


I. THE BOSONIZATION OF THE NJL MODEL

The effective four-quark interaction of the NJI maodel [1] is a low-energy approximation of
QCD, the standard model of the strong interactions of quarks and gluons. The bosonization
of the NJL model generates an effective chiral meson Lagrangian which results from the
quark determinant (see (2] and references therein)  Applying the heat-kernel techmniques
{3.,4] for the analytical calculation of the quark delerminant one can derive a momentum
expansion of the effective meson Lagrangian. lu particular, the terms of Q(p?) lead 10
the kinetic and mass parts of the Lagrangiau, amd the terms of U(p*) can be brought into
the general form which was introduced by Gasser and Lentwyler [5). A phenomenological
analysis of the chiral coefficients L, shows a guod agreement with the predictions of the NJi
model. It is reasonable to expect the same of the next vider in the momentum expansion.
where precise experimental data are not yet available

In previous works [4,6] we have presented the heal kernel expansion of the quark de
terminant up to the order g of the heat coefficients, cuntaining the complete information
about the O(p®) terms of the effective meson Lagrangian in the NJL model. As far as e
cision experiments are becoming more seusitive, it will be pussible to observe effects which
are related to the higher order of the momentum expansion (see for example (7] and [r])
Here we derive the O(p®)-Lagrangian from the NJL model A systematic study of the o
general chiral Lagrangian at O(p®) can be found in {9}

The starting point of our consideration is the effective fom qunark interaction of the N.Ji
model with the Lagrangian
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Here G, and G are empirical coupling constants, 1y is U current quark mass matrix. and
A* are the generators of the SU(n) flavor group. normalized according to tr{A2A%) = 2a¢
Using a standard quark bosonization approach based on path integral techniques one «an
derive an effective meson action from the NJL Lagrangian (1.1).

First, one has to introduce colorless collective fields fur the scalar {S), pseudoscalar i /7).
vector (V) and axial vector (A} mesons assuciated witl the gonark bilinears,
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5 = —4qu7q, P® = 4Gy XL Vsl 54 Al = 1.!(.,(”".,5_‘5 .
where a is a flavor index. After substituting these expressions into Lagy the interastum
part of the Lagrangian becomes bilinear in the quark tields:

L= ﬂlf)q
with D being the Dirac operator in the presence of the collective meson fields,
iD= |1(5+ AR)—~ (& + )|+ [igé) + - (0 + my)] FL.

Here ® = 5+:P, V= Vs, A= Ayt P = 5( 1 4 %) are chiral projectors; ARL Ly
are right and left combinations of ficlds, and
. A LA , S . A°

R TR TP P e
are the matrix-valued coliective ficlds.
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After integration over the quark fields the generating functional, corresponding to the
effective action of the NJL model for collective meson fields, can be presented in the following
form:

Z= /m D®' DV DA exp[iS(¢, 9", V, 4)],
where
1 1 . =
S(¢, ¢V, A) = /d‘:[ - Etr(@'@) - Eu(v} + /\Z)] - i Tr' [log(:D)] (1.2)

is the effective action for scalar, pseudoscalar, vector and axial-vector mesons. The first term
in Eq. (1.2), quadratic in the meson fields, arises from the linearization of the four-quark
interaciion. The serond one is the quark determinant describing the interaction of mesons.
The quark determinant can be evaluated using the heat-kernel technique with proper-time
regularization [3,4]. Then, the real part of log (detiD) contributes to the even intrinsic
parity part of the eflective Lagrangian while the imaginary part gives the odd intrinsic
parity effective Lagrangian which at O(p*) is related to the anomalous action of Wess and
Zumino (10,11].

