2 e^{2} \varepsilon_{\lambda_{1}}^{u} \varepsilon_{\lambda_{2}}^{u}\left(g^{\mu \nu}-\frac{p_{1}^{\mu} p_{2}^{L}}{p_{1} q_{1}}-\frac{p_{1}^{\nu} p_{2}^{\mu}}{p_{2} q_{1}}\right) \cdot \quad T_{1}^{(0)}=0 ; \\
T_{2}=\varepsilon_{\lambda_{1}}^{\mu} \varepsilon_{\lambda_{2}}^{\nu}\left(\left(q_{1} q_{2}\right) g_{\mu \nu}-q_{1}, q_{2 \mu}\right) ; j\left(q_{1} q_{2}\right) .
\end{gathered}
$$

where $\beta\left(g_{1} q_{2}\right)$ is the so-called dynamical polarizability function. Defining the polatizabilite: of a meson as the coefficient of the effertive interaction with the externat electromagnetic field

$$
V_{\mathrm{tn} 1}=-o_{r}\left(E^{2}-\|^{2}\right) / 2
$$

one obtains

$$
a_{r}=\left.\frac{\beta_{n}\left(q_{1} q_{2}\right)}{8 \pi m_{n}}\right|_{\left(q_{1}, q_{2}\right)=0}
$$

The pion-loops give the finite contributions withont ${ }^{\prime \prime} 1$-divergences:

$$
\beta_{\pi^{ \pm}}^{\text {(loop })}=\frac{\epsilon^{2}}{8 \pi^{2} F_{0}^{2}}\left(1-\frac{4 \delta-3}{3 \bar{s}_{\pi}}\right) f\left(s_{r}\right), \quad B_{r^{0}}^{(\text {loup })}=\frac{\mathrm{c}^{2}}{4 \pi^{2} F_{0}^{2}}\left(1-\frac{\delta}{3 s_{r}}\right) f\left(s_{r}\right)
$$

where $\dot{s}_{\pi}=\left(q, q_{2}\right) /\left(2 m_{\pi}^{2}\right), f(\xi)=\zeta^{-1} J^{2}(\zeta)-1$, and

$$
J(\zeta)= \begin{cases}\arctan \left(\zeta^{-1}-1\right)^{-1 / 2}, & 0<\zeta<1: \\ \frac{1}{2}\left(\ln \frac{1+\sqrt{1-\zeta^{-1}}}{1-\sqrt{1+\zeta^{-1}}}-i \pi\right), & \zeta>1 ; \\ \frac{1}{2} \ln \frac{1+\sqrt{1-\zeta^{-1}}}{-1+\sqrt{1-\zeta^{-1}}}, & \zeta<0 .\end{cases}
$$

The meson-loop contributions to the pion polarizabilities are

$$
\alpha_{\pi^{ \pm}}^{(\text {loop })}=0, \quad \alpha_{\pi 0}^{(\text {loop })}=\cdot \frac{\epsilon^{2}}{384 \pi^{3} F_{0}^{2} m_{\pi}^{2}}=-5.43 \cdot 10^{-3} f n^{3}
$$

At the Born level, the \tilde{L}_{9} and \tilde{L}_{10}-terms of the reduced Lagrangian (22) give:

$$
\beta_{\pi^{ \pm}}^{(B o r n)}=\frac{8 e^{2}}{F_{0}^{2}}\left(\tilde{L}_{9}+\tilde{L}_{10}\right), \quad \beta_{\pi^{0}}^{(\text {(Born })}=0
$$

In our analysis the constants F_{0}, μ and m_{V}^{0} are treated as the independent enpiri al parameters and their values are fixed as

$$
\begin{equation*}
F_{0}=92 \mathrm{MeV}, \quad \mu=186 \mathrm{MeV}, \quad m_{v}^{0}=8.80 \mathrm{MeV} . \tag{32}
\end{equation*}
$$

