


At present, the study of spin eflects has attracted considerable interest due to the
development of polarized programmes at future accelerators {1]. Most part of the spin
experimental data at high energies is now obtained at fixed momenta transferred. The ¢-
channel exchange with vacuum quantum numbers (pomeron) gives the main contribution
to this region. The vacuum (-channel amplitude is usually associated in QCD with the
two-gluon exchange [2]. The spinless pomeron was analysed in (3, 4] on the basis of a
nonperturbative QCD model. A similar mode] was used to investigate the spin effects in
the pomeron exchange. It has been shown that different contributions like a gluon {5] and
quark loops [6, 7] may lead to the spin-flip amplitude growing as s in the limit s — oo.
As a result, the spin-flip amplitudes are suppressed logarithmically with respect to the
spin-non-flip amplitude of the same order in a,:
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Here and in what follows m = 0.33GeV is the constituent quark mass and a is a function
linearly dependent on |¢| at large |t}. The arise of Ins in (1) stems from the fact that the
spin-non-flip amplitude has an additional logarithmicai factor. Just this amplitude was
calculated in different papers (see (8] e.g.). This result confirms the absence of spin-flip
amplitudes in the leading log approximatien [9).

Iu papers (5, 6, 7], the high-energy ¢q scattering was studied in the soft momentum
transfer region |¢| < 1GcV?2. In (10, 11], spin effects were investigated in the semi-hard
region s — oo, [{{ > 1GeV? where the perturbative theory can be used. Since the
spin-flip amplitude growing as s is absent in the born twe-gluon diagrams Fig. 1a more
complicated ladder diagrams were considered.
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Fig.1 (a)- two-gluon gg-scattering diagram; (b,c)- o? contributions determining the
spin-flip qg¢ -scattering amplitude.
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It has been shown that the main contribution to the spin-flip amplitude comes from the
planar diagrams of the form, Fig: 1b, lc. Moreover, there are s — u crossing diagrams
with crossed gluon lines. In the semi-hard region we have u ~ —s and the real parts
are compensated in the sum of diagrams. So we can calculate only the imaginary parts
of diagrams in the case of the pomeron exchange. In [10, 11} the factorization spin-flip
amplitude T; into the spin-dependent large-distance part and the high-energy spinless
pomeron were shown. This permits one to define the quark-pomeron vertex which is
appropriate for the spin-dependent low-energy subgraphs (the upper parts of the graphs



Fig. 1b. 1c) and for investigating the results of summation of the pomeron ladder graphs
in higher orders of QCD. As a result of thi~ susnmmation. it hias been found that the ratio
'I“q,,,/T..o..-ﬂ., is energy-independeunt. The obtained total spin flip amplitude {10, 11] is
about 2 per cent of the spin-non-flip one. Note that the sinallness of the resulting spin-flip
amplitude is caused by the compensation of different matrix structure contributions, that
are not very small by themselves. Compensation like that is possible only for the quarks
on the mass shell. Really, the model investigations of the 1¢ elastic scattering at high
energies [10, 7] show that the off-mass-shell effects in the quark loop increase the spin-flip
amplitude essentially.

The purpuose of this paper is to investigate the role of the off-mass-shell effects of the
wave functions in the semi-hard region. The role of these effects is studied by using the
clastic v¢- scattering as an example. The contributions from the hadron wavefunction
are very similar to the quark-loop integral in this reaction and all calculations can be
performed up to the end without 1aking any additional information about the hadron
spin structure into account. Morcover. the investigation of 5¢-scattering is of major
methodical importance since it is the simplest subprocess in photon-hadron reactions.
For example. the reactions of diffractive photoproduetion of vector mesons differ from the
above only by the replacement of the wavefunetion of the vutgoing photon by the meson
wavefunction.

