


1. Introduction

It is well known Campbell-Hausdorff formula (CH formula) which states that for arbitrary
operators A and B logc*eP is expressed through the commutators of the operators A and
B:
1 1 1
loge*e? = A+ B+ -2-[A, B) + IJ]A.[A,B)] + E[B,[B,A]] +... (1.1}

where (A, B} = AB - BA.
Let A be an associative algebra with unity with linear operator II acting on it such
that
M =1, VabeA M(allb)=Ilab), I((Ila)b)=Ilalld . 1.2)

We formulate in this paper a modification of CH-formula for the algebras of this type and
discuss one of its applications.

For arbitrary a,,...,a. € A we define Gn(ay,...,an) as the Lie algebra generated by
the elements a,, ...,an and by the linear operator II in the following standard way: Let [A]
be commutators Lie algebra— [A] is the algebra A with redefined multiplication

[y v] = ue — vu. (1.3)



Then ¢ni(a) . ..,an} is the minimal Lie subalgebra of (4] which obeys to the conditions

ay,..an €G, if c€G then MMce€g. (1.4)

Theorem 1 For arbitrary a,b € A
N logMe*c* € Gnla.b) . (1.5)

Example 1 In the case if II is identity operator (I1 = id) then the conditions (1.2)
are fulfilled automatically and we conie to CH formula (1.1}.

Example 2 Let T be a space of the functions and D-the associative algebra of the
differentiation operators of all the orders acting on I'. We consider the projection operator
11 acting on D as

Ma: (Ma)f = (al)f, (1.6)
where a € D, » function f € T, 1 is unity function. —II is the projection operator which
extracts from the differential operator its null degree part. It is easy to see that II obeys
to conditions (1.2).

Before going to detailed proof of this Theorem we briefly recall the algebraic proof of CH-
formula (the case where I1 = id) which is basced on the following considerations (See for
details for example {1,2]). .

Let G be an arbitrary Lie algebra and 4(G) its universal enveloping algebra.

One can define comultiplication é on U(G)- - thé homomorphism

U —-UDU (1.7)
which is correctly and uniquely defined by its values on «G:
VzEG bir=1r51+18 1. (1.8)

(¢ is canonical embedding of § in & (monomorphism of G in [U}}). The elements a@1+1Ga
of U @ U are called primitive.
The remarkable fact is that comultiplication é extracts ¢ from U ([1,2]}:

ba=acl+lva ff a=.r. (1.9}

In the case if A = K(a, b) is free associative algebra with unity with two generators a, b
then it coincides with the universal enveloping algebra of the Lie algebra G(a,b) (G(a,b) =
Gia(a, b) is subalgebra of [K(a,b)] defined by (1.4)). So we can apply (1.9) for proving
(1.1) in the case a,b € K(a,b).

r®1and 1 ® y commute in U ® U so it is casy to calculate that

Slogete® = loge*®1H1@4 PO _ oppteb 91 + 1 @ logee® (1.10)



is primitive in U ¢ U, (In (1.10} r and «r are identified). CH-formula is proved for the
free algebra A'{a.b) hence for arbitrary associative algebra with unity.
Using CH-formula (1.1} we can reformulate the statement of the Theorem 1:
Theorem 1’ If 4 is an associative algebra with unity and with linear operator I}
which acts on it obeying to the conditions (1.2) then

Yeed logle” € Gyley . (1L.11)

(logﬂc =Me+ = l'I[r Me} + ﬂ[c Mfe. Me)} +5 N{fe. Me.e]} + -[I'Ic T, Te)) + . )

(Gile) = Cuie,0) (1.5). if ¢ = log ¢ £ Gigla. b} then Gnic) C Gnla.b).)

To geuneralize the cousiderations above for proving the Theorewn 1’ in the Section 2
we consider the associative algebras provided with additional structure corresponding to
the action of operator [T obeying to the conditions +1.2) «CH-algebras) and construct free
associative CH-algebra with one generator

In the Scetion 3 we introduce Lie CH algebras study their universal enveloping alge-
bras. The maum result of this paper is the Theoren 2 which s formulated and proved in
this Section and which allows us to prove the Theorem 1 in the same way like the proving
of CH-formula ((1.7) (1.10)).