The corresponding calculated values of the input parameters are also presented in Table 1 . The results for the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$cross sections are shown in Fig.1. All other constants can be calculated using the values (32):

$$
g_{V}^{0}=5.4, \quad \tilde{\gamma}=0.18 .5, \quad Z_{A}^{2}=0.653 .
$$

The value for the constituent quark mass μ seems to be by a factor of 2100 small as compared with the corresponding value from the usual phenomenological analysis, based on nonreduced Lagrangian and currents. A similar shift of the constituent quark mass has been observed, for example, in ref. [28] after taking into arcount the vector-scalar and axial-vector-pseudoscalar mixing in the analysis of the collective mesons mass srectrum within the extended NJL model.

1 sing the :alues of the parannters $Z_{A}^{2}, \tilde{\gamma}$ and $\left(y_{v}^{0}\right)^{2}$ which were fixed above, one catl compare numerically the structural parameters $\tilde{L}_{\mathbf{c}}(23)$ of the reduced effective Lagrangian (22) with the correspunding parameters L_{1} of the nonreducer Lagrangian (11):

$$
\begin{array}{ll}
\tilde{L}_{2}=1.20 L_{2}=1.90 \cdot 10^{-3}, & \tilde{L}_{3}=1.71 L_{3}=-5.41 \quad 10^{-3} \quad \tilde{L}_{5}=1.99 \cdot 10^{-3} \\
\tilde{L}_{3}=1.35 L_{y}=8.53 \cdot 10^{-3}, & \tilde{L}_{10}=1.36 L_{10}=-1.33 \cdot 10^{-3} \tag{3}
\end{array}
$$

Alter substituting the values of $Z_{A}^{2}, \tilde{\gamma}$ and $\left(y_{1}^{0}\right)^{2}$ into eens.(29) one can also compare numerirally the strurture parameters \widetilde{R}_{1} and K_{1} :

$$
\begin{align*}
& \dot{R}_{1}=-0.285 \cdot 10^{-3}, \quad \tilde{R}_{2}=0.76 R_{2}=2.42 \cdot 10^{-3}, \quad \tilde{R}_{3}=-0.992 \cdot 10^{-3} \quad\left(R_{3}=0\right), \\
& R_{1}=2 \tilde{R}_{3}=0.62 R_{4}=-1.98 \cdot 10^{-3}, \quad \vec{R}_{5}=0.39 R_{5}=1.23 \cdot 10^{3} \quad,
\end{align*}
$$

1 he esertomagnetic weak part of the nonreduced current (25) cortesponding to the strurtural onstani $K_{5.6}$ (respectively, the \tilde{R}_{5} terin of the reduced current (2 si') $^{\prime}$) descrihes the axiai' wertor form factor F_{A} of the radiative decay $r \rightarrow$ hry. The form fartors of this decay we defined by the parameterization of the amplitude
where k is the 4 -momentum of the deraying mesion, q and ε are the 4 -momentum and poitsization 4 -vector of the photon: and the vector form factor F_{V} is determined ty the anomalous Wess-Zumino electromaguetic-weak current, origiuating from the anomalons part of the effective meson artion, which is related to the phase of the quark determinant. The ratio of the axial-vertor and vectur form fartors is determined by the relation

$$
\frac{F_{A}}{F_{V^{\prime}}}=32 \pi^{2}\left(2 R_{5}+l L_{6}\right) .
$$

The theoretical value of the ratio $F_{A} / F_{V}=32 \pi^{2}\left(L_{4}+L_{80}\right)=1$ arising from nomeduced current (25) with structure constants $L_{2,19}$ ([2) is in disagreement with the experimpniti results on this ratio:

$$
\left(\frac{F_{A}}{f_{V}}\right)^{(\mathrm{e} \cdot \mathrm{r})}= \begin{cases}0.25 \pm 0.12 & {[29] .} \\ 0.41 \pm 0.23 & {[30]}\end{cases}
$$

