


1. Introduction

The Hurvitz transformation approach to the bound states physics distinguished 5D
Hydrogen atom problem as the exact solvable quantum model with the non-abelian
constraints [1]

The eigenvalues of the energy (n =0,1,2,---)

Foaz

Ep= g
2K%(n + 2)2

are degenerated with multiplicity

_ {4 1) {n 4+ 3)n +2)? )

4n 13

These properties have the most simple expression in terms of the Eulerian coordi-
nates [2]. We undertake, in present paper, the Eulerian analyses of the 5D Hydrogen
bound states problem. In this way, we achieved the 5D generalization of some
resuits of the usual Hydrogen atom theory (3], {4].

The material of the present paper is arranged as {ollows. The subject matter of the
sections 2 and 3 is the calculation of the spherical bound states of the 5D Hydrogen
atom. The two subsequent sections deal with the same topics for the parabolic states.
The expressions for the generalized Park-Tarter’s amplitudes are derived though sec-
tions 6 and 7. In next two sections we investigate the spheroidal states as the spherical
and parabolic superpositions. The trinominal recurrent relations have been established
for the generalized Coulson-Joseph’s amplitudes. Finally. we conclude that the 5D ex-
tension for the well-known results of the ordinary theory has been searched for thanks

to employment of the Eulerian coordinates.

2 Spherical 5D coordinates

Eulerian s erical coordinates for the 5D space are defined by

Igp = rcosy
T, = rsingcosB/2cos(a + v)/2
z, = rsingcosB/2sin(a + v)/2 (1)

T3 = rsingsin3/2cos(a ~ v)/2
z4 = rsingsin8/2sin(a —v)/2
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7T his coordinates may  vary in the ranges
0< r<oo, 0< o< 2r, 0<d<. 0<a<dn. 0 <9 <2r.

Coulomb potential, differential elements of the length and volume and the Laplace

operator have the next forms

v=-2
-

2
dl? = dr? + rld® + %—sinz pdl?

dV, = ridrsin® pd pdQ
19 (.8 1 r‘/(,.:. f") i 7
Bs = e ar (r ar) ! rsind g Oy o v")v‘» = ﬁiniv'.l '

di* = do® + di3* + dq? + 2 cos ddady

where

df! = %.\in Adddady
F R #2
72 _ - _
I= [aﬁz “““3 a3 (aaz 2eos 5 a8 T oyt )]
3 Spherical Bound States

In the coordinates (1) the scheme of separation of the variables corresponds to the

[actorization

VP = Rir (o) Dl (0. 3.9) (2)

where D. . is Wigner's function |5). Taking into account that

PO, (08030 = U 4 DD (0 807)
we arrive to the two coupled diflerential equations
1 d dy o
— —(smaxp 1’) U+ e +r(r+30 =0, (3)
sin® o dy> dy
1 d [ ,dR T(r+3) 1 ('Z 1 )
— - R+ - == ——m— =0.
rdr (r d") r? ? a\r a(n+2) k=0 (4)
Here 7(7 + 3) is a separation constant and
2
n+2= ,—‘ a= h

V=2uE oo
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(1o is the mass of the electron). Equation (3) determines the Gegenbauer polynoimials [6 ]

I'(n + 2v) 11-2
D R L M A - Iy Z.
Cy T(?u)F(n+l)zF‘( n.n+..u,u+2, 5 )

only to the factor (sin )22, We choosc the following normalization condition
[ttt sin o <1
[
and find

. 3 (21’ + 3)(1’ - 2])' . ¥23+3/2
= ou+} e S S A 2y i +3 .
wate) =200 (247 ) | S i o con ) (5)

The radial function R, under the normalization condition

/ R (r)yrldr = |
[

can be expressed in terms of the confluent hypergeometric function

Ror(r) = Corler) e T Fl-n + 1,27 + 4;¢r) (6}

_ 4 { (n+74+3) i
C"’”as/Z(n+2)3(2r+3)!V (n—r) ’ (M

Here n = 0,1, -- and the parameter ¢ is defined by

€= a(n + 2) ) ®

Thus, the normalized spherical wavefunction for the 510 Hydrogen atom has the next
form

25 +1

T R (1), (9) D, B.7). ©

The spherical basis (9) is the common eigenfunction of the operators {ﬁ,j’,j,,j;}

wwh -

and the operator T2 of the global angular momentum

N2 _ 1 _(9_( 3 2_) 4
T = s——in3<p6¢ sin ('9699 +sin’sz (10)

with
Thh = 7(7 + 3)¥h,

In Cartesian coordinates:

PR (1)

fZ = —TZAS + z; a.‘t.-

2
——+
1 8201,

where i,7 =0,1,2,3,4,



4 Parabolic 5D Coordinates

Denote the Eulerian 3D parabolic courdinates by u,v.a, 3, v and assume that g, v €

[0,00) and a.fB.4 have the same meaning as for Eulerian spherical coordinates. By

definition
ro = (p—v)/2
Iy = JHvcosB[2cos(a +4)/2
rp = Juvcos 3/2sin(a+ v)/2 (12)
ry = Juvsinfif2cos(a - v)/2
re = JuvsinB/2sin(a - )/2.

In the coordinates (12)

2a
ot
As a consequence of the (12)
rllg =z l—l-:-—pdyl B : ydv‘l + ‘L;:JIQ
du .

dV'g = I%(;A + v)dudvd§)

A 10\ Y8/, 0 4np
As_ﬂ+l/[#0#(“0#)+w?#(y3u pradl

The differentials di?,d$? and the operator J? have been introduced above.

5 Parabolic Bound States

Starting from the representation

2+
In?

yrer —

C* 1 (1) 02(v) Do (er i y) (13)

we can simply derive two equations

18 (200, [wE jG+1)
R E pucal§ L A AL =
1 Op (# u ) et PREREG 0 =0 (1)
19 [ ,00\ [wk  jG+1) _
s (750) + [ - 2 e oo (%)

where C, and C, are the separation constants and Cy + C; = a™}. Let us introduce

the parabolic quantum numbers
n,=—j—1+a(n+2)C (18)
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with i = 1,2 and n as the principal quantum number. Then, it is easy to show that

parabolic basis must be given by following expressions

_ 1 (my + 25 + 1)! £py) ep o LEM
o) = i\ o (2) P Femii e L) )
_ 1 (na + 275+ 1)} revyy ev -
®usslV) = Ty - (F) erp-FFmizi+ 1) (18)
3
e (19)

as¥n + 2)
Eliminating the energy £ from Eqs. (14) and (15} we get the additional integral of
motion

- 2 pwd (40 u(')(l(')> 2Ap —v) ~ u—-v
Ao_u+u v v (V;): wilt ”a Y J +a(y+u) (20)

with eigenvalues

. 1y o~y
-y = .
1= a{n +2) (2n
In Cartesian coordinates, the operator ,:1\0 can he rewritten as
~ i & a 70
Ao = ro=—s— — — — 22— —_—
° 1001,,61', T drodr, drg t ar (22)
with o = 1,2,3,4. Let us compare (22) with 5) Runge-Lenz vector {7]
~ 1 z,
— ) Sl N
A = Q(LHP:J "!‘"]+ﬂ(:’1,)l/2 ’ (23)
where
L,=z2P —1,P P=—ih—6—.
J L PR 3 ar,

[t immediately follows that ,Zu is the ({ = 0) component of ,:l\,

6 Tarter’s Representation

Now, we can write, for fixed value of the encrgy, the paraholic bound states (13) as

a coherent quantum mixture of the spherical bound states:

L I LA (24)

r=2;



Expansion (24) is the  $D gencralization of the Park’s expansion [3]  forthe  Coulomb

problem.

The aim of this section will be to obtain the explicit form of the amplitudes W[, .

At first, note that
u=r(l + cosyp). v=ril - cosy). 125)

Then, substituting ¢ = 0, taking into account that

(24).

Vi) = " o,
Cay = (26)
and using the orthogonality relation [¥]
mr"R,, (r) R, (r)dr 2 l 4 27
' ne Ar = ~oom—— o s Oy
' a?(n +2P 2 +3 (27)

[}

'

we get the following integral representation for the generalized Park-Tarter’s amplitudes

1

S P
Wornns = (a7 3 4 31 B K-

(28)

Here
g - [@r 43 - 2! 4 74+ 3)my +2) 4 1)(ny 427 + 1) (29)
manz (niMmg)l(n — 7 +2j + 2)! ’
Ki, = / TV F (-0, 2j + 202)  Fy(~n 4 7,27 + 4;2)dz (30)
(i
and
2r
TEer= a(n + 2 ’

After writing the F(—n);27 + 2, r) as a scries, integrating according to [9]

o . M(v +1 k ,
[; e, F (o, y: kr)dr = _(/\_;I_)2Fl (a,u+1,7;:\—). (31)

and using the formula

[(e)l'(c —a—b)