In the Section 4 considering the algebris like in the Example 2 we use the Theorem !
for the algebraic reformulation of the conditions of the connectivity of Feynman diagrams
corresponding to the logarithm of partition function in quantum fieid theory. It was the
considerations which stimulated us for this algebraic investigation. (The example 2 was
the basic example for formulating the coulitions 11.2)).

The CH-algebras which are introduced i this paper seems to be interesting in the
applications. Professor V.M. Buchstaber ofters the general construction for CH -algebras,
He noted also that so cailed Novikov's U- deubles '3 (which are the natural generalization
of the algebra constructed in the Examyple 21 are the interesting « xamples of CH-algebras.
We consider these examples in the Section 3

We have to note that in the formulac (1.1). i1.5,. (3.11) the expressions loge®c.
log He*e®. logMe' are considered as formal power series corresponding to the functions
log, ¢. All the statements have the sense for arbitrary large but finite initial sequences of
these formal series.

All the algebras cousidered kere are the linear spaces or the seal Lor complex munbers)
The associative algebras considered here are the zs~ociative algebras with unity.

2. CH-algebras
We call the pair (4,IT)  associative CH -algebra cwith anity . +f 4 is the associative algebra
(with unity) and II is lincar operator on it obeying to the vonditions (1.2). We say that
operatar J1 provides the algebra 4 with CH-structure. Fron: 1121 it is evident that 1T 1s

projection aperator {I1? = IT) and Imll is sutalgebra in 4.
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. For example the linear operator I1(1.6) on the algebra D defined in the example 2
provides this algebra by CH-structure.
Of course every associative algebra can be provided with trivial CH-structure (I = id).
The homomorphism ¢ of the associative algebra A, in the associative algebra A; is
the morphism of corresponding CH-algebras (CH-morphism) ¢ : (A4,, 1)) — (A;,11;) if

pwolly =Mz0p . 2.1)

We need also the construction of tensor product of CH-algebras: (A,,I1,) ® (A;,11) =
(Ai ® A2,T1; ® ;) where

(I, @Mz )(a, @ ay) = M ay © Mza;. (2.2)

The CH-algebra (A4 (L), P) is free algebra with one generator in the category of CH-
associative algebras with unity if for arbitrary CH algebra (B,11) from this category and
for arbitrary ¢ € B there exists unique CH-morphism > : (A4(L), P} = (B, 1) such that

sLly=c. (2.3)

Proposition 1 There exists unique (up to isomorphisin) free CH-associative with
unity algebra with one generator.

We give briefly the construction of this algebra.

Let 7, L be two formal symbols.

Ag is the alphabet containing one letter L. Ty is the semigroup of the words on the
alphabet A;. (To the empty word corresponds the unity in Ig.) Let "A; is the alphabet
containing the letter L and all the letters ws where s € [g and s # 1. [y is the semigroup
of the words on the alphabet A,. By induction the alphabet A,y contains all the letters
of the alphabet A, and the new letters xs where s € I'y, \ Tn—y. ['nyy are the words on
the A4q41. The semigroup

I'=TouUlNu...uTU... (2.4)

is the semigroup of the words on the alphabet
A=AU...UA,U... (2.5)

The linear combinations of the words of the semigroup I' with the coefficients from the field
of real (or complex) numbers consist the associative with unity algebra A(w,L). On this
algebra one can consider the lincar operator P which is defined on A(x, L) by its action
on the words from I':

Pu = muw. (2.6)

f w is the word from I'; then xw is the letter from Ay, (the oneletter word from I'i4;).
Now we construct the algebra A.(L) as factor algebra of A(x,L).
Let us consider the set of ideals in the A(x,L):
Jo is the two-sided ideal generated by all the elements P(aPb)— P(ab), P(Pab)— PaPb
(Va,b € A(x,L)) of the algebra A(x,L). J; is the two-sided ideal generated by all the



elements Pag (Vag € Jo). By induction J, 4 15 the two-sided ideal generated by all the
elements Pa, (Va, € Ja). Then

ALy = Atz L)) (2.7)

where

J=doiodyi o i (2.8)