At the same time the \tilde{R}_{5} give: the valur

$$
\frac{F_{A}}{F_{V}}=-Z_{A}^{2}\left(1-\frac{12 \pi^{2}}{N_{c}^{\prime}} \frac{1+\tilde{j}}{\left(g_{V}^{0}\right)^{2}}\right)=0.39
$$

in agreement with the experimental data and also corresponds with the result of ref. [1].
Thus, after reducing the vector and axial-vector degrees of freedom it proves to be possible to remuve the inselfconsistency in the description of the ratio F_{A} / F_{V} and pion polarizability which arises seemingly in the μ seuduscalar sector of the non reduced effective Lagrangian (11) with the $L_{9,10}$-terms (see the detailed discussion of this inselfconsistency, for example, in ref. [31. 32]]). The same problem was also considered in ref.[33], where the values of the structure constants combination ($L_{9}+L_{10}$) and pion polarizability α_{r} determined from the fit of $\gamma \boldsymbol{\gamma} \rightarrow$ $\pi^{+} \pi^{-}$cross section data were discussed. Fig. 1 shows that within the experimental errors the MAKK-Il data [34] are consistent with the experimental result for pion polarizability obtained from radiative π scattering in nuclear Coulornb fields [26]. We bave taken into account oneloop corrections, while this was not done in ref.[33]. The description of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$cross section data above $m_{\pi x}=500 \mathrm{MeV}$ can be improved if one takes into account the unitary corrections in a more complete way [35, 36].

Fig.l. MARK-II [34] cross section data for $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$for CMS production angles $|\cos \theta| \leq$ 0.6. The experimental points in the region $m_{\pi x}<0.5 \mathrm{GeV}$ were only included in the analysis. The dotted line shows the QED Born contribution; the dashed and dash-dotted lines show the results of the successive inclusion of p^{4}-contributions and one-loop corrections. Both lines are calculated with $\left(\tilde{L}_{9}+\tilde{L}_{10}\right)=4.2 \cdot 10^{-3}$, corresponding to the fit of the total cross section data together with the parameters of Table 1. The solid line corresponds to the direct fit of the experimental points for $m_{n \pi}<0.5 \mathrm{GeV}$ without including the experimental parameters of Table 1.

Conclusion

In this paper wer ronsidered the modification of the bosonized Lagrangian and of the currentfor tiar pereduscalar sector oltainerl after integrating ont the vector and axial-vector collertive fielils in the generating functional of the N.JL model. It has been shown, that the redurtion of the meon womances dues not alfert the kinetic terme of the strumg lagrangiat and the
 of grark detersminant. On the other hand. the redurtion of th. wertor and axial-vertur fields
 uf the cure nes, which originate from ($\left(p^{4}\right)$ terms of the quark determinant. The beduced Lagrangians and rurrents allow us to take into areoum in a vimple way all effects arismg from resintaner exchange contributions and πA_{1}-mixing when cal ulating the amplitudes of variuns p:onct sees with pseudoscalar mesons in the initial and finai states.

Thie aulhors are grateful to (i.Erker. J.Ciasser. G.Bohm and S.Srherer for useful diswssions and holpful romments. This work was supported by the Russian Foundation for Fundamental Kesearch (A.A Bei kov and A.V.Lanyov) utoder gram No. 91.02.03973. A.B. and A.L. are grateful to the Swiss National Fund for the financial support extemeded to them at the School and Workshop un (Chiral Perturbation Theory in Bratislava (Septomber j-10. 1994!.