Let us investigate the elastic yg-scatiering
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In what follows. we shall use the synietric coordinate system in which the sum of quark
momenta before and after scattering is directed along the s-axis:
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and the momenta transferred A, along the r-axis [5]:
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In the present paper only the planar graphs (which comain an interaction of the gluons
from the: pomeron with one quark in the loop) will be considered since just they determine
effects under study. The main contribution to the elastic 4¢-scattering amplitude in the
semi-hard region in the a? order comes from the imaginary part of the diagram drawn
in Fig. 2a. In calculations. we shall use the Fevnman gauge because only the g,., terms
in the t-channel gluon propagators contribute 16 the leading ~ s terms of the scattering
amplitudes. and in the a? order we du not have ghost contributions.

Let us calculate the matrix element of the amplitude, Fig. 2a, with spin-flip and spin-
non-flip of the photon. As has been shown in [5]. the main contribution to the amplitude
is determined by the following spin-non-flip matrix element structure in the lower quark
line
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Then, the matrix element of the amplitude can be written as follows:

M= Nerayl (5)



where N is a matrix structure of the upper araph’s part.

(a) (b) (c)
Fig.2 The planar contributions to the 1q -scattering amplitude (a)- born diagram;
(h.c)- a? contributions.

Now let us calculate the imaginary parts of the spin-non-flip matrix elements in the
down quark line (T}, . (5. 0)) of diagram Fig. 2a. They have the form
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where cof is a numerical factor, Gip + 1) is the quark propagator functions from the
upper part of the graph. F({ £ r) ave the gluon propagators from the lower part of the
graph, M}, . include the corresponding niatrix clements of the diagram’s numerator. It
is useflul to perform calculations in the light-roue variables
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After integration with the é-functions. we obtain the following representation:
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Here (qep_), (g4l ) ¥ are pole solutions of the d-functions. the numerical factor has the
form:
. . =N
cof =105 a, T =g
3 is a color factor of the born two-glnon diagram (Fig. la}. For the diagram investigated
the functions G and F look as follows:
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where we introduce the mass A in the ginon propagators. The matrix elements of the
diagram have the following form:

Glptr)=— (10)
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M = 8 A% - 1) (12)
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This means that the <pin-flip and <pin-non-tlip matrix clements are growing as s*. One
power of s is compensated in the mtegral sy and botho the spin flip and non-flip amplitudes
are growing as s: that 1s taking the olf-massshiell effedts into account leads to the energy-
independent ratio of spin-flip and spin-non-tlip amphtudes in the same a, order.

The born two-gluon high-energy amplitude (Fig. 1a) has the form {10, 11):

T3ty = A 0L, (14)

where .
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with (F(I £ r}) determined in (1],
Note that the contribution of the radiative corrections in (11) can be taken into account
through the use of the spinless pomeron vertex function (formfactor)
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which was introduced in (4], It i< casy to see that the integrals over dép, and &?1; are
factorized completely in (8). Moreover, the integrals over d*f, coincide with the transverse
integral in (15). So. expression (&) may be written in the form:
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The obtained result (17) confirm the factorization in the spin-flip part of the pomeron
exchange of the large-distance cffects ¢ 37 and the high energy spinless two gluon am-
plitude 4%(s,1).

The main contribution to the 9¢-scattering amplitude in the a3 order comes from the’
imaginary part of the diagrams drawn in Figs. 2b, 2c. We will also take into account
the a2 order contributions tu the spin-non-flip amplitude in contrast with {10, 11]. As it
will be 'shown. the cross-section’s shape depends essentially on these contributions. Let
us calculate the imaginary parts of the spin-non-flip matrix elements in the down quark
line (T} g(s. ()} of the diagrams Fig. 2h, 2c. Afier integration with the é-functions in the
light-cone variables {7) we obtain the following representation similar to (8):
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Indices "17. "2” denote that the quantity refers to graph Fig. 2b or 2¢, respectively. The
numerical factors (c; was determined in (4)) Lave the form:

cofy =41 ala, ] BTN (20)
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For the diagrams investigated the functions (7 and F look as follows:
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It follows from (22}, (23). (24) that in the A — 0 limit we have infrared singularities only
from the gluon propagators F'({ £ r) in the duwn part of the graph. All other propagators
do not have divergences in this hmit.