It is casy to sce that the operator P defisud on the algebra A(r, L} Ly (2.6) is correctly
defined on the algebra Ag(L), provides this algebra with CH-structure and CH-algebra
(An(L), P) is free CH-algebra with one generator,

We cin also describe thie basis of the algebran Ag{L) (considering it as a linear space).
We call the letters L, 7L and all the letters of the type m(LwL) the regular letters (where
w is some word in '), We call the word in T regular if it contains only regular letters. It
is casy to sce (using the conditions (1.2)) that every element of A(x, L) is equivalent in
A.(L) to the lincar combination of the regular words. Morcover one can show that the
regular words consist the linear basis of the 4,(L). We do not give here the proof of this
statement. For our purposes it is enough ouly that A.(L) is not trivial.

3. Lie CH-algebras
Now we introduce Lie CH-algebras. We say that the pair (G, M) is Lie CH-algebra if ¢ is
Lie algebra and M is linear operator on it such that

M2 =M, VYabeG Mla.b]= AMa Mb+ M[Aa.b] — [Ma,Mb] . (3.1)
From (3.1) it follows that ImA{f:

g' =1{G 3 a:a = Ma} 3.2)

is subalgebra in G.

In the same way like for associative algebras cvery Lie algebra can be provided with
trivial CH-structure (M = id).

It is easy to see that if (A4, II) is assuciative CH-algebra then the operator IT on [4)
obeys to (3.1) hence ({4}, 11} is Lie CH-algcebra ({A] is commutators Lie algebra (1.3)).

In the same way as for associative CH-algebras the homomorphism  of the Lie algebra
G\ in the Lie algebra G; is the morphisiu of corresponding Lie CH-algebras (CH-morphism)
w1 (G1, M) = (Ga, M) if

;0_\l| = .\lz Ty, (33)

Now we generalize the construction of the universal enveloping algebra for CH-

algebras.
Let (U4,I1) be associative CH-algebra with unity and «: (G. M) — ([¢],1I) is CH-
morphism. .
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We say that (U, IT) with CH-morphisin « is universal enveloping CH-algebra of Lie CH-
algebra (G, M) if for arbitrary associative CH-algebra with unity (A, $) and for the arbi-
trary CH-morphism ¢ of (G, M) in ([A]. ) there exists unique (enveloping) CH-morphism
p of (U, 11} in ([A], S} such that

por=yp. (34)

If ($p(L), P) is CH-Lie algebra generuted in the ([Ax(L)], P) (See Proposition 1) by the
element L and linear operator P (1.4) then ii is casy to sce that

Proposition 2 The free CH-algebra (4.(L), P} is universal enveloping algebra for
Lie CH-algebra (§p(L), P) , (morphism / is canonical embedding.)

(The enveloping homomorphisin p is defined by the condition p(L) = o(L).)

Theorem 2 For Lie CH-algebra (§.A) there exists unique (up to isomorphisms)
universal enveloping CH-algebra (U, 11) with CH morphism «: (g, M) — ([U4],IT) where U
wiih ¢ is universal enveloping algcbra for Lic algebra ¢ in usual sense.

Corollary 1. Let U be universa! cuveloping algebra of the Lie algebra ¢ and p be
enveloping homomorphism of the homowmorphisiu »: G -+ [4] (for some associative algebra
A). If ¢ and A can be provided with CH-algebras structures in a way that » becotnes
CH-morphism, ¢: (¢, M) — ([4}, S) then g is CH-morphism too: p: (U, 1) — (A, S).

Corollary 2 If (4,11} is universal enveloping algebra of CH-Lie algebra (G, M) then
comultiplication § defined on ¥ by (1.8) commutes with action of operator II:

M=l Mp . (3.5)

Indeed comultiplication é is enveloping homomorphism of the homomorphism » of
Gin [UBU| :p(r) =w@ @1 +1Cur. Itis casy to see that  is morphism of Lie CH-
algebra (G, M) in Lie CH-algebra ({4 ¢ U].11 = I). It follows from Corollary 1 that § is
CH-morphism of (U, M} in (U @ U].TT & I1) hence (3.5) is satisfied.