T(c—a)l(c—b)’ (32}

2 Fi(a. b 1) =

for the summation of the Gauss hypergeometric function, we obtain

{ -ny, —T+2j,7+2j+3 ,1}' 33)

_(n-%)er a3+
2/ +2,-n+2;

352

Ty

mm (n+7+3r—25)!
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and thus come to the generalized version of the Tarter’s representation (3]

(=2 fi2r +3)ir +2) + 2 + 25 +1)l(ma + 24 + 1)1
(mi)(n2) (7 = 2N{n-7){n+ 7+ 3)

1} . (34)

7 Park’s Representation

Woimss = (27 + 1)

. { —ny,—1+2,,7+2;+3
- oF

274+2,-n+2

The next step is to derive the Park's representation for W7 . It is sufficient, for
this purposc, 1o write the Clebsch-Gordan coeflicients for the group SU(2) in term of
4875 - function.

ey

(G T (=10 sl b b+ e - a)t

[ (2¢+ 1)@+ a)l(c+9)! i
(a- a)ib— (b + I)c—NHa+btc+i)latb-c)la—b+c)(b—aFc

1} . (35)
To use the formula {10]

s $,8, —-N (t+ SIN o s. ' -, =N
F{ AR n} s ,rz{ e lx} (36)
equation (35) can be rewritten in the form

oo ye-ag (2e + 1)(b - a + )@ + a)!(b+ B+ ) 12
aaes = (=1 mat+h (a—a)l(b~Mec—Ma+b-c)la=b+c)Wa+b+c+ 1)

(a+b_l) o —a+a,c+53 bl —c+7
TErEeTELL RV SEHPDIE  L (37)

By comparing (37) and (34}, we finally ohtain the desired representation

L —a-b—c—l.-ata,-c+y
$ _a—b‘l"),-—h—-(‘-{ 1

Wro= (—1)"‘0";_‘ zjti‘-..” g1 Btingnr - (38)

nIn:J

The transformation inverse tc, (25), namely

n-2y
:ph Z W:VIJ‘PPM (39)
ny =0

is an immediate consequence of the orthonormality propriety of the SU(2) Clebsch-

Gordan coefficients. The expansion coefficients in (39) are thus given by
n v+l 2 H
Waty = (COPCIE s (40)
and may be expressed in terms of the 3F, function through (35) or (37).
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8 Spheroidal 8D Coordinates

The spheroidal coordinates, Coulomb potential and spme differential constructions -

we write as:

zo = Hén+1)

r = '}13\/ (€7 = 1)(1 — n?) cos B/2 cos(a + 7)/2 :

T, = %\/ (€7 = 1)(1 = 7?) cos /2 sin(a + 7)/2 (41
zs = B (& =1)(1 - 7?)sinf/2 cos(a —7)/2

Ty = (€2 = 1)(1 — n?)sin B/2sin(a — 7)/2

15£<'oo,—15n51
I ' 2a o o '
V=R o (42)
R, . d¢? dn? R . g
a = 2 i) (g + 1) + 7€ - D - e

5 X
avs= %(e’ ~ (€ - 1)1 - n’)dédﬂdﬂ

4 1 d , d
o g [
= e €~V Y [0
_ 162 ‘
\ RE-n0-7)
Here R € [0, 00) is the inteyfotus distance. In limits R — 0 and R — oo we come ba.c.k;\

\ ‘ : \

)

to the spherical and parabolic coordinates.

.-

9 Spheroidal Integral of Motion
The separation of varidbles in spheroidal coordinates
eroida, 2 + 1
wereridal — 4 [ F1(6) fan) D, 57 (44)

produces the separation constant A (which is a function of the parameter R) and leads

to two ordinary differential equations

[—1——-"—(52—‘1)’{3—@—*—9 Bey BE —1)]f1=A(R)fx (45)

£2-1df -1 2Rt
1 d, 29 4jG+1) R #ORE 2 -

W



By standard trick we ran obtain the Hermitian operator

—
p 2 _E210, nz)ZE}+

1= l 1 - r/z 1] gogpd €1
57 I 06( ok 1 —-n2dy on
42402 -2) o  R{n+1) (47)
(€2 =1)(1 - 7% a(§ +n)

the eigenvalues of which are A{R) and eigenfunctions of which are W#Pherordal Retyrning

to Cartesian coordinates and performing a long calculation we obtain

A=T 4 RA,, (48)

Ihus, A is a simple lincar combination of spherical and parabolic integrals of niotion