The logarithm of the modulus of the quark determinant is defined in “proper-time”
regularization as

log | det iD| = - %Tr' log(D'D) = - %/M: dr }Tr'exp( - D'Br) (1.3)
1

with A being the intrinsic regularization parameter. The "trace”™ Tr’ is to be understood
as a space-time integration and a “normal” trace with respect to Dirac, color and flaver
matrices, T = { d*z Tr, and Tr = tr., - tr ¢ - trp. The main idea of the heat-kernel method

is to expand < z | exp(-ﬁ'ﬁr) | y > around its "free” part

—ulr+(x-y)? f{47)

<z lexp(~(O+u*)r) |y >= e
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in powers of the proper time T with the so-called Seeley-deWitt coefficients hi(z,y)

e~ THz=y) /l4r) Z hi(z,y) - 5
&

< X —ﬁ'ﬁr >=
| exp(-D'Br) |y >= s
The new mass scale y arises as a nonvanishing vacuum expeclation value of the scalar field
S, and corresponds to the constituent quark mass.

After integration over 7 in (1.3) one gets

log |detiD| = — " (1.4)

where [(n,z) = [ die~'t""! is the incomplete gamma function. Using the definition of
the gamma function [(e,z), one can separate the divergent and finite parts of the quark
determinant .

3 log(det D!D) = Bpol + Blog + Bgp.»

where
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has a pole at z = p¢/A? =0,
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1
Blog= I 01)[2,4 Trho — u*Trhy { Trh,

is logarithmically divergent, and the finite part has the form

S Y W HIk - 2.0) Tr by,

The very lengthy calculations of the Seeley-deWitt coefficients hy can be only performed
by computer support. The calculation of the heat-coefficients is a recursive process which
can conveniently be done by Computer Algebra Systems such as FORM and REDUCE.
In ref. [4] we lhave calculated the coefficients up to the order ¥ = 6. After voluminous
cumputations cne gets the expressions for heat-coefficients hy,... ks up to terms of O(r®)
(terms contributing only at higher orders are dropped)

ho =1,
k= —a,
Trhy = Ted (T ) + ta?
= 120w TRt
1 e 2 - 2 e
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Trhy = Tr{—l—a + (05", 4 aS,5%) + ;u (1(5%)* = (S)?)
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Trhy = —Tr{maz(a" —35,5%) - @(asﬂ)’}.
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Trhe = :I%Tra .

Here

Cu = [dusdi]s T = [daTw]. Su=[dua]. Su =1[da,S.)

are commutators of the operators d,, and @ which are defined by the relations
& 1
dy=8,+T,, T,=V.+An", a(z)=iVH+H'H + 4—[7“,7"]F,, -l

Moreover, .
H = Pr(® + mo) + PL(®' + mg) = S + mo + ins P,

and

T = [dmdv} =8.J, - avru + [F“,F,] = SF:;‘ ’
where F,K,M are the field strength tensors,
FAK‘ = 6“V" - a"V“ + [V‘” V"] + [A‘“A"] ' F‘ﬁ‘ = anAV - avAu + [Vuv Av] + [Am Vv] '

and

VUH = auH + [Vu)H] - 75{AM1 H} .



II. THE CHIRAL LAGRANGIAN

We will consider here a nonlinear parameterization of chital symunetry corresponding to
the representation @ = DL€, The matnix of scalar fields ¥(x) belongs to the diagonal
flavor group, while the matrix ¥z} represents the pseudoscalar degrees of freedom o liviug
in the coset space SU(n)p xSU{n)g/SCv{n). It can be parameterized by the SU(n) matrix

Qr) = exp (;/2 'J(.t)) «,9(1):;;:"(:)};2—‘

with £ being the bare 7 decay constant  Under chiral rotations
g = (P + Pubulq
the felds ¢ and A,’,UL are transforming as
¢+ & = €0,
and
AR — AR En(d, + AL, AL s AL = €8, + AL

The «flcctive meson Lagiangian in terms of the collective fields is obtained from the
quark determinant by calculating the trace over Dirac indices in Trh,(z). The “divergen.”
part of the cffective meson Lagrangian is defined by the coeflicients ko, hy and h; of the
expansion (1.4)

Law = ié%tr{r(ﬂ, 51) [D“M + mo) Du(® + o)t ~ M ( FLy 4 )2)]