Now using Theorem and Corollary 2 we can prove Theoremn 1' using (1.9). Indeed
from Proposition 2 and Theorem 2 it follows that Ax(L) ts universal enveloping algebra
for Lie algebra Gp(L) {in usuul sense). Using Corollary 2 we can easy check (like in (1.10)
that élog Pel is primitive in & ® U. Theorem 1’ is proved for free CH-algebra, so for
arbitrary CH-algebra .

Indeed it is easy to see that we proved lirtle wore:
log Pt € GpiL) = ImP (3.6)

Now we prove Theorem 2.

Lemma. If & is the universal enveloping algebra of the Lie algebra ¢ and the linear
operator M provides Lie algebra G with CH algebra structure then there exists the linear
operator II providing & with CH-algebra structure in a way that canonical embedding ¢
{t:G — [U]) becomes CH-morphisn:

Hoc=c¢ol. 3.7)



Remark If Lie algebra ¢ is provided with trivial CH-structure M:ImM = 0 then I
on !{ is corresponded to augmentation £:i{ — k (counity) (Ila = &(a)-1, (I1®id)6a = 1®a
where § is comultiplication (1.7)) on the Hopf algebra Y.

We prove Lemma later.

Now we prove that CH-algebra (1,11} obeying to the conditions of Lemma is the
universal enveloping algeura for (G, M).

Let (A, S) be associative CH-algebra and » CH-morphism of (¢, M) in ({4], S). Be-
cause U is universal enveloping algebra of G (in usual sense) then there exists unique en-
veloping homomorphism p of [{] in [A] (p¢ = y»). We have to prove that p is CH-morphism
of (U,11) in (A, S):

pll = 8p. (3.8)

( The uniqueness of the (i, 11) is provided by the fact that if (7, I1) is another univer-
sal enveloping algebra of the CH-Lie algebra (¢, M) then considering the CH-morphisms
A (U, — @, 1) and p: 24, 1) — (U, I} which envelop correspondingly the embeddings
¢ (G, M) — (U], 1) and i: (G, M) — ([U] [1) we sec that pjp = id, jp = id.)

We prove (3.8) by induction. We consider the linear subspaces Uy inlU: Up =1,U; =
(G, Uy (n 2 2) containe all the elements which can be represented as linear combinations
of the products of less than n + 1 elements of Uy.

Inductive suggestion.—Forn €< k (n 2 1)

Va€ln,Tla =Y Mz, b, where b, €Un.1,7,€¢ (3.8a)
and
VYa€U,, plIla)= Sp(a) (3.8%)

Here and in the following we use that in a universal enveloping algebra ¢z-iy—ty-1z = ofz, yl.
For k = 1 (3.82,3.8b) are evident: [la = Ilix = Mz by (3.7) and p(Ila) = pll(sz) =
p(eMz) = p(Mz) = Sp(z) = Splez) = Spla} .

For proving (3.8a) in the case k — k + 1 we note using (1.2) that if Uiy 2a=4a"'-tz
(where @' € Uy) then lla = II{d’ - cz) = Il{a' - Muz) = [I{a" - eMz) = N(eMz-a' +a") =
¢Mzx -Nla' + Ha" (where a" € Uy). (3.8a) is proved.

Using (3.8a) we prove (3.8b) for & —~ & + 1. Again using (1.2) we have that if Us41 D
a = tz-b then plla = pll{cz - b) = pll{sz - IIb) = (by 3.8a) = 3_ pll(sz - :Myi - ¢;) = (where
c € Upr) = T pll(afa, Myi] - ei) + 3 pTI{(s My, - ex - ci)= 3 pM(e|z, Myi) -ci) + 3 oMy -
pll{cz-ci) = (by inductive suggestion (3.8b)) = ¥~ Sp(e[z, Myi}-ci)+ 3 Seewi-Sp(ez ) =
3 Sp(ifz, Myi)-ei} + 3 Sp(eMyi - - ¢i) = Splex - b) = Sp(a).

The Theorem 2 is proved.

Now we prove the Lemma.