10 Generalized Coulson-Joseph’s Amplitudes
[n this section we briefly discuss the cigenvalue problem
A spherodal _ Aq(R)‘ysrhfrmdu/ . (49)

The integer-value-! index g labels the eigenvalues of the operator A and varies in the

range 0 < g <n—2j.
Our strategy will be along the following line

(a) consider the expansions

‘p:phrrmdal — Z U,:'”(If)\payh (50)
1=2)
n-2-

yepherodal _ Z AI':‘VI)(R ygPer, (51)
ny =0

(b) act by A on both sides of (50) and (51)

(c) use the equations
T2k = (7 4+ 3)yoeh (52)
par _ M1 7 M2 par
AW = a2 ))lll (53)
Then, by using (48} we find two sistems of linear homogeneous equations
(54)

[Po(R) ~ T{r + AW (R) = R Zu,,w(m(zo),,,,

=2y

9



n-2;

M(R) — %’— M2 (R Zﬂ M:;, RY (T - (55)
Here 1
(Ag)rr =/W;‘P”20W:?" dv. (56)
Tyt = / Wi TRnT V. (57)
It followes from  (25) and (39) that
- "
(Ao)sr = m";’(znl —n 4 2)WR W (53)

If we substitute the expression (40) into (54), take into account the recursion relation (5]

) [ 4c*(2c 4 1)(2¢ = 1}
(et e—AN=a+b+e)la—bt+c)atb-—c+1)a+b+c+ 1)]

Y -
Cua;bﬁ =

. [(c—7—l)(c+7—l)(—a+b+c—l)(u—b+c-1](a+b—c+2)(a+b+c) e
4(c— 132 - 3)2:-1)

c2n (= B)cle— 1)~ yala+ 1)+ 7bb+ 1) ooy,
+ Coans = o= 1) Contd (59)
and use the orthonormality condition
Z Crx 0Cimss = Scebarm, (60)
a.p
we find that
~ 1
(Aﬂ)n’ = _a-(—n-:‘z_)(!jr:flér T+ + B 67’.7-1)! (61)
where
gr = [T+ 2 4 = 2)n — 7+ Hin 47 +3)]", (62)
M (2r + 1)(27 + 3)

Now, combining (61) with (58) we obtain the following trinominal recurrent relation

for the coefficients U

(BIF'UZNR) + BLUIZ(R)] =0. (63)

ng; ny=ng

R
A -
[AfR)—7(7 + 3)] “VJ(R)++a(n+2)
This systemof n — 2 linear homogeneous equations must be solved simultaneously

with the normalization condition

R (R = 1. (64)

ngy
r=2)
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The eigenvalues \;(R) of the operator A then follow from the vanishing of the deter-

minant for thesystem (63).

The matrix element (T’),,,,gl can bz calculated in the same way as {4g)-,+ except

that now we must use the r-i-tion [5].
l(b—a+c)a-~b+c+ l)}‘“C"z;“ =l{a-o+1)b~- 3))]IZCIZ-I/2.0-!/1;&—1/2.E+l/2

. . 3111270 .
+{(a+a+1j(b+ )% a4 1/2at1/2b-1/2.0-1/2 (65)
and the orthonormality condition

BT T PN (66)

In this way we obtain the expression
('iq),,,,g, =y # D)oe =y =25+ (= 4 20y + 25+ 1) = 2) 5,,;,.,
—[ry(n =y =25+ D)0 =y +2)my + 25+ 1))? b mi-1
=t 4 D=y = 2000 =+ Dy + 25 + )26 (67)

which leads to the recurrent relation

. . H(2ny —n+25
(ri+1)(n-n, —1])+(n—n|+2)(1l|+2_]+l)—-'.3+—c(ln 5

A (R)| MD (R) =

ng)
[+ D =ny =2 n =y + Doy + 25 + '.Z)]”2 M:,,'}“(R)
+{ra(n = ny =2+ D —ng + 000 + 25+ D)2 -1 (R, (68)

This equations must be solved together with the normalization conditions

w-12y
ST = {69)
ny=0

Mention finaily, that the matrices {7 and W generalized the well-known Coulson-

Joseph's amplitudes of the 3D two-center Coulomb problem.

11  Conclusions
In present paper we consider the bound states of the 5D Couloumb problem by

separ:ting  variables in spherical, parabolic and spheroidal Eulerian coordinates.

11



The explicit expressions are derived for the normalized wave functions and Park’s
coeflicients, and the trinominal recurrent relatiuns have been established for the 5D
Coulson- Joseph’s amplitudes.
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