+ z[Aze"‘"“’ ’r(o F)]M} (2.1

where M = (@ 4 mg){® 4 mo)! - p° and PR - F¥ + FA. The covariant derivatives D,
and D, are defined as

D=8, s +(Ale~vAFy D=8, ."(Af*—tﬂf:),

where it is undurstood that 1), and D, act upon expressions translorming as £y - - -E;; and
fn- E,t respectively. Assumning £ = u and therefore & = u02? = ul/, the Lagrangian of
O(p?) can be writteu in the form
2 2
), = -% tr(Lul®) + % tr(xUt+ Uy,
where L, = D,UU'. The bare constant Fy and the nmiatrix x = diag(x3, x3, x?) are given
by F? = yN.p*/(47?) and x? = mpp/(G1 F]) = —2mi<ge>Fq?, where y = T(0, 42/A?) aud
< §g > is the quark condensate,

The terms of O(p*) of the effective Lagrangian result {from the logarithmically divergent
part of the quark determinant az.l from the coefficients ks and k4 contributing to the finte
part. Using properties of the derivatives (see appendix, Eqs.(A1,A2)) the finite contribution
of O(p*) can be written as



N, 1 A D
£ = G u{ 3 [ D0 + mo) D7(® + mo)! — (D*(@ + mo) Du(® + ma))’]

1 —_
+ 5(Dul® + mo) Di(® + mo))?
— @2 (MD(® + mo) D' (® + mo)t + M D(® +m0)' Du(P + mo))
2 J— —,
+ 20 (D“(¢ +mg) D”(® + mo)t FY + D*(® + mo)! D*($ + mo) pu"”)
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where M = (® 4+ mo)!(® + mo) — u®. We will assume the approximation T'(k, u?/A?) = I'(k),
valid for k > 1, and p3/A? < 1.

The effective meson Lagrangian of O(p*), Eq.(2.2), can be brought into the standard
form introduced by Gasser and Leutwyler in ref. [5] (see appendix, Eq.(A4)} After using the
field transfo::nations [12], which are at O(p*) equivalent to the application of the classical
equation of motion (EOM) (see appendix A5), the NJL model gives the following predictions
for the chiral coeflicients

N 1 N N
P 162240 PT 16a%120 0T T 16a26°
L,=0, L5=l—g:—,z(y—l), Le=0,
R s [ )
Lg:lg:’%’ Lo 12::225‘
H|=‘%;2é(y—%), H2=—-%:—2[(:+2:2)y——ll§], (2.3)

where z = —ufF¢/(2 <gg>) and y = 4x*F}/(N.p?).

Analogous as for the O(p*) Lagrangian we present the p® Lagrangians in a "minimal”
form, avoiding redundant terms. The identities and relations which we have used in order to
keep the number of terms as small as possible can be found in the appendix. It is important
to realize that the field transformations used to bring the Lagrangian of O(p*) into the form
of Gasser and Leutwyler also result in contributions at O(p®) and higher [12]. Furthermore,
we eliminated (see app.) terms at O(p®)} using field transformations.

The final effective p®-Lagrangian has the form (see appendix for details)

£, = #:f;;u{ ~ 5 (Ll L)’ (24)
+%(L,,u)3 (2.5)
—éLnL"(L,‘L,)Z (2.6)
+;—0(L,,L.,La)z (2.7)
5 (Ll (28)
- 3i0 (LuL.D.2*U DDV + R,RD,DU! D"D“U) (2.9)
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((F“‘ o)+ (F)°) (2.57)
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+5(F:,F“°F“n + F,ﬁ,F"“"F"”a)} (2.58)
+ n—:;-;u(xu' uxf){—- tr (L LUD,DLU' - DDLU UY)) (2.59)

u
[ (; +2r - 2.ry) 1'8( 110)] tr (L LH(xU! - Ux") (2.60)
+[- =y —cx(2+y—Azy) + % ]tr (xU')2 (x'U)’) (2.61)
+%tr(F’““ + PR RY) (2.62)
—%u( - (FR )} (2.63)
m { —5 (Butr (' = U X)) te (L2 L. L7) (2.64)
+[,,16 +5ey| (Bt (xU' - Ux'))z} (2.65)
+ 32N2 2(tr (xUt - Ux')) {[4c y— %czy + —z]tr (xUT+UxY (2.66)
+ gt (bl )} (2:67)
where R, = U'DU, D\ = 3, % +[AL+], D.» = 8, + +[Af 4], FR, = DQF‘ﬁ and