References

[1] M.K.Volkov, Sov. J. Part. Nucl. 17 (1986) 186; 24 (1993) 35.
[2] D.Ebert and H.Reinhardt, Nucl. Phys. B27: (19x6) I88.
[i: W. Weise, Preprint SN('TP-93-13, 1993.
[4] V.-G.Meibner and V.Bernard. Comments Nucl. Part. Phys. 19 (1989) 67.
[5] S.P.Klevansky, Rev. Mod. Phys. 64 (1992) 649.
[6] A.A.Andrianov, V.A.Andrianov, Theor. Mat. Fiz. 93 (1992) 67.
[7] J.Bijuens, C'.Bruuo and E.de Rafael, Nucl. Phys. B390 (1993) 501.
[8] Y.Nambu, C.Jona-Lasinio, Phys. Rev. 122 (1961) 345.
[9] A.Pich and E.de Rafael, Nucl. Phys. B358 (1991) 311.
[10] D.Ebert, A.A.Bel'kov, A.V.Lanyov and A.Schaale, Int. J. Mod. Phys. Ax (199:3) 1313.
[11] G.Ecker, J.Gasser, A.Pich and E.de Rafael, Nucl. Phys. B321 (1989) 311. G. Erker, J.Gasser, H.Leutwyler, A.Pich and E.de Rafael, Phys. Lett. B22:3 (1989) 42 F .
[12] J.F.Donughue, C.Ramires and G.Valencia, Phys. Rev. D39 (1989) 1947.
[13] J.Gasser and H.Leutwyler, Ann. Phys. 158 (1984) 142; Nucl. Phys. B250 (1985) 465. 517, 539.
[14] G.Ecker, A.Pich and E.de Rafael, Phys. Lett. B237 (1990) 481.
(G.Ecker, J.Kambor and D.Wyler, Nucl. Phys. B394 (1993) 101.
[15) J.Schwinger. Phys. Rev. 82 (1951) 664.
U.DeWitt, Dynamical theory of groups and fields (Gordon and Breadi, New York. 19tis). R.D.Ball. Phys. Rep. 1 : 2 (1989) I.
A.E.Mivan de Ven. Nucl. Phys. H250 (1985) 59:3.

[17] J. Wess and B.Zumino, Phys.Let1, 371 (1971) 9\%.
E. Witten, Nurl Phys. 13223 (1983) 422, 483.

[19] M.A.Shifmat, A.I.Vainshtein and Y.1.Zakharov, Nucl. Phys. 13120 (1979) 316. F.J. (iilnan and M.B.Wise, Phys. Rev. I)20 (1979) 2392.

 Phys. 28 (1974) 499.
|22j V.N. Pervushin and M.K.Volkov. Nuovo (im. A27 (19in) p.2ia
[23] A.A.Bel kov et al., Pion-pion interaction, (Energoatumizdat. Mhsom 1985).
[24] M.A.Nagles ret al.. Nurl. Phys. B147 (1979) 189.
[25] F.B.1)ally et al, Phys. Rev. Left. 45 (1980) 252: fo (19*2) 375.
[26] Yu.Mt.Antipov et al., Phys. Lett. B121 (1983) 445.
[27] M.K. Volkov and Pervushin, Y'ad. Fiz. 19 (197.1) 652; Plys. I..tt. Brx (1975) 177.
[28] R.Alkofer and H.Reinhardt, Z. Phys. (4.45 (19.99) 275.
[29] L.E.Piilonen et al., Phys. Res. Lett. 57 (19x6) 1.402.
[30] V.N.Bolotov et al., Phys. Lett. 13243 (1990) 30x.
[31] J.F.Dotioghue and B.K.Holstein, Phys. Rev. [40 (19:9) 2178.
[32] J. Bijnens, G.Ecker and J. Gasser, Nuch. Phys. H390 (1993) 81.
[:33] S. Hellucri, in "The DAфNE Physics Handbook", v.II, p. 419 (Edited by L.Maiani, (C.Paucheri and N.Paver!, INFN, Frascati 1992.
[31] MARK-II Collaboration (J.Boyrr et al.). Phys. Rev. D42 (19:0) 1350.
[35] M.R.Pennington, in "The DA Φ NE Physirs Handbook, v.II, p. 379 .
[36] S.Bellurci, J.Gasser and M.S.Sainio, BUTP-93/18 (199:3).

Received by Publishing Depariment on September 16, 1994.

[^0]: *Deutsches Electronen-Synchrotron DESY, Institut für Hochenergiephysik IfH, Platanenallee 6, 15735 Zeuthen, Germany