The matrix elements of the diagrams have the following form:

M = 452 A%y [S.r'lz — 20?4202 —Brz 4 5r + 52] , (25)
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10723 + 19222 - 16rz+5:° = 1022 + 10:] .

M = —1652A%m%r? {2z — 3z — 427 4 Bz - 1} , (27)
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My = (28)

2r:% — 522 +drz — 5 — 421 + 122 — 1327 +62] .

Hence, the spin-flip matrix elements and the spin-non-flip one of the ladder diagrams are
growing as s as well. One power of s is compensated in the integral (19) and both the
spin-flip and non-flip amplitudes are growing as . The ratio of spin-flip and spin-non-flip



amplitudes is independent of the energy in the a3 order in the same manner as for a2,
As one can see, Lhe integrals over d°py, d®k, and d?{, are factorized completely in {19).
Using (15} as notation, the amplitudes (19) can be written in the form:

Im(T} ,(5.8)) = @, A¥ (5.t} ®73. (29)

where
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We have obtained again the factorization (29) in the spin-flip part of the pomeron ex-
change of the large-distance effects @ 7} and the high energy spinless two gluon amplitude
A¥(s,1).

In calculation, we use a, = 0.3 which is typical of |{| ~ 1Gev? and A = 0.1GeV.
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Fig.3 Different contributions to the 9 spin-flip amplitude -(a) and spin-non-flip
amplitude- (b): dot-dashed curves for the horn (Fig. 2a) diagram with the formfactor are
taken into account: dashed curves for the ladder (Fig. 2b,c) diagrams; full line for the
total amplitude.

The obtained results are shown in Fig. 3 and 4, where the |¢]-dependence of the
amplitudes ¢ 77 is displayed. In Fig. 3. the contribution of the born diagram subject
to the formfactor (see (16)) is presented. In Fig. 4, this con.ribution is shown without
considering the formfactor. It is easy to see that the cross-section’s shape essentially
depends on the consideration of the formfactor and the contributions in the a? order to
the spin-non-flip amplitude. Actually. the total non-flip amplitude in Fig. 3 does not
have a dip in coutrast with the one in Fig. 1. This fact means, respectively, the lack or
the availability of diffractive minimuny in the cross-section. Hence, the obtained result



may help to refine the formfactor expression (16) from the experimental data on the
cross-section.
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Fig.4 Different contributions to the ¢ ¢ spin-tip amplitude -(a) and spin-non-flip
amplitude- (b): dot-dashed curves for the horn (Fig. 24) diagram without the formfactor:
dashed curves for the ladder (Fig. 2h.c} diagrams: full line for the total amplitude!

Let us consider the conclusions which may be drawn from the performed calculation.
As have been noted above, the spiu-tlip amplitudes are suppressed logarithmically with
respect to the spin-non-flip vne for the quarks on the mass shell and for the diagrams
in the same o, order. As has been shown. the taking off-mass-shiell effects of the wave
function into account leads to the cuergs-independenee of the ratio 7},,,./7'“,,,,_11.,, in
a? and a? order. One would expeet that in higher a, orders the energy-independence
of this function holds true. The next conclusion implies that the wave function has no
effect on the factorization of the large-distance contributions and the high energy spinless
two-glion amplitude in Ty, The most important conclusion to emerge from the obtained
results is that the spin-flip amplitnde is ot small with respect to the spin-non-flip one. Its
magnitude may run to 20-30% of the ~pin noo-dlip amplitude. 1t should be emphasized
that the obtained here spin-flip amplitudes are completely determined by low-cenergy
effects in the quark (glion) loop. Henee. the performed caleulation shows that off-mass-
shell effeets in the quark-loop essentially ivctease the cantributions of the spin-dependent
quark-pomeron vertex 1o the amplitiede with photon’s spin-flip. Suck spin effects may
lead to considerable spin asymmetries in the reactions of the vector meson production
which will be studied at future aceelerators. Note that it is pecessary 1o find a relative
phase between spin-flip and non-Aip amplitudes for the spin asymmetry computing. These
calculations and investigation of the diffractive photoproduction of vector meson reactions
will be performed later.
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