FL = D\ FL. Terms proportional to a factor ¢ = E(I - G‘—v) are related to the O(p*) part

apy ol py*
of the field transformations (A14) and those proportional to ¢* arise from Eq.(A11) after
equivalent transformations.

The P and C symmetries of the strong interaction allow at O(p®) structures which are
proportional to &g, [11,13,9] and which do not belong to the Wess-Zumino anomalous
action. However, in this approach these contributions disappear, because we have limitea
our self to calculate only the absolute value of the quark determinant.

CONCLUSION

We have presented an effective chiral meson Lagrangian to O(p®) in the momentum
expansion, obtained from the bosonization of the NJL model. To minimize the number of
independent terms in this expression, extensive use of the properties of covariant derivatives
and field transformations has been made. In contrast to previous studies of Lagrangians at
O(p*), we had to retain the next-to-leading order terms in the field transforinations which
gave additional contributions to the O(p®) Lagrangian in the process of transforming the
bosonized p'-Lagrangian to the canonical Gasser-Leutwyler form.

The Lagrangian obtained at O(pf) is expected to be important in neutral meson pro-
cesses, for example, n — 7%9, v — x%° and K — 2%~ where Born contributions
from the O(p*) Lagrangian vanish [14]. However, taking the relevant effects correctly into
account is not a simple task since together with the results of bosonization (i.e. transition



1o collective meson fields through integrating out the quark degrees of freedom) one has to
address the question about the influence of heavy vector and axial-vector resunances [15]
and also the nonlocal corrections for the usual local version of NJL model [16).
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APPENDIX A: IDENTITIES AND FIELD TRANSFORMATIONS
Identities

In order to reduce the number of terins as much as possible we have made use of several
identities and relations, which are listed here,
The Lagrangian contains different types of derivatives which satisfy the following rules:
DL(0,04) = (D,0))01 + 04(D,0;) = (D,0,)0; + 0:(D,.0s),
D,(0102) = (D,0:)01 + 04(D,04) = (D,0,)0: + 04(D,0s),
D,(0\05) = (D,01)0; + 01D, 02) = {D,0,)0; + O1(D,.0a).
BL(().O;] = (5:‘0,)0»; + Ol(ﬁu(),) =(D,0,)0; + 0,(D,0). (A1)

In order to reduce the number of terms which contain Goldstone bosons only, we applied
the following relations

[D..D.JO = FL0 - OF"

ne

(D, D0 = [FL,0) . (D,.DJo=|FL.0]. (A2)

{D..D,Jo=FRo-OFL

By

We have also made use relations arising from the unitarity of the matrix U:

pUU'=-UDU', DDLUV +UDDU = - (D,UDU+DUDUT) .

Field Transformations

The initial Lagrangian also contained redundant terms which can be eliminate with the
help of field transformations. At O(p*) the use of field transformations and a naive appli-
cation of the classical EOM are equivalent. At the next order in the momentum expansion,
O(7%), the method of field transformations will give rise to contributions which one would
miss using the classical EOM only. Before the application of field transformations the most
general Lagrangian of O(p*) typically has the form (see Eq.(2.2)) !

L4 = L) (tr(DUD*UY) + Lytr (DLUD Ut (D*UD"UY)

+Ltr (DUDUTDUD UMY + Ligr (DLUD* U tr (x Ut + Ux)

+Litr (DLUD U (U + Ux)) + L (tr (xU' + Ux'))*

+Ly (tr (xU = UxN)® + Litr (Ux'UX! + xUTxUY)

+Ltr (FLD*UD*U' + FED U D U) — Ligtr (UFRUTFEY)

—Hitr (F::F,‘{" + F:;F[“) + Hitr (xx')

+at (DUDUY) + e (DUX! +xDUY). (A3)
It contains 2 more structures than the standard Lagrangian of Gasser and Leutwyler. In

order to eliminate the two additional terms, one rewrites D*U Ut and UD Ut applying the
chain rule to UU' = 1. After some algebra the Lagrangian of Eq.(A3) can be written as

INote ~ur different convention for the definitions of the tensors FL:R; FL.R = —ii‘g,"li.