Let G be Lie algebra and the linear operator M provides it by CH-algebra structure
{3.1).r

Let {ba,ei} (a € Iy, i € I1) be basis in G such that {b,} is basia in subalgebra
G =ImM (3.2) (e; € §). We assume that I = (Iy,]1) is well-ordered and the elements of
I, precede those of I). The monomials {ba,...a, €i;...im} Whereay < ... Zan, i) Z... Xim



and b, . .a, = tby, *... tha,, €iy. i, =t ... e, is the basis (Birchof de Witt basis )
of .
We consider the filtration on U:

Uy CUL C ... ClUimy C ... (3.9)

where Uy is the linear combination of the basis eleinents {ba, .. .a, < €4;..4,, ) for m < k.
(Uyoy is the universal enveloping algebra of G defined by (3.2).)
We note using (3.1) that Lic algebra ¢ is the sun (as the linear space) of two subal-
gebras:
C=C®G, (G=ImA. G=kerM GN¢g=0). (3.10)

If {e,} is a basis in the Lie subalgebra G:

Me, =0 (3.11)
then it is easy to see that the linear operator II:

Wbar..an * €irotn) = 0 ifm 2 LI = id, (LU — Ugy) (3.12)

e

js satisfied to the conditions of Lemma.
(In the case if the condition (3.11) does not hold one can show (by induction) that
operator II can be defined as I1 = $°° where $(ba, ..a, €1\ . 1 ) = boy..an *Ciy..im, tMEi

& =id, (P:Upsry = Uy ifn 2 1, if a € Uy then YN > k Vg = dVa € Uyy,.)

o)
The proof is finished.
Note Our aime was to give a pure algebraic proof of the formula {3.6). However
we want to note that using the above algebraic statements (Proposition 2, Theorem 2)
and the formulae (3.10-3.12} one can give auother proof of {3.6] which is based on the
following fact yielded from CH-formula (1.1): e’ is decomposed into the product efe®
where & € ImM, % € kerM.

4.Application
The statement of the Theorem 1 can be used for investigation the problem of the con-
nectivity of the Feynman graphs correspouding to the Green functions in Quantum Fields
Theory.

In Quantum Field Theory it is well known the Theorem about the connectivity of the
Feynman graphs corresponding to the logarithm of partition function (PFLC Theorem)—
generating functional of the Green functions. (Sec for details for example [4].)

The Green functions of the quantum theory are the vacuum expectation values of the
time ordered products of field operators:

G(z1re. Tn) =< T(o(23)... Hzn)) >, 4.1)



where the classical theory is defined Ly the classical action S(¢)—the functional on the
classical fields ¢(z) corresponding to the ficlds operators ¢(z).

The Green functions can be collected together in the generating functional Z(J) (par-
tition function) — a formal power scries on the “classical sources™ J(z):

z)=3 W’—,/cm.....:,\rm:,)...J(zN)d:. ..de. (4.2)
N=0"""

In the case where S(¢) is the action of free theory
1 .
ﬂm=swm"=/(;mnhwwu0d: (4.3)

where A (9) is some invertible differential operator (for example A = 8%) the functional
Z({J) can be easily calculated:

D 2 = ] AGm0 asdy (4.4)

where A{r—y) is two-point Green function of the free theory which is obtained by inverting
operator h(3)
KN(NAry) = & — y).

In the casc of full interacted theory where
St} = St + S(0)im
the functional Z(J) is given by the following formal expression
Z(J) = Sl Z0 o = Suatig, [Nt =y yidsdy {4.5)

It is well known Gell-Mann and Low formala which leads to the perturbative expansion of
the Greens functions in terms of Feynman graphs [4). To every monom in a power series
expansion of {4.5) by J correspond Feynman graphs connected or disconnected.

PFLC-Theorem. In the functional log Z(.J) give contribution only connected Feyn-
man graphs.

(The analogous statement is in Statistical Physics where to log Z correspond the
free energy of the system and in the Probability Theory where to log Z(J) correspond
semyinvariant [5]).

The standard proofs of this Theoreni are based onu the recursive procedure of the
Feynman graphs investigation.

We discuss PFLC-Theorem uzing the Theorem 1.