1



Lo= L3+ aur ((D0U' - CD'UNOE) + etr (60 = 0xNOR, ) (A4

where £5%L is the Gasser and Leutwyler Lagrangian defined iu (5] ana C‘(o" has the
functional formn of the classical EOM of O(p?):

— !
O (U = DI —UD U -3 4 U\ 4 AU UUR {A3)
The unprimed (G&L) and primed coeflicients are related through

Li=1L1, Le=1ly Ta=Lly+d, La=14 Ls=Lg-A,

NoA DY )

Le=14 L:=1} +é+ 6‘ L.,=I,,‘—T'~-£‘-. Ly = L,

A
Lio= L I =10 Hy=Hj+ 5+ A
A ! .
{‘l-_4v € = — R (AG)
In our NJL-based approach the coefficients A, are
I 1 A, N

"TElen TT TigmY

Using the field transformation technigae [12] we will get rid of the last two terms of Eq.
(A4). For that purpose we write

Uir) = exp(iSAV))V(z), (AT)
where Sz( V) is given by
A _
SyV) = =1 (DWW V- VDV
F

A 22X 1
| = 4 =L | VAR Vo S NVARSE VAR N
z(l-};‘+ Foz) <,\ X 3u(\l Vy )) (A8)

If we insect {7 = exp(tS)V into Lol ) we cbtain-

LU ) = Lo V) 4 oMLV 9) + 8LV, S) + ... {A9)
In Eq. (AU) we have dropped an irrel-vant total derivative. The superseripts denote the
power of S (or [3,5,...) and the corresponding expressivns are given by
Wy 18 ) o
BILy (V. 8) = L (15:085uV)) = 0. (A10)
12 , ,
ULV, 8) = -Lir (S PVVIDS, - 08D,V - D1S;)
S5 A08) < 0, (AL)
SLLV, Sz) = O(F) x 0(83) = O(p%). {A12)

The last term is only interesting at ()(p®) and thus we do not give its explicit form. With
our rhoice of §,, eq.(A8), the term §'17L;(V, S,) precisely cancels the last two contributions
of Kq. (Ad) (/ =V at O(p*)).

12



The modification of £4 has a similar form as that of £; in Eq.(A9)

Lu(U) = Ly(V) + 8LV, 5) + O(p%), (A13)
where
F2
LV, S) = S (isofu(1)) = 06°). (Al4)
From the Lagrangian in Eq.(A3) we obtain for the O(p*) contribution to the EGM operator
4/, 1 .
Ofbul) = £z (4 - 3ur(£0). (A15)

where
Ey= ('ZL', - L;)tr (DUD 1Y) (DU Ut - U DU
+203( - UD, (DU DUD'T) + D, (DU DU D*U) U']
+(4Ly + 2L;)[ ~UD, (D*U' D,UD'V') + D, (DU DU D*U) U]
+1L, [tr (Ut +Ux") - (DU U — U DU + i (DU DUY) - (Ur ! - xu')]
+ L[ - UD, (DU (xU' + Ux")) + D, (xU' + Ux') D) U
+Ux! DU DUt - DUD U xuf]

+ 2L5tr (xUt + UxY) - (Ux' - xUY)
—2L5tr (xUt — Ux'}) - (Ux! + xUY)

+ LK) - (')’

+ L[~ UD(FRD"UY) + DDV FR)U! - UD*(D'U' FL) + D*(FELDU'|

- Lio[U FRU' Fo — FL U R 0]

+ X, [UD DU - Doy a4l

+ ,\,[szx'-o’xu']. (Al6)
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