We rewrite (4.5) symbolically

Z =Tk, (4.6)



To cousider T and K on an equal footing we rewrite (4.6):
Z =0T (4.7}

where [T = A1 and & is the operator of the multiplication on K (compare with Example
2 of the Section 1). . o

To every element a of the associative CH-nJgebra (Ag(T, '), M) generated by T, K
and projection operator Il correspond Feyumaa roapls connected or disconnected. (For
example to the element ¢ = [allb correspond dizronnected Feynman graphs if Ile and b
are not trivial elements of the Ay (T, ' ).} Frow the Theorew 1 it follows that the PFLC-
Theorem is reduced to the algebraic statement: to the elements of the Lie CH-algebra
(gn(T K), IT) correspond the connected Feynman graphs. This statement is right as far
as to T and K correspond connected Feyumuan graphs (which takes place for field theory
standard lagrangians). One can show it noting that to the commutator operation in the
(6n(T". K} corresponds the gluing of the currespouding Feynman subgraphs.

5. Discussions

To find algebraic reformulation of the PFLC-Theoren: we considered associative al-
gebras provided with additional operation by means of lincar operator Tl which obeys to
the conditions (1.2) and the Lie algebras corresponding to them (CH-algebras). We show
that these algebras have the propertics siuilar to usual ones (Theorems 2). In particular
one can formulate Campbell-Hausdorfl like statement (Theorem 1),

It is interesting to study nontrivial examples of CH-algebras. Following to V.M.
Buchstaber we consider

Example 3 [6]. Let A be associative algebra whith unity which is the left 8-module
(B is subalgebra in A) and A admits the expausion 4 = B + 2», B - a; in a way that
uga; =y >1 bHaq, where b, € B. Then it is casy to see that [I: A — Bia = Ek)o byay —
by (ag = 1) provides 4 with CH-structure. (Compare with 3.9-3.12.)

One can show that every associative CH-algebra (A, 1I) can be represented in this
way using that C = kerll is the subalgebra which is as well as A the left module over the
subalgebra & = Imll (as it follows fron (1.2)).

The interesting example of this coustruction is

Example 4 [6]. Let X be the Hopf algebra with comultiplication 4 and augmentation
e: X — k. (Compare with Remark afier Leima.) Let an algebra M be left X -module
such that ¥z € X and Vu,v € M z(ur) = er"(u‘) riyiféz = %, } @ r2. (Milnor
module.}) The algebra A = MY of the lincar combinations (4 3 « = zug.n, ug €
M.z, € X) is sa called Novicov's O-double [3]. (TLe multiplication is defined by (uz) -
{ry) =uY, z}(v)z?y where ér = 5 2! - k) i {e,} is basis in X such that e¢y = 1 and
fen = 0 for o # 0 then the lincar operator I1 defined on O-double MX by the condition
U, uata) = ugey provides MX with natnral CH ssrueture. )

The CH-algebra { MX,IT) is on une hand the natuial generalization of the algebra
described in Example 2 where X is the algebra of ditferentiations with constant coefficients
and M is the algebra of the functions. On other hand this algebra arises in the different
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applications. The model example for O double is the algebra AY = AX of cohomological
operations in complex cobordism theory [7] where X is se called "Landweber-Novikov”
algebra [7.8], A is the U cobordism ring “for the point™. The algebra AY is related to the
differential operators on some infinite -disensional Lie group.—It was shown in [9] that
if Dyf(R) is the group of the diffcomorplismms of the real line R and & its subgroup:
G = {Diff 3 f: f(0) = 0, f' = 0} then X is isomorphic to the universal enveloping algeora
H(G(G)) of the Lie algebra §@ of the group G\ is the ring of polinoms on this group. We
seo that AL returns us again to the example 2, )

It is interesting to study in details these and other examples of CH- algebrns.

On other hand it is interesting 10 study how nmeh the statements of the Theorems 1
and 2 depend on the conditions (1.2) ou the linear operator 1.

The considerations of the 4-th section lead us in fuct to redefinition of the connectivity
ronditions as the conditions of belonging to specinlly constructed Lic algebra. It can be
interesting to aralyze in details the relations hetween tnis definition and usual ones.
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